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Electrohydrodynamics in the presence of hydrophobic interactions in narrow confinements is traditionally
represented from a continuum viewpoint by a Navier slip-based conceptual paradigm, in which the slip length
carries the sole burden of incorporating the effects of substrate wettability on interfacial electromechanics,
precluding any explicit dependence of the interfacial potential distribution on the substrate wettability. Here we
show that this traditional way of treating electrokinetics-wettability coupling may lead to serious discrepancies
in predicting the resultant transport characteristics as manifested through an effective zeta potential. We suggest
that an alternative consistent description of the underlying physics through a free-energy-based formalism, in
conjunction with considerations of hydrodynamic and electrical property variations consistent with the pertinent
phase-field description, may represent the underlying consequences in a more rational manner, as compared to
the traditional slip-based model coupled with a two-layer description. Our studies further reveal that the above
discrepancies may not occur solely due to the slip-based route of representing the interfacial wettability, but may
be additionally attributed to the act of “discretizing” the interfacial phase fraction distribution through an artificial
two-layer route.
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I. INTRODUCTION

Hydrophobic interactions in narrow confinements have
attracted serious research attention over the past few decades
[1,2], attributable to the inherent scientific challenges involved,
as well as to overwhelming technological implications towards
inducing phenomenal reductions in resistive forces against
fluidic transport [3]. The physical origin of such interfacial
interactions has been scientifically argued for a long time,
postulated on the basic notion that hydrophobic effects are
likely to trigger the formation of wall-adjacent depleted phases,
primarily governed by the fact that the structure of water
molecules next to a hydrophobic surface is apparently less
ordered than that in the bulk [4–16]. Fundamentally, this
has been attributed to the fact that hydrophobic units are
not thermodynamically favored to form hydrogen bonds [17].
Irrespective of the details of the generating mechanism of
this depleted phase formed near the walls, the latter has been
perceived to serve as an effective smoothening blanket, by
disallowing the bulk liquid to come in proximate contact with
the rough walls.

In the literature, smooth sailing of bulk liquid over an
ultrathin cushion of a depleted phase (typically spanning
over a length scale of 10 nm) adhering to rough walls,
attributable to hydrophobic interactions as described above,
has also been conceptualized to give rise to an “apparent
slip” phenomenon [18–26], consistent with the physical notion
that the liquid apparently slips over the intervening depleted
layer, instead of being explicitly slowed down by interference
from the wall [27–29]. Such conditions, probed through
numerous theoretical and experimental studies [22–89], have
been termed as “apparent slip” in the literature, since the
no-slip boundary may still remain to be a valid proposition
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at the solid boundary (until and unless it falls in the slip flow
or rarefied flow regimes of gases). In reality, it is only the
apparent inability in resolving the sharp velocity gradients
within the ultrathin wall-adjacent depleted layer that prompts
an analyzer to extrapolate the velocity profiles obtained in the
liquid layer above the low-density blanket, thereby marking
an apparent deviation from the no-slip boundary condition at
the wall. Despite the underlying simplifications, it has become
a common practice to treat hydrodynamics in the presence of
hydrophobic interactions through the introduction of a Navier
slip coefficient at the confining boundaries in describing the
pertinent hydrodynamic boundary condition [90–94].

The implications of hydrophobic interactions and the
consequent reductions in fluidic friction, as discussed above,
may be far reaching. As an illustration, one may cite the
instances of electrohydrodynamic transport in the presence
of electrical double layer (EDL) effects. In simple terms, EDL
is essentially a charged layer adhering to the solid boundary,
typically originated out of involved electrochemical interac-
tions [95,96]. Since typical length scales of the EDL (termed as
Debye length in the literature) are likely to be commensurate
with the typical length scales of the wall-adjacent depleted
layers formed out of hydrophobic effects, their interactions
often turn out to be intriguing. Acknowledging this aspect,
researchers have reported phenomenal augmentations in the
effective electrohydrodynamic transport (characterized by an
effective interfacial potential; more formally known as the zeta
potential [95]) in the presence of hydrophobic interactions.
This has been attributed to an enhanced pumping effect on the
solvent molecules in the EDL due to hydrophobic interactions
[49,58,66,73,87,97–106].

Consistent with the above conjecture, electrohydrodynam-
ics in the presence of hydrophobic interactions has often
been represented as an equivalent electrokinetic transport over
slipping surfaces. In an effort towards doing so, however, it
needs to be emphasized that it is essential to introduce a slip
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length that effectively decouples the interfacial hydrodynamics
from the intricacies of hydrophobic interactions in the presence
of electrokinetic influences. On the basis of this slip length,
the standard electrohydrodynamic models can be elegantly
closed, disregarding the details of the underlying hydrophobic
interactions. The slip length, on the other hand, is routinely
estimated from the perceived notion of a given thickness of a
depleted interfacial layer that originates out of hydrophobic
interactions, by employing a two-layer (a liquid layer on
the top of a discrete depleted layer of a given thickness)
model [26]. This kind of consideration, despite simplifying
the physical paradigm, offers nothing but an abstraction to
the physical reality, by attempting to represent the gross
artifact of alterations in the interfacial hydrodynamics due
to hydrophobic interactions through a discrete two-layer
approach, instead of representing the electromechanics and
hydrodynamics in the presence of hydrophobic interactions
in a coupled environment and thermodynamically consistent
manner. As a consequence, the electrohydrodynamics in nar-
row confinements in the presence of hydrophobic interactions
still remain to be poorly understood, especially within the
purview of experimentally tractable spatiotemporal scales.
This deficit stems from the complexities in describing the
underlying interfacial interactions over physical scales that
are substantially larger than those addressed in the pertinent
molecular scale simulations.

Is the slip-based paradigm of representing the intercon-
nections between hydrophobic interactions and interfacial
electromechanics, as routinely adopted in the contemporary
literature, physically consistent? Addressing this issue, here
we show that the notion of representing interfacial elec-
trohydrodynamics on hydrophobic surfaces by means of an
effective slip boundary condition may not remain far from
being questionable. In an effort to establish this point, we first
outline the traditional approach based on a slip-length-based
conceptual paradigm towards estimating an effective zeta
potential pertaining to electro-osmotic flow (essentially, a flow
triggered by the application of an external electrical field
that interacts with free charges within the EDL; for more
details, see [95,96]) in a narrow confinement in the presence
of hydrophobic interactions. Subsequently, we illustrate the
calculation of apparent slip length by extending a two-layer
model, which was originally postulated for estimating apparent
slip lengths for pressure-driven flows [26], to electro-osmotic
transport. This, in turn, acts as a closure to the slip-length-
based model (traditional approach), based on a predefined
thickness of the interfacial depleted layer, and enables one to
calculate the effective zeta potential based on an apparent slip
length. Next, as an alternative to this approach, we present a
phase-field model that essentially couples the hydrodynamics
and electromechanics in the presence of hydrophobic inter-
actions, without being routed through any slip-length-based
considerations. Unlike the two-layer model, this model is not
based on considerations of predefined discrete layers. Rather,
we employ a free-energy minimization approach through the
introduction of an order parameter, the distribution of which
effectively prescribes the relative phase distributions in a
thermodynamically consistent manner, without necessitating
a deployment of the paradigm of two discrete layers. Im-
portantly, we use this phase-field parameter to describe the

effective interfacial properties (namely, viscosity and electrical
permittivity), instead of preassigning them with discrete values
either corresponding to a pure liquid or a pure gaseous phase.
This effectively acts as a closure to our electrohydrodynamic
model, consistent with the thermomechanics of hydrophobic
interactions. In addition, considerations of this model permit
us to explicitly relate the contact angle with the resultant
electrohydrodynamic transport, which is not possible through
a traditional two-layer, or equivalent slip-length-based formal-
ism, with predefined layer thicknesses. More importantly, this
allows us to evaluate the interfacial and bulk transport char-
acteristics (such as electrical potential and velocity), without
necessitating the employment of a discrete two-layer model.
Further, from the resultant bulk transport characteristics, we
can compute the effective zeta potential directly, instead of
being routed through a traditional slip-length-based approach.
Considering the above, on a somewhat nonintuitive note, we
demonstrate that there may occur significant discrepancies in
the effective zeta potential predictions between the traditional
(two-layer) approach and the present formalism, even if
the respective layer thicknesses for the discrete two-layer
approach are estimated from the same phase-field model
considerations as deployed for the present approach. Remark-
ably, discrepancies in this regard still do remain even if the
effective zeta potential is calculated from the bulk transport
characteristics consistent with a two-layer description, without
necessarily going through the slip-length-based route. We
attribute this discrepancy to an apparent inability of the
traditional approach in explicitly capturing the interconnection
between electrohydrodynamic and hydrophobic interactions,
through a thermodynamically consistent postulation of the
effective interfacial transport parameters.

The remaining part of this article is organized as follows. In
Sec. II A, we first outline the traditional considerations of effec-
tive zeta potential predictions based on a predefined slip length,
consistent with the reported literature [104]. In Sec. II B,
we derive a semianalytical approach for determining the slip
length for closing the model outlined in Sec. II A, based on
a discrete two-layer model with predefined layer thicknesses,
extending the previous works [26] reported in this regard (in the
context of pressure-driven flows) to electro-osmotic flows. In
Sec. II C, we derive the phase-field-based formalism in detail,
towards evaluating the effective zeta potential from the present
considerations. In Sec. III, we compare results from the tra-
ditional approach (combined slip-length–two-layer approach)
with those from the present considerations, and emphasize on
the evident discrepancies. We further delineate in this section
that discrepancies in the predictions still do remain, even if the
effective zeta potential is directly obtained from the two-layer
model without going through the slip length route, despite
considering the discrete layer thickness to be consistent with
the phase-field calculations. In Sec. IV, we draw important
conclusions based on our findings reported in this work.

II. MODEL DESCRIPTION

A. Effective zeta potential based on Navier slip

In this subsection, as a specific example of electrokinetic
transport (without losing generality with regard to the focal
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theme of the present investigation), we consider the model
problem of electro-osmotic flow (EOF) of a binary electrolyte
with symmetric valencies of the cations ( + ) and the anions
(–) through a slit channel of height 2H (0 � y � 2H ), x

being the axial direction and y being the transverse direction.
Both the plates have identical homogeneous surface charging
conditions. An externally applied electric field Eapp ≡ Eappex

parallel to the channel walls drives the EOF. Because of the
fortuitous orthogonality of this particular arrangement, the
potential distribution ψ0 and the charge density ρe = ez+c0

+ +
ez−c0

− due to the EDL in the quiescent state, remain undis-
turbed by the applied electric field, and thus may be treated
separately. The Boltzmann equation governing this quiescent
distribution of the ions, c0

±, may be combined with the Poisson
equation to obtain the celebrated Poisson-Boltzmann equation
for the resolution of the potential distribution ψ0 screening the
surface charge. The solvent hydrodynamics is resolved through
the Stokes equation incorporating electrokinetic body force
terms; this equation is solved subject to the Navier slip bound-
ary condition at the wall: u|y=0 = b(∂u/∂y)|y=0 (through a
specification of the slip length b) and the symmetry condition
at the channel center line. The augmentation of flow velocities
due to interfacial slip, so obtained, is traditionally expressed
in the electrokinetics literature through the introduction of an
effective zeta potential, ζeff , which is expressed in a generic
form as

ζeff = ζ

[
1 + b

(− ∂ψ

∂y

∣∣
y=0

)
ζ

]
. (1)

Please note that from this stage, the superscript is dropped
with the understanding that the potential distribution estab-
lished in the quiescent condition remains undisturbed by the
fluid flow. The mathematical details behind this overview
of expressing the effective zeta potential in terms of the
slip length are presented in Appendix A with the standard
assumptions to be found in Ref. [107]. For the simplest
possible case where the zeta potential is smaller than the
thermal voltage [ζ < kBT /(ez)] so that the Debye-Hückel
linearization may be applied, and where the EDL is thin enough
so that the channel centre-line (y = H ) may be considered to
be effectively ‘at infinity’, the expression for the potential

reduces to ψ = ζ exp(−κy), where κ = 1/λ =
√

2n0e
2z2

εkBT
is the

inverse of a characteristic length scale of the EDL (also known
as Debye length). Then the effective zeta potential expression,
accordingly reads

ζeff = ζ (1 + bκ) . (2)

Other more involved expressions for the effective zeta
potential follow Ref. [104] from Eq. (1), based on some
relaxations of the aforementioned simplifications.

It is evident from the above description that the determi-
nation of effective zeta potential following a slip-length-based
conceptual paradigm relies heavily on a correct specification
of the slip length b. In the literature, the latter is commonly
accomplished through the introduction of a two-layer model,
following the considerations of Tretheway and Meinhart [26]
that were originally invoked for pressure-driven flows. In

FIG. 1. (Color online) Schematic depiction of a two-layer model,
with a discrete depleted (v) layer intervening an outer liquid (l) layer
and the wall. The depleted layer is considered to form on the wall as
a consequence of hydrophobic interactions [26].

the subsequent subsection, accordingly, we extend those
considerations for EOF.

B. Determination of slip length from a two-layer approach

We schematically represent the paradigm of a two-layer
description of interfacial transport as influenced by hydropho-
bic interactions, considering the formation of a depleted layer
blanketing the outer liquid layer from the wall, as depicted in
Fig. 1. We consider that the depleted layer is of thickness δ, and
is characterized by a permittivity of εv and dynamic viscosity
of ηv , whereas the outer liquid region (undepleted solvent) is
characterized by a permittivity of εl and dynamic viscosity of
ηl . The pertinent equations for potential distribution may be
mathematically expressed as

εv

d2ψ

dy2
= 2c∞ez sinh

(
ezψ

kBT

)
, 0 � y � δ, (3)

εl

d2ψ

dy2
= 2c∞ez sinh

(
ezψ

kBT

)
, δ � y � H, (4)

where c∞ is the concentration of the ions in the electroneutral
bulk, subject to the boundary conditions

ψ(y = 0) = ζ, (5)

ψ(y → δ−) = ψ(y → δ+), (6)

εv

dψ

dy
(y → δ−) = εl

dψ

dy
(y → δ+), (7)

dψ

dy
(y = H ) = 0. (8)

The corresponding equations governing the flow velocity
read

ηv

∂2u

∂y2
= ρeEapp, 0 � y � δ, (9)

ηl

∂2u

∂y2
= ρeEapp, δ � y � H, (10)

subject to the boundary conditions

u (y = 0) = 0, (11)

u(y → δ−) = u(y → δ+), (12)
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ηv

du

dy
(y → δ−) = ηl

du

dy
(y → δ+), (13)

du

dy
(y = H ) = 0. (14)

Following the approach of Tretheway and Meinhart [26],
one may estimate the slip length (b) by using the relation

u|y=δ = (b + δ)
∂u

∂y

∣∣∣∣
y=δ

. (15)

Having obtained the slip length, the steps outlined in Sec. II
A may be invoked for the estimation of the effective zeta
potential to represent the hydrophobicity mediated electro-
osmotic flow augmentation. In the following discussions, we
refer to this approach as the slip-based route. It needs to be
noted here that this approach is conceptually not new, and has
only been summarized here, with a vision to form a basis of
comparison with respect to the alternative strategy as discussed
subsequently.

The slip-based route, as outlined above, is inherently
constrained by the fact that it grossly simplifies the entire
physics of hydrophobic interactions through the prescription
of a particular slip length that may only be a partially
effective abstraction of the underlying thermophysical details.
Moreover, the two-layer approach invoked for estimating the
slip length itself effectively discretizes the depleted and the
bulk phases, without considering the issues of interfacial
property variations across the phase-separating region. In
other words, the discrete two-layer model does not exhibit
any sensitive and explicit dependence of the property (for
example, permittivity and viscosity) variations based on the
relative distributions of the two phases (depleted and bulk)
being separated across the interfacial layer.

Conceptually, the above deficits may be potentially over-
come by introducing a phase-field-based approach in which
thermodynamically consistent variation of a phase field pa-
rameter essentially takes the burden of not only ascertaining
the relative distributions of the phases being separated from
free-energy-based considerations (rather than specifying a
discrete depleted layer thickness on an ad hoc basis), but
also ascertains the viscosity and permittivity variations across
the interfacial layer in accordance with the relative phase
fraction distribution. This obviates the necessity of not only
the employment of a slip-based approach, but also the
consideration of an artificially postulated two-layer formalism
that is routinely invoked in the literature to represent the
hydrodynamic consequences of hydrophobic interactions. Ad-
ditionally, this formalism is able to explicitly capture the effect
of the substrate wettability (through an explicit dependence
on the contact angle) on the electrohydrodynamic transport
within the interfacial layer, instead of being routed through
synthetically posed soft model parameters.

In the Sec. II C, we describe this phase-field approach for
obtaining the effective zeta potential (henceforth referred to as
the “present approach”) in an elaborate manner.

C. Phase-field-based formalism

The primary motivation behind the use of the phase-field
model stems from the understanding that the depletion of
solvent molecules in the vicinity of a hydrophobic substrate

is basically a phase-separation phenomenon of a single
component fluid into its vapor and liquid phases. Thus, the
fluid is considered to be a binary mixture of liquid and
vapor phases, which, under the influence of hydrophobic
interactions, undergoes a demixing process. In order to
track the spatial variation of the composition of this binary
mixture, an order parameter variable φ = (n1 − n2)/(n1 + n2)
is introduced, where ni are the number densities of the two
separating phases. It is this order parameter variable that takes
the sole burden of capturing the transition of electrical and
hydrodynamic properties across the interfacial layer, and thus
precludes the necessity of considering two distinct layers with
discrete properties. In the present study, φ = −1 represents
the bulk liquid phase and φ = 1 represents the vapor phase,
with an averaged location of a smeared boundary between the
two being considered corresponding to φ = 0.

It is extremely important to note here that the ensuing phase-
field model development follows closely that of Ref. [25]
together with the underlying restrictions and assumptions.
Of particular significance is the artifice of calculating the
equilibrium order parameter variation taking no cognizance
of the flow characteristics. The primary justification for such
an artifice is the assumption of a weak influence of flow on
the equilibrium distribution of the separating phases. Drawing
an analogy, the phase-field model of the hydrophobicity
mediated depletion is similar in spirit to the modeling of the
electro-osmotic flow where the equilibrium charge distribution
is considered practically undisturbed by the flow driven by the
relatively weak applied electric field.

In the phase-field model invoked for the present electro-
hydrodynamic considerations, description of the demixing
thermodynamics is achieved through a free-energy functional
which represents the excess Ginzburg-Landau free energy for
a binary mixture, and is given by [108]:

�(φ) =
∫ ∞

0

[
k

2

(
dφ

dy

)2

+ ω(φ)

]
dy + �S, (16)

where ω(φ) = ω(φ) − ω(φ0) − (φ − φ0)(∂ω/∂φ)φ0 is the
free energy required to produce a unit volume of uniform fluid
of composition φ from a large reservoir at composition φ0,
0.5k(dφ/dy)2 is the penalty for the presence of the interfacial
gradient, and �S is the surface energy that takes into account
the interactions between the substrate and the fluid. Motivated
by the requirement that there should be two minima in the
free energy because the two phases (liquid + vapor) must
coexist, a double-well shaped form of ω is adopted following
Refs. [29,109]:

ω = B

4

(
φ −

√
A

B

)2(
φ +

√
A

B

)2

, (17)

where A and B are two positive constants such that A,B ∼
kBTC with TC being the critical temperature for the liquid-
vapor coexistence [29]. This form of ω clearly shows the
double-well shape with minima at φeq = +√

A/B, − √
A/B,

representing, respectively, the bulk order parameter values for
the vapor and the liquid.

It may be noted in the above context that the requirement of
having two minima is an extremely fundamental one in demix-
ing phenomenon irrespective of the geometry and the nature of
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the problem that is being addressed because it is a necessity for
the existence of two stable phases resulting from the demixing
process. The simplest realization (in mathematical terms) of
such a requirement is through the double-well potential used.
The fundamental genesis of the double-well potential is from
the van der Waals equation of state. It has been a preferred
choice for phase-separation problems including liquid-vapor
phase separation. Indeed, there are numerous examples in the
literature where this simple double-well potential has been
used [110–120]. From a very general perspective, other forms
of the potential (to take into account a generic demixing
phenomenon) do exist in the literature; a comprehensive
discussion of such forms is present in Chen’s review [121].
The ubiquity and usefulness of the double-well potential can
be gauged from the fact that even in this comprehensive
discussion [121], the alternative forms are presented as
variations on the double-well potential. For instance, there is
the double-obstacle potential form which imposes, for the sake
of easier numerical implementation, the demixed stable phase
values of the order parameter just outside the interfacial region
instead of the more physically intuitive smooth transition that is
an important characteristic of the double-well potential form.
Another one is the sinusoidal potential form which may be
useful for spatially periodic manifestations of demixing zones.
Interestingly, such a sinusoidal form may be adapted to a case
such as ours by considering a suitably selected “period.” It
might be interesting to note that we had previously worked
with a subtly different mathematical treatment as presented
by Andrienko et al. [25] which involves a different potential
form. However, in the course of development of our work, we
settled on the current formulation with the particular choice of
the double-well potential because of two reasons: First, unlike
Andrienko et al. [25], we are not investigating the influence of
the temperature, and, as discussed in Chen’s review [121], it
is necessary to incorporate the temperature dependence in the
potential form only when the overall problem so demands.
Second, the double-well potential is more easily tractable
numerically and even affords an immediate physical insight by
being amenable to a preliminary perturbation analysis without
actually implementing the numerics; this preliminary perturba-
tion analysis will be discussed following the establishment of
the governing equation for the variation of the order parameter
variable. However, most importantly, the two forms of the
potential do not give different results. The reason is simple: Our
mathematical treatment is such that once the order parameter
profile is established the details of the phase-field formulation
become inconsequential to the transport problem addressed.
As such, so long as different forms and formulations result in
essentially similar order parameter profiles (as they do indeed
for the two mentioned forms), the minor quantitative variations
have practically no influence on the final results, and certainly
not on the conclusions deduced from the trends of these final
results.

In our subsequent analysis, we adopt the principle of free-
energy minimization towards obtaining an equilibrium order
parameter profile, which we then apply for solving the fluid
flow equations. In the following discussion, we explain the
genesis of this important consideration of using the equilibrium
order parameter profile in the case of the nonequilibrium elec-
trokinetic transport phenomenon. In fact, the question about

the validity of such a consideration might also arise in the case
of simple shear-driven (plane Couette) flow or pressure-driven
(plane-Poiseuille) flow. As such, we explain, first, the scenario
for which our use of the equilibrium order parameter profile
(brought about through the minimization of the free-energy
functional) is valid for such a simple flow situation. We next
discuss the specific case of the electrokinetic transport relevant
to our work. This discussion incorporates an interesting
analogy between the use of equilibrium profiles of the order
parameter profile and the profile of the ion number densities.

In order to avoid any confusion with the nomenclature
associated with the concepts to be discussed, we state foremost
that the term “nonequilibrium phenomena” might refer to both
stationary and nonstationary (i.e., where the system evolves
with time) ones (please see, for instance, de Groot and Mazur
[122]). A steady-state fluid flow situation where the velocity
field is independent of time, and is only a function of the spatial
coordinates (in a Eulerian description) is a simple example of
stationary nonequilibrium phenomenon. In contrast, a fluid
flow situation comprising a phase-separating mixture where
the interfaces evolve with time (thus, in turn, affecting the
velocity profiles to change with time, too) is an example of a
nonstationary nonequilibrium phenomenon.

For the sake of concreteness, let us consider the simple
case of shear-driven (plane-Couette) flow taking place within
a slit channel with hydrophobic wall substrate. Such a flow
situation had been analyzed by Andrienko et al. [25]. They
too had utilized the equilibrium order parameter profile (with
no flow taking place) to predict slip lengths under the shear
drive providing a full-fledged theoretical justification (based
on principles of nonequilibrium thermodynamics) for such
an artifice. We shall not repeat those steps here (please see
the Appendix of their paper for the exact details). Rather,
we shall try to highlight the key concepts on which their
justification is based. The first key concept is that the substrates
are perfectly homogeneous and the walls are perfectly parallel
to each other resulting in a perfectly unidirectional flow. Thus,
the flow profile at any cross section is exactly identical to
the flow profile at any other cross section. The second key
concept is that under stationary conditions, the interfacial
diffusional flux between the two phases (vapor and liquid) is,
by definition, zero. This is extremely important to recognize
because any interfacial flux will necessarily imply evolution
of the interfaces with time and, as such, a nonstationary flow
situation (precluded by the initial assumption). These concepts
immediately ensure that whatever order parameter profile
is established in the equilibrium (no-flow) situation is also
maintained even when the flow is taking place. Graphically
speaking, it might be said that the equilibrium order parameter
profile gets swept along with the flow but fixing our attention
to a cross section (with fixed Eulerian coordinates) the order
parameter profile (and hence the interfacial structure) does
not appear to change. It is extremely important to understand
that this situation is mainly a consequence of the fortunate
orthogonality of the flow direction with the direction along
which the variation of the equilibrium order parameter is
established. It is interesting to note what happens, as a
consequence of the above discussions) to the various terms
of the Cahn-Hilliard equation (which would strictly model
this nonequilibrium flow situation, albeit with unnecessary
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numerical difficulties):

∂φ

∂t
+ �u · ∇φ = ∇ · (M∇μ) , (18)

where φ is the order parameter variable, �u is the velocity field,
M is the mobility, and μ is the chemical potential. The first
term is immediately recognized to vanish as a consequence
of the stationary assumption. The second term is also zero
because �u = {u,0,0} and φ = f (y) where y is the coordinate
axis perpendicular to the wall such that ∇φ is also a function
solely of y, thus resulting in the inner product being zero.
Finally, the interfacial flux is represented as

�j = −∇μ. (19)

The condition of zero interfacial flux (associated with
the stationary state condition) implies ∇μ = 0 such that
the Cahn-Hilliard equation is identically satisfied by the
equilibrium profile assumption. Indeed, it was only to take
into account the evolution of the interfaces with time that Cahn
and Hilliard originally proposed their celebrated equation as a
generalization of the equilibrium order parameter description
[109,111].

The scenario just described synchronizes well with the
electrokinetic transport problem addressed in the present work.
It is a well-established practice in theoretical modeling of
electro-osmotic transport of an ionic solution through a slit
channel to utilize the equilibrium profile of the ionic number
density in the momentum equation for the description of the
velocity profile, with the implicit understanding that the flow
itself does not disturb the equilibrium profile, mathematically
described by the Poisson-Boltzmann equation. The physical
justification behind this practice is exactly identical to the
justification presented previously in the case of the order
parameter profile. The application of the electric field actuates
the flow. However, the electric field itself does not change the
equilibrium profile of the ionic number density. Again the
key factors behind this are the stationary state condition,
the perfect homogeneity of the substrate (this time from an
electrochemical perspective), and the fortunate orthogonality
between the direction of establishment of the equilibrium
profile of the ions and the flow direction. These, of course,
ensure that the unidirectionality of the flow itself is maintained.

It thus important to recognize that the flow does not
effectively disturb either the equilibrium profile of the order
parameter (and hence the interfacial fluid structure) nor does it
effectively disturb the equilibrium profile of the ionic number
density. Furthermore, the only link between the interfacial
structure (described through the order parameter profile) and
the electrochemistry is through the permittivity of the fluid. For
the present case the permittivity is assumed to be independent
from the influences of the electric field, and is solely a
material property of the fluid. This ensures that there is only
a one-way coupling (albeit indirect) between the interfacial
structure and the electrochemical description. This allows
the interfacial structure to be described first using the order
parameter variable through the route of minimization of the
free-energy functional independent from any electrochemical
influences (as done in the present work) and the electrochem-
ical description to be subsequently established through the
Poisson-Boltzmann equation. The aforementioned one-way

coupling is due to the fact that the Poisson-Boltzmann equation
needs the information of the permittivity of the fluid.

In view of the above discussion, the route, adopted in
the present work, of using the equilibrium order parameter
profile (independent from any influences of the flow or even
electrochemical influences) based on the minimization of the
free-energy functional may be accepted as physically justified
for the sake of addressing the electro-osmotic flow taking place
in the slit channel with perfectly homogeneous walls.

Proceeding further forward, we may now note that a
minimization of the free-energy functional Eq. (16) results
in the Euler-Lagrange equation:

dω

dφ
− d

dy

[
k

2

d

dφ′

{(
dφ

dy

)2}]
= 0, (20)

so that

ω = k

2

(
dφ

dy

)2

+ constant, (21)

together with the boundary condition at y = 0,

d�S

dφ
− d

dφ′

(
k

2
φ′2

)
= 0,

implicating

d�S

dφ
− k

dφ

dy

∣∣∣∣
y=0

= 0. (22)

In the bulk, ω = dφ/dy = 0, so that from Eq. (21), we
get

ω = k

2

(
dφ

dy

)2

, or

(23)
dφ

dy
= ±

√
2ω

k
.

The profile for the order parameter may be obtained from
Eqs. (20) and (22). Importantly, the use of the boundary
condition given by Eq. (22) requires an explicit specification
of �S in terms of the short-range surface field and the surface
enhancement parameters [123]. However, in order to render
the interfacial electrohydrodynamics to be explicitly sensitive
to the substrate wettability, it may be imperative to link
the interfacial order parameter variations with the contact
angle θw.

In an effort to explicitly link the interfacial electrohydro-
dynamics with the substrate wettability through a phase-field
route, it is worthwhile to note that the equilibrium free energy
is nothing but the minimum value of the functional Eq. (16).
Thus,

γ = �min = �S +
∫ y2

y1

k

2

(
dφ

dy

)2

2dy. (24)

Changing the variable of integration from y to φ, we get

γ = �S +
∫ φ0

φS

(
dφ

dy

)2
dy

dφ
dφ

= �S +
∫ φ0

φS

√
2kωdφ. (25)
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With this general scheme in place, the surface free energies
of the solid-vapor, solid-liquid, and liquid-vapor for a droplet-
solid-vapor system may be written as

γsv = �S +
∫ φS

β

√
2kωdφ, (26a)

γsl = �S +
∫ −β

φS

√
2kωdφ, (26b)

γlv =
∫ −β

β

√
2kωdφ. (26c)

It is important to note the absence of any solid surface
contribution to Eq. (26c). Now, following [124], use of the
celebrated Young’s equation for the contact angle, as given by
cos θw = (γsv − γsl)/γlv , results in

cos θw = φ3
S − 3β2φS

2β3
, (27)

where β = √
A/B. Thus, the boundary condition at the wall,

y = 0, becomes

φ|y=0 = φS = f (θw; β) , (28)

where f is a function of the contact angle θw and the parameter
β.

The profile of the phase-field variable may be obtained
from Eq. (20), which, together with the form of ω adopted
in Eq. (17), becomes

d2φ

dȳ2
− BH 2

k
(φ2 − β2)φ = 0, (29)

where ȳ = y

H
. The pertinent boundary conditions are Eq. (28)

and the bulk condition:

φ(ȳ = 1) = −β. (30)

It is to be noted that k ∼ Bξ 2 where ξ is a measure
of the interfacial thickness (up to a multiplicative constant)
so that the coefficient of the nonlinear term in Eq. (29) is
C = H 2/ξ 2 
 1. Alternatively, using ε = 1/C � 1, Eq. (29)
is immediately recast in the form of a singular perturbation
problem, with the interfacial layer where the depletion occurs
acting as the “boundary layer.” A preliminary perturbation
analysis immediately evinces two facts: First, the outer
solution up to O(1) is a constant profile φo = −β matching
the bulk boundary condition; second, generalized stretching
transformations y → ξεr and φ → �εs followed by the
requirement of obtaining distinguished limits [125] as ε → 0
result in the values r = 1/2 and s = 0 so that the interfacial
thickness is of the order of

√
ε. However, the inner equation

provides no respite from the nonlinearity, and recourse has to
be taken to numerical methods for the solution of Eq. (29).
Importantly, however, the information of the solution nature
obtained from the perturbation analysis (albeit incomplete)
guides such numerical solution. Here, we solve Eq. (29) using
a control-volume-based finite difference approach, together
with a continuation technique [126] to resolve the difficulties
associated with ε � 1 or, equivalently C 
 1.

With this information on the variation of the solvent number
density in terms of the phase-field parameter φ, one may now
describe the interfacial variations of viscosity and permittivity

as explicit functions of φ, which acts as the necessary closure
to the present mathematical formalism. In an effort to represent
this feature in a mathematically simplistic manner, yet without
sacrificing the essential physics, we essentially adopt here
linearized functional dependences, as described below:

ε = εv

1 + φ

2
+ εl

1 − φ

2
, (31)

η = ηv

1 + φ

2
+ ηl

1 − φ

2
. (32)

It may be important to mention in this context that the
dynamic viscosity and the electrical permittivity of the solvent
are both material properties. These come about as an upscaled
continuum level manifestation of the mechanical and electrical
interactions among the solvent molecules. As such, it is
intuitive to expect that these properties will be inherently
linked to the actual number of molecules present. Again,
within the phase-field formalism presented in our work, the
order parameter variable is a representation of the relative
distribution of the number density of the liquid and “depleted
liquid” phases of the same fluid molecules. Therefore, it is
physically plausible that both the dynamic viscosity and the
electrical permittivity of the fluid should be proportional to
the variation of this order parameter variable. In particular,
the linear variation ensures that the nature of the variations
in the number density (captured by the order parameter
variable) is reflected exactly in the variation of these two
physicochemical properties of the fluid. There is perhaps no
similarly cogent physical justification for any choice other
than the linear variation one that has been considered in
our work, and, similarly, in previous works (please see, for
instance, the works by Andrienko et al. [25], Ding and
Spelt [127], Borcia and Bestehorn [128], and Park et al.
[129]). Indeed, any nonlinear dependence of the variation
of the dynamic viscosity and the electrical permittivity on
the order parameter variation would necessarily imply the
imposition of ad hoc variations aberrant with the underlying
variations in the fluid. It is also worthwhile to note that the
particular form of the permittivity variation adopted here is
qualitatively similar to the sigmoidal variation with spatial
coordinate as assumed by Le and Zhang [130]. However,
brought about through the route of a simple linear dependence
on the phase-field parameter representing the solvent number
density, the permittivity variation (as considered here) is far
more physically justified than the assumed form in Ref. [130],
and is perhaps a more natural reflection of the variation of
the number density of the solvent molecules in the depletion
zone. Moreover, compared to Ref. [130], the variation of ε,
in the current formulation, has an explicit dependence on
the degree of substrate wettability (through the specification
of θw), which distinguishes the present approach from the
approaches described in Ref. [130]. Interestingly, however, it
is important to mention that both these variations may be found
to be practically superimposed on each other through suitable
matching of ancillary parameters. Notably, such decrements
in permittivity values with solvent depletion in the proximity
of hydrophobic substrates have been extensively discussed by
Mishchuk [131,132]. Finally, we wish to stress that the focus
of our work is to capture the effect of smooth variation in
physicochemical properties brought on by structural changes
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in the fluid due to hydrophobic effects on electro-osmotic
flow augmentation. It is important to appreciate that the
simple yet physically justified linear variation described
through Eqs. (31) and (32) does indeed realize this objective
without any unnecessary complications, and captures the
essential physics to the extent that the conclusions become
significant.

With the variations of ε and η in place, the potential
variation ψ(y), and, subsequently, the flow field u(y) may be
determined without the necessity of invoking an “artificial” air
and/or gas layer to model for representing the depletion zone.
The corresponding closing system of governing differential
equations reads

∂

∂ȳ

[
ε̄(φ)

∂ψ̄

∂ȳ

]
= K2 sinh(ψ̄), (33)

where K = H/λl with λl =
√

εlkBT /(2c0e2z2) being the
Debye length based on the liquid permittivity value εl , ε̄ =
ε/εl , ψ̄ = ezψ/(kBT ), ȳ = y/H , and

0 = ∂

∂ȳ

[
η̄(φ)

∂ū

∂ȳ

]
− K2

ζ̄
sinh(ψ̄), (34)

where η̄ = η/ηl with ηl the dynamic viscosity of the liquid,
ū = u/uHS with uHS = −εlζEapp/ηl being the Helmholtz-
Smoluchowski velocity scale, and ζ̄ = ezζ/(kBT ). These
equations are subject to the boundary conditions

ψ̄ = ζ̄ and ū = 0 at ȳ = 0, (35a)

∂ψ̄

∂ȳ
= 0 and

∂ū

∂ȳ
= 0 at ȳ = 1, (35b)

the latter reflecting the symmetry at the channel center line.
We numerically solve Eqs. (33) and (34) using a control
volume-based finite difference [133]. Finally, we determine
the effective zeta potential considering the bulk phase ve-
locity variations, consistent with the definition delineated
earlier.

III. RESULTS AND DISCUSSIONS

A. Variation in φ and depleted layer “thickness”

One important objective of the subsequent part of this article
is to compare the predictions from the slip-based approach
with the present approach, both from a qualitative as well as
quantitative perspective. However, in an effort towards doing
so, one needs to make an estimate of the slip length for the
slip-based model, which may be achieved by invoking a two-
layer approach as described earlier. Having said that, one must
recognize here that a consistent description of the depleted
layer thickness δ (instead of invoking artificial preassigned
values for the same), in turn, is essential for establishing a
physically appropriate basis of comparison between the two
models. This basis of comparison, in essence, may be realized
by calculating an effective depleted layer thickness from the
phase-field model itself, so as to ensure a thermodynamically
consistent consideration. Rationally, this may work as the best
possible basis for the comparison between the two models by
eliminating any potential errors that might be accrued through
an ad hoc plug-in of the depleted layer thickness.

In the present subsection, we illustrate a typical variation
in the parameter φ with distance from the wall (y), as function
of the contact angle at the wall (θw). In the context of the
objective of our work, this serves two purposes. For the slip-
based model, the distribution of φ helps in determining an
equivalent thickness of the depleted layer in a sense that one
may consider the distance from the wall where φ becomes zero
to be equal to δ. On the other hand, in the context of the present
approach, the distribution of φ helps to assess the viscosity and
permittivity variations of the fluid across the interfacial layer,
thereby serving as a closure to the underlying mathematical
description.

In an effort to illustrate typical wall-normal variations in
φ, we choose β = 1 (see [29,87]) and C = (H/ξ )2 = 100. As
shown in Fig. 2, the value of φ decreases from the surface value
(φS) dictated by the wall boundary condition corresponding
to θw = 140◦ (chosen for the sole purpose of illustration),
and smoothly merges into the bulk undepleted liquid value
(φ = −1). The variation of the surface value φS with the
contact angle θw is shown in the inset of Fig. 2. Higher
values of φS corresponding to higher values of the contact
angle indicate that the surface value is closer to the “bulk”
vapor value consistent with stronger hydrophobic effects of the
wall. Based on the interfacial description established as above,
we subsequently attempt to answer the question “To what
extent are discrepancies (if any) between predictions from the
slip-based approach and the present approach manifested in
spite of a compatible basis of their interfacial description?”

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

ȳ

φ

100 120 140 160
0

0.2

0.4

0.6

0.8

θw (in degrees)

φ
S

FIG. 2. (Color online) Variation of the phase-field variable φ in
the direction transverse to the wall for θw = 140◦ and C = (H/λl)2 =
100. The shaded region represents the discrete interfacial vapor region
of the two-layer model such that 0 � ȳ � δ̄ with φ(ȳ = δ̄) = 0.
The inset shows the variation of the wall boundary condition for φ

corresponding to increasing values of the contact angle representing
higher degrees of hydrophobicity of the substrate.

046305-8



CONSISTENT DESCRIPTION OF . . . PHYSICAL REVIEW E 85, 046305 (2012)

100 110 120 130 140 150 160
1

1.5

2

2.5

3

3.5

4

θw (in degrees)

ζ e
f

f

ζ

ζeff

ζ → 8 for θw = 160◦

ζ̄ = −1

ζ̄ = −4

FIG. 3. (Color online) Variation of the effective normalized zeta
potential with the contact angle for ζ̄ = −1 (represented by solid
lines) and ζ̄ = −4 (represented by dashed lines) with K = 5, εratio =
0.8, and ηratio = 1/3. Results from the present approach are depicted
by the plots without markers. For the two-layer approach, the slip-
length-based route is depicted by  while the direct bulk-velocity
analogy route for the calculation of the effective zeta potential is
depicted by ◦.

B. Effective ζ̄ : Variation with θw

1. Comparison between predictions from the slip-based model and
the present approach

With a common basis of comparison established by con-
sidering the depleted layer thickness to be predicted by the
phase-field model, we first present a comparative assessment
of the predictions from the slip-based model and the present
model. As a basis of comparison, we consider the effective zeta
potential as an appropriate transport parameter, for its inherent
potentiality in representing the combined electrohydrody-
namic consequences. Notably, for the slip-based approach, we
determine the effective zeta potential following the slip-length
route outlined in Secs. II A and II B. For the present approach,
however, we determine the effective zeta potential directly on
the basis of the bulk velocity, by drawing an analogy with
the Helmholtz-Smoluchowski velocity form, as delineated
earlier. For plotting representative characteristics depicting
the above comparison, we fix up values of εratio = εv/εl and
ηratio = ηv/ηl at 0.8 (following Ref. [130]) and 1/3 (following
Ref. [25]), respectively. Notably, we have studied the cor-
responding variations with several other plausible values of
these ratios, with a mere effect of modifying the quantitative
scenario while retaining similar qualitative trends. We do not
show those additional results here for the sake of brevity.

a. Influence of ζ. Figure 3 shows the variation of ζeff/ζ

with the contact angle θw, corresponding to the two different
values of ζ̄ = −1,−4, where ζ̄ implicates a dimensionless
zeta potential, and a value of K = 5, where K implicates
channel half height to Debye length ratio. A general trend

that is evident from this figure is that ζeff/ζ increases with
increase in θw, irrespective of the mathematical model adopted.
This trend is in accordance with an intuitive expectation that
with higher degrees of hydrophobicity, more effective elec-
trokinetic pumping of fluid takes place within the interfacial
layer, which, by viscous interactions, pulls the bulk fluid
more effectively. However, by comparing the trends obtained
through the slip-based approach (lines with triangular markers)
and the present approach (lines without markers), significant
differences between the corresponding predictions may be
noticed. While the slip-based approach results in predictions
of giant amplifications in the effective zeta potential with
increments in the contact angle at the wall, the corresponding
increments exhibited by the present approach are somewhat
more subtle. This may be attributed to the fact that by
considering an effective slip at the wall, the slip length
in the slip-based approach tends to propagate the effect of
augmented transport at the wall to the bulk in a somewhat
exaggerated fashion, as compared to an implicit transmission
of the corresponding effect through a continuously varying
fluid viscosity across the interfacial layer in accordance with
the present approach. Interestingly, the slip-based approach
exhibits a more prominent variation of the effective zeta
potential with the zeta potential itself, as compared to the
present approach. This may be attributed to the fact that
the entire fluid in the slip-based approach is assigned the
value of the bulk liquid permittivity, which is somewhat
larger than the vapor phase permittivity (we have verified
this by studying cases in which the differences between
the permittivity values of the two phases are higher, which
evidently lead to more severe disparities in the predictions
from the two models, with regard to variations following the
zeta potential). On the other hand, in the present model, there
occurs a distribution of the permittivity across the interfacial
layer with diminished permittivity values close to the wall,
resulting in the prediction of a more “ineffective” propagation
of the message of electrochemical perturbation to the bulk.
This relatively ineffective response to the electrochemical
interactions at the wall, however, appears to be more practical,
in a sense that there is a low-density (and also low-permittivity)
phase distribution across the interfacial layer that tends to
diminish the net number density of the ionic species in
the wall-adjacent layers to a large extent. This, in turn, is
manifested through only a relatively modest electrokinetic
pumping in the bulk, as compared to the extent of electrokinetic
pumping that is predicted by the slip-based approach.

b. Influence of K = H/λl. Figure 4 shows the variation
of ζeff/ζ with the contact angle θw corresponding to the two
different values of K = 5,25 and a value of ζ̄ = −1. Again,
by comparing the trends obtained through the slip-based
approach (lines with triangular markers) and the present
approach (lines without markers), significant discrepancies
between the corresponding predictions may be noticed, which
may be attributed to the reasons mentioned earlier. These
discrepancies appear to be more severe with relative thinning of
the EDL. The thinner the EDL, the higher the velocity gradient
appears to be across the same. Considerations of this towards
alteration of the near-wall flow characteristics are explicitly
built in with the Navier slip-based boundary condition that
is consistent with the slip-based model, which effectively

046305-9



CHAKRABORTY, PATI, SOM, AND CHAKRABORTY PHYSICAL REVIEW E 85, 046305 (2012)

100 110 120 130 140 150 160
1

1.5

2

2.5

3

3.5

4

θw (in degrees)

ζ e
f

f

ζ

 

 

K = 5

ζeff

ζ → 171 for θw = 160◦

K = 25

FIG. 4. (Color online) Variation of the effective normalized zeta
potential with the contact angle for K = 5 (represented by solid lines)
and K = 25 (represented by dashed lines) with ζ̄ = −1, εratio = 0.8,
and ηratio = 1/3 kept constant. Results from the present approach are
depicted by the plots without markers. For the two-layer approach, the
slip-length-based route is depicted by  while the direct bulk-velocity
analogy route for the calculation of the effective zeta potential is
depicted by ◦.

culminate in the form of massive electrokinetic pumping
across the interfacial layer. In reality, however, this slip is
only “apparent,” and the message of hydrophobic interactions
at the wall gets propagated into the outer fluid through a
continuously varying viscosity in tune with relative phase
distributions consistent with the wall wettability. Interestingly,
the discrepancies in the corresponding predictions do also
sensitively depend on the relative magnitudes of the two
length scales, namely, the interfacial thickness scale (ξ ) and
the characteristic EDL length scale (λl). Considering the
value of C = (H

ξ
) = 10 (as adopted for the sets of simulation

results presented in Fig. 4), two distinctive paradigms do
manifest corresponding to the two values of the parameter
K(=H

λl
) considered for plotting this figure. For K = 5, λl > ξ ,

implicating that the near-wall velocity gradients are relatively
weakly exaggerated through the use of a Navier slip boundary
condition that may be somewhat inappropriate in carrying the
sole burden of representing the wettability-electromechanical
coupling at the interfacial layer. In addition, because of a
relatively smaller interfacial thickness as compared to Debye
length, consequences of variations in effective permittivity
and viscosity across the interfacial layer do not turn out to be
decisive in resulting in large deviations between the predictions
from the two models, although the discrepancies do magnify
as the contact angle at the wall is more progressively increased.
On the other hand, for K = 25, λl < ξ , implicating that
property variations across the interfacial layer may turn out to
be decisive towards predicting the net effective electrokinetic
transport. This effect, aided by steep gradients of near-wall
velocity that amplify the artifice of Navier slip condition at the

wall, exhibits a dramatic amplification in the predicted value
of the zeta potential in the slip-based conceptual paradigm, as
compared to the predictions from the present model.

2. Relative assessment of the two-layer route without slip-based
considerations and the present approach

Can the discrepancy between the slip-based approach
and the present approach be solely attributed to the slip-
length-driven artifice of representing the interfacial hydro-
dynamics? Towards answering this question, we consider a
third alternative approach, in which we invoke the discrete
two-layer approach again, but calculate the effective zeta
potential by considering the bulk transport directly, instead
of going through a slip-based route. In other words, we
intend to assess the predictions of the two-layer approach
by considering the effective zeta potential prediction from
the same bulk-velocity analogy route as that of the present
approach. Interestingly, even in these circumstances (results
from this third approach are shown in Figs. 3 and 4 with the
aids of plots with circular markers) with a similar route of
calculation of ζeff , the two-layer model is seen to predict not
only somewhat higher values of the normalized ζeff , but may
also exhibit contrasting qualitative trends as compared to those
predicted by the present model (for instance, see the results
corresponding to K = 25, as depicted in Fig. 4, in which
the effective zeta potential, as predicted from the two-layer
model, approaches an asymptote with the wall contact angle
increasing beyond 130◦). This is quite unexpected, especially
in cognizance of the fact that in addition to the adoption of
the same route of determining the effective zeta potential, the
two discrete layers are defined on the very same basis of the
variation of the order parameter variable on which the present
approach is based. Had it been only the quantitative mismatch,
perhaps it could have been argued that the discrepancy was
due to an erroneous representation of the interface, and
corrections could be made through a fitting exercise. However,
the qualitatively distinctive trends, effectively realized for thin
EDLs, indicate that it must be the oversimplification of the
actual physical variation of interfacial properties in terms of
a discretized two-layer paradigm that is culpable for such
discrepancies. It is important to mention in this context that
the relative “thickness” of the EDL, in an effort to assess
any such discrepancies, needs to be considered in relation
to the thickness of the phase-changing interfacial layer, and
not merely in comparison to the characteristic length scale of
the confinement itself. Interesting cases, however, may arise
when the confinement height itself becomes comparable to
either of these two length scales. Such situations may involve
the formation of a “thick’ interfacial layer with overlapping
EDLs; a paradigm falling clearly beyond the scope of the
mathematical treatment outlined in this work.

IV. SUMMARY AND CONCLUSIONS

In this study, we have illustrated some discrepancies in
the traditional approaches of representing hydrophobicity-
electrokinetics coupling through an effective interfacial slip.
Our studies have revealed that the corresponding Navier slip
boundary condition may artificially amplify the prediction of
an augmented electrokinetic transport, as manifested through
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an effective zeta potential. Our studies have further delineated
that quantitative and even qualitative discrepancies in this
regard do remain, even if the slip-based route is discarded and
the effective zeta potential is predicted from the bulk transport
characteristics realized through a discrete two-layer approach.
As a remedial measure, we describe a phase-field-based
approach in which the electrical permittivity and viscosity
variations across the interfacial layer may be assessed in tune
with the variations of a phase-field parameter that is allowed
to evolve in accordance with a free-energy minimization
principle. The distinctive feature of this approach compared to
the two-layer approach, even if the depleted layer thickness in
the later is estimated from the same phase-field paradigm, has
been identified to rest on the fact that the two-layer approach
effectively discretizes the phase transition across the interfacial
layer in terms of transport phenomenon in two distinctive
layers (a discrete layer of bulk liquid over a discrete depleted
layer with homogeneous electrical and fluidic properties in the
individual layers), whereas the present approach considers an
explicit coupling of the interfacial phase fraction distribution
with the electrostatic and fluidic transport across the interfacial
layer by employing a thermodynamically consistent route. Our
results do reveal that extreme care, indeed, needs to be taken
while predicting “giant” augmentations in the effective zeta
potential, and decisive assessment tests need to be conducted
to rule out any model artifact that might potentially lead to
such an elusive trend.

Practical implications of the outcome of the present study
may be far reaching. As a specific example, one may cite
the applications of miniaturized fluidic devices for energy
harvesting. In such cases, predictions on the efficiency of
energy conversion from hydraulic to electrical form, as
realized through the considerations of establishment of a
streaming potential, are sensitively dependent on the effective
electrokinetic pumping as manifested through the effective
zeta potential. Erroneous qualitative predictions in that regard,
as well as fallacious quantitative trends with regard to gross
overestimates in the concerned effective zeta potential values,
may not only embed serious anomalies in the underlying
design principle, but may also lead to prohibitively threatening
malfunctioning of the devices thus conceptualized. Since the
design principles of such devices are still traditionally based
on the slip-based, two-layer paradigm, appropriate care needs
to be taken in assessing their performance characteristics,
and possibly a consistent thermodynamic route based on the
phase-field formalism may be alternatively adopted to cater
the specific design demands.
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APPENDIX A

In this Appendix, we briefly review a classical electrokinetic
model, consistent with “slipping” hydrodynamics, and provide
the mathematical details behind the derivation of the effective

zeta potential expressed in terms of the slip length. To
capture the pertinent physics, one basically needs to solve
the Navier-Stokes equations with electrokinetic body force
terms, coupled with a Navier slip boundary condition at the
wall. Description of the electrokinetic body force terms, in
turn, depends on the potential distribution within the system.
The potential distribution, again, is fundamentally related to
the number densities of the ionic species. Therefore, it is
necessary to mathematically describe the transport of the ionic
species for obtaining their respective number densities, which
may be achieved through the classical Nernst-Planck equation.
Considering the presence of no interspecies interactions other
than those between a particular diffusing species and the
solvent [96], the same can be described as

∂ci/∂t = −∇ · Ni , (A1)

where Ni is the net ionic flux and ci is the local concentration
of the ith ionic species. Considering a dilute solution limit, Ni

can be described as

Ni = −Di

(
∇ci + zie

kBT
ci∇ψ

)
+ ciu, (A1a)

where Di is the diffusivity, zi is the ionic valence, e is the
protonic charge, kB is the Boltzmann constant, T is the absolute
temperature, ψ is the potential due to the total electric field, and
u is the mass-averaged flow velocity. Substituting Eq. (A1a)
into Eq. (A1), it follows that

∂ci

∂t
= Di∇2ci + Di

ezi

kBT
∇ · (ci∇ψ) − ∇ · (ciu) . (A2)

In order to resolve the potential field intrinsically coupled to
this electrolyte species transport, one may refer to the Poisson
equation:

∇ · (ε∇ψ) = −
∑

j

ezj cj , (A3)

where ε is the permittivity of the solution and is, in general,
not devoid of spatial gradients.

We now consider the model electro-osmotic problem as
described in Sec. II A. With the considerations of identical
homogeneous surface charging conditions of the walls within
which the EOF is taking place and the fortunate orthogonality
which does not disturb the equilibrium distribution, and
assuming negligible contribution from the advection term,
Eq. (A2) reduces to

∂2c0
±

∂y2
= − z±e

kBT

∂

∂y

(
c0
±

∂ψ0

∂y

)
, (A4)

in the steady-state condition. Applying symmetry conditions at
the channel center line, i.e., ∂ψ0(y = H )/∂y = 0 and ∂c0

±(y =
H )/∂y = 0 together with the approximation ψ0(y = H ) = 0
and c0

±(y = H ) = 0 under nonoverlapped EDL conditions, we
obtain

c0
± = c∞ exp

(
−z±eψ0

kBT

)
, (A5)

where c∞ is the concentration in the electroneutral bulk.
Equation (A5) is recognized to be the Boltzmann distribution,
and may be combined with the Poisson equation Eq. (A3)

046305-11



CHAKRABORTY, PATI, SOM, AND CHAKRABORTY PHYSICAL REVIEW E 85, 046305 (2012)

to obtain the celebrated Poisson-Boltzmann equation for the
potential distribution screening the surface charge:

∂

∂y

(
ε
∂ψ0

∂y

)
= −ρe ⇒ ∂

∂y

(
ε
∂ψ0

∂y

)
= 1

λ2
sinh

(
ezψ0

kBT

)
,

(A6)

where λ =
√

(εkBT )/(2c∞e2z2), using z = z+ = −z−.
In cases of electro-osmotic flows through narrow con-

finements, one typically resolves the solvent hydrodynamics
through the Stokes equation (reduced form of the Navier-
Stokes equation in the low Reynolds number regime) in a
slightly modified form to incorporate additional forces due to
osmotic pressure and electrical stresses. In a final simplified
form, consistent with the considerations outlined above, the
same reads (for details of the derivation and the underlying
assumptions, see Ref. [107])

0 = ∇ · (η∇u) + ρeEapp, (A7)

where η is the dynamic viscosity which, in general, may be a
function of the spatial coordinates, and Eapp is an externally
applied electrical field. Combining Eqs. (A6) and (A7), it
follows that

0 = ∂

∂y

(
η
∂u

∂y

)
− ∂

∂y

(
ε
∂ψ

∂y

)
Eapp. (A8)

From this stage, we drop the superscript on ψ , with
an understanding that it represents the quiescent condition
potential that screens the surface charge.

Consistent with our objective, we solve Eq. (A8) subject
to the following boundary conditions: First, a Navier slip
boundary condition at the wall, through the specification of

a slip length b:

u|y=0 = b
∂u

∂y

∣∣∣∣
y=0

, (A9)

and, second, the symmetry boundary condition at the channel
center line:

∂u

∂y

∣∣∣∣
y=H

= 0. (A10)

Solution of Eq. (8), in conjunction with boundary condi-
tions given by Eqs. (A9) and (A10), results in an expression
of the velocity field:

u = εψEapp

η
+ b

εEapp

η

∂ψ

∂y

∣∣∣∣
y=0

− εEapp

η
ψ

∣∣∣∣
y=0

. (A11)

The augmentation of flow velocities due to interfacial
slip, as evident from Eq. (A11), is traditionally expressed in
the electrokinetics literature through the introduction of an
effective zeta potential, ζeff . This is essentially defined by rep-
resenting the bulk flow velocity in analogy with the Helmholtz-
Smoluchowski velocity, so that ubulk = −ηζeffEapp/η. Consid-
ering the fact that [from Eq. (A11)]

ubulk = u|y=H = −εEapp

η

[
ψ |y=0 + b

(
−∂u

∂y

∣∣∣∣
y=0

)]
,

(A12)

and noting that ψ |y=H = 0 (in the absence of any EDL
overlap), we obtain Eq. (1) mentioned in Sec. II A:

ζeff = ζ

[
1 + b

(− ∂ψ

∂y

∣∣
y=0

)
ζ

]
. (A13)
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[110] D. Jasnow and D. Viñals, Phys. Fluids 8, 660 (1996).
[111] D. Jacqmin, J. Comput. Phys. 155, 96 (1999).
[112] O. Kuksenok and A. C. Balazs, Phys. Rev. E 68, 011502 (2003).
[113] O. Kuksenok, D. Jasnow, and A. C. Balazs, Phys. Rev. E 68,

051505 (2003).
[114] O. Kuksenok, D. Jasnow, and A. C. Balazs, Phys. Rev. Lett.

95, 240603 (2005).

[115] P. Yue, J. J. Feng, C. Liu, and J. Shen, J. Fluid Mech. 515, 293
(2004).

[116] V. V. Khatavkar, P. D. Anderson, and H. E. H. Meijer, J. Fluid
Mech. 572, 367 (2007).

[117] O. A. Folovskaya, A. A. Nepomnyashchy, A. Oron, and A. A.
Golovin, Phys. Fluids 20, 112105 (2008).

[118] U. Thiele, S. Madruga, and L. Frastia, Phys. Fluids 19, 122106
(2007).

[119] S. Madruga and U. Thiele, Phys. Fluids 21, 062104 (2009).
[120] S. Madruga and U. Thiele, Eur. Phys. J.: Special Topics 192,

101 (2011).
[121] L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002).
[122] S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics

(North Holland, Amsterdam, 1962).
[123] D. Bonn and D. Ross, Rep. Prog. Phys. 64, 1085 (2001).
[124] L. M. Pismen and Y. Pomeau, Phys. Rev. E 62, 2480 (2000).
[125] A. H. Nayfeh, Introduction to Perturbation Techniques (Wiley-

VCH, New York, 1993).
[126] R. J. LeVeque, Finite Difference Methods of Ordinary and

Partial Differential Equations (SIAM, Philadelphia, PA, 2007).
[127] H. Ding and P. D. M. Spelt, Phys. Rev. E 75, 046708

(2007).
[128] R. Borcia and M. Bestehorn, Eur. Phys. J. B 44, 101

(2005).
[129] J. Park, X.-Q. Feng, and W. Lu, J. Appl. Phys. 109, 034309

(2011).
[130] G. Le and J. Zhang, Langmuir 27, 5366 (2011).
[131] N. Mishchuk, J. Colloid Interface Sci. 320, 599 (2008).
[132] N. Mishchuk, Adv. Colloid Interface Sci. 168, 149 (2011).
[133] S. V. Patankar, Numerical Heat Transfer and Fluid Flow

(Taylor & Francis, Kundli, 2004).

046305-14

http://dx.doi.org/10.1021/la026201t
http://dx.doi.org/10.1016/j.aca.2003.12.043
http://dx.doi.org/10.1103/PhysRevLett.96.186102
http://dx.doi.org/10.1063/1.2397677
http://dx.doi.org/10.1063/1.2397677
http://dx.doi.org/10.1103/PhysRevLett.101.064503
http://dx.doi.org/10.1063/1.2978954
http://dx.doi.org/10.1002/elps.200800735
http://dx.doi.org/10.1103/PhysRevLett.107.098301
http://dx.doi.org/10.1103/PhysRevLett.107.098301
http://dx.doi.org/10.1007/s10404-011-0793-6
http://dx.doi.org/10.1007/s10404-011-0793-6
http://dx.doi.org/10.1063/1.434402
http://dx.doi.org/10.1016/S0021-9991(03)00280-8
http://dx.doi.org/10.1016/S0021-9991(03)00280-8
http://dx.doi.org/10.1063/1.868851
http://dx.doi.org/10.1006/jcph.1999.6332
http://dx.doi.org/10.1103/PhysRevE.68.011502
http://dx.doi.org/10.1103/PhysRevE.68.051505
http://dx.doi.org/10.1103/PhysRevE.68.051505
http://dx.doi.org/10.1103/PhysRevLett.95.240603
http://dx.doi.org/10.1103/PhysRevLett.95.240603
http://dx.doi.org/10.1017/S0022112004000370
http://dx.doi.org/10.1017/S0022112004000370
http://dx.doi.org/10.1017/S0022112006003533
http://dx.doi.org/10.1017/S0022112006003533
http://dx.doi.org/10.1063/1.3021479
http://dx.doi.org/10.1063/1.2824404
http://dx.doi.org/10.1063/1.2824404
http://dx.doi.org/10.1063/1.3132789
http://dx.doi.org/10.1140/epjst/e2011-01364-8
http://dx.doi.org/10.1140/epjst/e2011-01364-8
http://dx.doi.org/10.1146/annurev.matsci.32.112001.132041
http://dx.doi.org/10.1088/0034-4885/64/9/202
http://dx.doi.org/10.1103/PhysRevE.62.2480
http://dx.doi.org/10.1103/PhysRevE.75.046708
http://dx.doi.org/10.1103/PhysRevE.75.046708
http://dx.doi.org/10.1140/epjb/e2005-00104-9
http://dx.doi.org/10.1140/epjb/e2005-00104-9
http://dx.doi.org/10.1063/1.3544460
http://dx.doi.org/10.1063/1.3544460
http://dx.doi.org/10.1021/la200596c
http://dx.doi.org/10.1016/j.jcis.2007.12.047
http://dx.doi.org/10.1016/j.cis.2011.06.003

