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Hydrodynamic force on a particle oscillating in a viscous fluid near a wall
with dynamic partial-slip boundary condition
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The hydrodynamic force on a particle oscillating in a viscous fluid near a wall with partial-slip boundary
condition is studied on the basis of the linearized Navier-Stokes equations. Both incompressible and compressible
fluids are considered. It is assumed that the slip length characterizing the partial-slip boundary condition depends
on frequency. The consequences of this assumption for the spectrum of Brownian motion near a wall are
investigated and compared with a recent experiment.
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I. INTRODUCTION

The boundary condition for the flow velocity of a viscous
fluid near a wall has long been a subject of debate in
hydrodynamics. In situations on a macroscopic length scale
the usual no-slip condition can be used [1]. On the microscale
a partial-slip boundary condition for the flow velocity compo-
nents parallel to the wall must be used, characterized by a slip
length of the order of nanometers, or even micrometers [2].
The boundary condition strongly affects the flow of confined
fluids [3,4]. Various experimental methods can be used to
measure the slip length, including the Poiseuille flow rate,
the Poiseuille flow pattern, and fluorescence recovery [5]. The
hydrodynamic boundary condition has also been studied in
computer simulations from the behavior of time-correlation
functions [6–8]. The subject has been reviewed by Lauga
et al. [2], by Neto et al. [9], by Bocquet and Barrat [10], and in
the context of nanofluidics [11] by Bocquet and Charlaix [12].

In recent experiments the spectral density of the position
fluctuations of Brownian motion of a particle trapped in a
harmonic potential well near a wall has been studied [13–16].
The experimental data of Ref. [16] were explained on the
basis of an unconvincing approximate expression for the
frequency-dependent susceptibility of a particle near a wall
with no-slip boundary condition [17]. The correct expression
was derived earlier [18], and does not show the initial decrease
of the spectrum at low frequency seen experimentally [16],
but rather leads to an increase with frequency. We have
suggested [19] that a partial-slip boundary condition with
frequency-dependent slip length may be responsible for the
decrease. In the present article we investigate the consequences
of a dynamic partial-slip boundary condition on the spectral
density of Brownian motion in more detail.

The earlier calculation of the susceptibility of a particle
near a wall with no-slip condition, for both an incompressible
[18] and a compressible fluid [20], is extended to the case of
a wall with partial-slip boundary condition. As a bonus we
find the steady-state mobility of the particle as a function of
the slip length at zero frequency [21,22], in generalization of
the result derived by Lorentz [23] for the no-slip condition. The
steady-state mobility is independent of fluid compressibility.
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The calculation is valid to first order in the ratio of
particle radius and distance to the wall. The approximation
may be expected to be accurate provided the ratio is larger
than about 5. Corrections due to finite particle size can be
evaluated in principle, but require elaborate calculation [24].
The problem involves the calculation of the Green function
of the linearized Navier-Stokes equations in the presence of
a wall with the boundary condition, and is similar to the
problem in electrodynamics of a dipole radiating above the
earth, solved by Sommerfeld [25,26] in the early days of radio.
We use a different method based on work by Jones [27] for the
steady-state Stokes equations. The solution can be extended to
the case with two planar walls [28].

It has been shown experimentally that the slip length
characterizing the partial-slip boundary condition depends
strongly on the rate of shear [29,30]. It has been suggested
by Zwanzig [31] that there is a connection between the
non-Newtonian dependence of viscosity on the shear rate
and the frequency dependence of the Newtonian viscosity.
In analogy, we consider a slip length which depends on
frequency. It turns out that the spectral density of Brownian
motion depends strongly on the parameters characterizing the
frequency dependence of the slip length. This suggests that the
analysis of Brownian motion, especially for motions parallel to
the wall, can be a useful tool for the investigation of the partial-
slip boundary condition. Atomic force microscopy with use of
a microsphere provides an interesting alternative [32,33].

II. LINEAR HYDRODYNAMICS

We consider a spherical particle of radius a and mass mp,
immersed in a viscous incompressible fluid of shear viscosity
η and mass density ρ. The fluid is bounded by a planar wall
and confined to the half space z > 0. The fluid is assumed
to satisfy a partial-slip boundary condition at the wall and a
no-slip boundary condition at the surface of the sphere. The
particle is confined to a harmonic trap with force constant k,
and subjected to a time-dependent force E(t) acting at the
center R(t) of the particle. The force will be assumed to be
small, so that we can use linearized equations of motion. The
center of the particle performs small motions about the rest
position r0.

For small-amplitude motion the flow velocity v(r,t) and the
pressure p(r,t) are governed by the linearized Navier-Stokes
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equations

ρ
∂v

∂t
= η∇2v − ∇p, ∇ · v = 0. (2.1)

The pressure p(r,t) is determined by the condition of
incompressibility. After Fourier analysis in time we find that
the equations for the Fourier components with time factor
exp(−iωt) are

η(∇2vω − α2vω) − ∇pω = 0, ∇ · vω = 0, (2.2)

where we have used the abbreviation

α = (−iωρ/η)1/2, Re(α) > 0. (2.3)

The equation of motion for the particle may be written in
Fourier language as

− iω(mp − mf )Uω = −Fω − kRω + Eω, (2.4)

where mf = 4πa3ρ/3 is the mass of fluid displaced by the
sphere, and Fω is the total induced force exerted by the particle
on the fluid [34].

In the point-particle limit the induced force becomes

Fω = [
6πηa(1 + αa) − 3

2 iωmf

]
[Uω − F(r0,ω) · Eω],

(2.5)

where F(r0,ω) is the reaction field tensor, defined by [18]

F(r0,ω) = lim
r→r0

[G(r,r0,ω) − G0(r − r0,ω)], (2.6)

where G(r,r0,ω) is the Green function for the geometry under
consideration, and G0(r − r0,ω) is the Green function for
infinite space. Substituting this into the equation of motion
(2.4) and solving for the velocity Uω, we obtain

Uω = Y(k,r0,ω) · Eω, (2.7)

where the admittance tensor Y(k,r0,ω) in the presence of the
trap is related to that in the absence of the trap by [14]

Y(k,r0,ω) =
[
Y(0,r0,ω)−1 − k

iω
I
]−1

, (2.8)

with unit tensor I. The admittance tensor in the absence of the
trap is given by [18]

Y(0,r0,ω) = Y0(ω)
[
I + 6πηa

(
1 + αa + 1

3α2a2
)
F(r0,ω)

]
,

(2.9)

where Y0(ω) is the scalar admittance for infinite space [35],

Y0(ω) = [−iωmp + 6πηa
(
1 + αa + 1

9α2a2
)]−1

= [−iω
(
mp + 1

2mf

) + ζ (ω)
]−1

,

ζ (ω) = 6πηa(1 + αa). (2.10)

Here the term 1
2mf is the added mass.

III. REACTION FIELD TENSOR

The Green function for infinite space is translationally
invariant and given explicitly by [24]

G0(r,ω) = 1

4πη

(
e−αr

r
I + α−2∇∇ 1 − e−αr

r

)
. (3.1)

In order to calculate the Green function G(r,r0,ω) in the
presence of a wall at z = 0 with partial-slip boundary condition
characterized by slip length b,

(I − ezez) · v|z=0 = b ez · (∇v + ∇̃v) · (I − ezez)|z=0, (3.2)

and with kinematic condition

ez · v|z=0 = 0, (3.3)

we employ the method developed by Jones [27] for the case
ω = 0. The term with ∇̃v in Eq. (3.2) does not contribute
because of Eq. (3.3).

By translational symmetry we expect G(r,r0,ω) to depend
only on the differences x − x0 and y − y0, so that we can
introduce a two-dimensional Fourier transform in the xy

plane. With two-dimensional position vectors s = (x,y) and
s0 = (x0,y0), we express G(r,r0,ω) as G(s − s0,z,z0,ω) and
transform it as

G(s − s0,z,z0,ω) =
∫

dq eiq·(s−s0)Ĝ(q,z,z0,ω). (3.4)

The undisturbed particle position is taken as r0 = (0,0,h).
The elements Gαβ(r,r0,ω) of the Green tensor can be found
from the solution of ordinary differential equations, in the
same way as for the no-slip boundary condition [18]. For our
purpose it suffices to consider the elements Ĝxx(q,z,h,ω) and
Ĝzz(q,z,h,ω).

We write the relevant elements of the reaction field tensor,
defined in Eq. (2.6), in the form

Fxx(h,ω) = 1

4πηh
X, Fzz(h,ω) = 1

4πηh
Z, (3.5)

with dimensionless functions X and Z. These functions are
found as integrals over wave number q arising from the Fourier
transforms in the x and y directions,

X = h

∫ ∞

0
fx(q,ω)q dq, Z = h

∫ ∞

0
fz(q,ω)q dq. (3.6)

The integrands can be written as fractions,

fx(q,ω) = Nx(q,ω)

Dx(q,ω)
, fz(q,ω) = Nz(q,ω)

Dz(q,ω)
. (3.7)

We introduce the abbreviations

n = exp[qh], u = exp[sh], s =
√

q2 + α2. (3.8)

The numerator Nx(q,ω) takes the form

Nx(q,ω) = 4nuqs2(1 + sb) − u2qs(q + s)[1 + (s − q)b]

× (1 + sb) + n2[q2s(1 − 3s2b2) − 2qs3b

− q3(1 + qb)(1 − sb) − 2s3(1 − s2b2)]. (3.9)

The denominator Dx(q,ω) takes the form

Dx(q,ω) = 2α2n2u2s(s − q)(1 + sb)[1 + (q + s)b]. (3.10)

The numerator Nz(q,ω) takes the form

Nz(q,ω) = 4nuq2s − u2qs(q + s)[1 + (s − q)b]

− n2q2(q + s)[1 + (q − s)b]. (3.11)

The denominator Dz(q,ω) takes the form

Dz(q,ω) = α2n2u2s(s − q)[1 + (q + s)b]. (3.12)
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It is convenient to express the functions X and Z as

X = X(v,w), Z = Z(v,w), (3.13)

with dimensionless variables

v = αh, w = b/h. (3.14)

In the no-slip limit b = 0 the expressions simplify. In this
limit the integrals over wave number q in Eq. (3.6) can be
performed [18], so that X0 = X(v,0) and Z0 = Z(v,0) are
known in explicit form.

In the perfect-slip limit b → ∞, the integrands in Eq. (3.6)
become

fxs(q,ω) = n2(2s2 − q2) − qsu2

2α2n2u2s
,

(3.15)

fzs(q,ω) = q(n2q − u2s)

α2n2u2s
.

The integrals in Eq. (3.6) can be performed, and take the
values

Xs = X(v,∞) = −1

8v2
[1 − (1 + 2v + 4v2)e−2v],

(3.16)

Zs = Z(v,∞) = −1

4v2
[1 − (1 + 2v)e−2v],

in agreement with the result obtained by the method of
images [36].

IV. STEADY-STATE MOBILITY AND
LOW-FREQUENCY BEHAVIOR

In the steady-state limit ω → 0 the expressions simplify.
The integrand fx(q,ω) becomes

fx(q,0) = −3 + qb − 6q2b2 − qh(1 − qb − 2q2b2) + 2q2h2(1 + qb)

4q(1 + qb)(1 + 2qb)
e−2qh, (4.1)

with the corresponding integral in Eq. (3.6)

X(0,w) = 1

16w2
(1 + 3w + 4w2) − 1

16w3
(1 + 2w)2

× e1/w E1(1/w) − 1

w
e2/w E1(2/w). (4.2)

The integrand fz(q,ω) becomes

fz(q,0) = −1 + 2qb + qh(1 + 2qb) + 2q2h2

2q(1 + 2qb)
e−2qh, (4.3)

with the corresponding integral in Eq. (3.6)

Z(0,w) = 1

8w2
(1 − w − 4w2) − 1

8w3
e1/w E1(1/w). (4.4)

The steady-state mobility for transverse and perpendicular
motion is given by [21,22]

μxx = μ0

[
1 + 3a

2h
X(0,w)

]
, μzz = μ0

[
1 + 3a

2h
Z(0,w)

]
,

(4.5)

where μ0 = 1/(6πηa).
In the limit b → 0, corresponding to the no-slip boundary

condition, the above expressions become

X(0,0) = − 3
8 , Z(0,0) = − 3

4 , (4.6)

in agreement with the values derived by Lorentz for the zero-
frequency mobility [23]. In the limit b → ∞, corresponding
to the perfect-slip boundary condition, the expressions become

X(0,∞) = 1
4 , Z(0,∞) = − 1

2 , (4.7)

in agreement with the values derived from Eq. (3.16). In Fig. 1
we plot the functions X(0,w) and Z(0,w) as functions of w.
The function X(0,w) changes sign at w0 = 5.4524.

The low-frequency behavior of the reaction field factors
Fxx(h,ω) and Fzz(h,ω) can be obtained from the expansion of
the functions X(v,w) and Z(v,w) in powers of v. In the limits

w → 0 and w → ∞, these can be obtained from the explicit
values of the integrals. For intermediate values of w the term
linear in v can be obtained from an asymptotic analysis of the
integrals. The low-frequency behavior is determined by the
behavior of the functions fx(q,ω) and fz(q,ω) for small q and
ω. We use the method developed in Ref. [28]. Substituting
q = q ′ε and ω = iε2 and expanding the numerator Nx and
denominator Dx in powers of ε, we obtain

fx(q,ω) ≈ − 1

α2

√
q2 + α2 + q2

2α2
√

q2 + α2
+ q

2α2
, (4.8)

independent of the slip length b. Similarly we obtain

fz(q,ω) ≈ q2

α2
√

q2 + α2
− q

α2
, (4.9)

0 10 20 30 40
w

0.6
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0.2

0

0.2

Z
0,

w
,X
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w

FIG. 1. Dimensionless functions X(0,w) (solid curve) and
Z(0,w) (dashed curve) as functions of the parameter w = b/h, where
b is the slip length, and h is the distance to the wall. The particle
mobility is given by Eq. (4.5).

046303-3



B. U. FELDERHOF PHYSICAL REVIEW E 85, 046303 (2012)

again independent of b. By the analysis of Ref. [28] we
conclude that the function X(v,w) has the expansion

X(v,w) = X(0,w) + 2
3v + o(v), (4.10)

and the function Z(v,w) has the expansion

Z(v,w) = Z(0,w) + 2
3v + o(v). (4.11)

The term linear in v in both expressions is independent of w,
and is identical to that found in the limit w → 0. On the other
hand, we find from Eq. (3.16) in the perfect-slip limit w → ∞

Xs = 1
4 − 2

3v + O(v2), Zs = − 1
2 + 2

3v +O(v2). (4.12)

This shows that for motion parallel to the wall the behavior is
singular in the perfect-slip limit.

V. SPECTRUM OF BROWNIAN MOTION

In the theory of Brownian motion the velocity-correlation
functions of a Brownian particle are defined by

Cαβ(t) = 〈Uα(t)Uβ(0)〉, (5.1)

where the angular brackets denote the equilibrium ensemble
average. We define the one-sided Fourier transform as

Ĉαβ(ω) =
∫ ∞

0
eiωtCαβ(t)dt. (5.2)

According to the fluctuation-dissipation theorem [37] the
Fourier transform is given by

Ĉαβ(ω) = kBTYαβ(ω), (5.3)

where kB is Boltzmann’s constant and T is the absolute tem-
perature. In experiment one measures the position fluctuations
of a Brownian particle confined to a trap. For definiteness
we consider only the component of motion parallel to the x

axis. The spectral density of thermal position fluctuations is
given by

〈xωx∗
ω′ 〉 = kBT

πω
[Imχxx(ω)]δ(ω − ω′), (5.4)

where the susceptibility tensor χ (ω) is related to the admit-
tance tensor by

Y(ω) = −iωχ (ω). (5.5)

The spectral density of position fluctuations is given by

S(ω) = 2kBT

ω
Imχxx(ω). (5.6)

This can be evaluated from Eq. (2.8). In the limit of zero
frequency one finds the value

S(0) = 2kBT
ζxx(0)

k2
, (5.7)

with steady-state friction coefficient

ζxx(0) = ζ0

[
1 + 3a

2h
X(0,w)

]−1

, (5.8)

where ζ0 = 6πηa is the Stokes friction coefficient for the bulk
fluid. One sees from Eqs. (4.6) and (4.7) that the wall enhances
the spectral density at zero frequency with respect to the bulk
for the no-slip condition, and reduces the spectral density for
the perfect-slip condition. It follows from Eq. (4.10) that in

2.5 2 1.5 1 0.5 0
log10 c

0.4

0.2

0

0.2

S
S

0
1

FIG. 2. Reduced spectral density S(ω)/S(0) − 1 as a function of
log10(ω/ωc) for a Brownian particle of radius a at distances h = 5a

(solid curve), h = 7a (long dashes), and h = 9a (short dashes) from
a planar wall with partial-slip boundary condition. The parameter
values are listed in Sec. V.

both cases the spectral density increases with frequency at
low frequency. It tends to a peak near ω0 =

√
k/(mp + 1

2mf ),
before decreasing to zero.

In the recent experiment of Jannasch et al. [16], it was found
that the spectral density at first decreases with frequency, in
contrast to the behavior found above. We have suggested [19]
that this can be explained by assuming a frequency-dependent
slip length b(ω) that vanishes at zero frequency and tends to
a constant at higher frequency. Somewhat more generally we
assume a dynamic slip length of the form

b(ω) = b0 + iωτs

1 − iωτs

(b0 − b∞), (5.9)

characterized by three parameters b0, b∞, and τs .
In Fig. 2 we plot the reduced spectral density S(ω)/S(0) − 1

for a Brownian particle of radius a = 0.51 μm and density
ρp = 2500 kg m−3, at reduced distances h/a = 5,7,9, in a
fluid with density ρ = 1000 kg m−3 and shear viscosities
η = 0.705,0.691,0.637 cP, as communicated by the authors
of [16], with values of the spring constant characterized
by ωc = k/ζ0 = 2πfc with fc = 71.54,148.2,156.9 kHz, and
slip length characterized by b0 = 10 nm, b∞ = 1 mm, and
τs = 10−7 s. In Fig. 3 we plot log10 |S(ω)/S(0) − 1| for the
same values. This shows clearly the zeros of S(ω) − S(0).
There is a similarity with similar plots of Jannasch et al. [16],
but for the chosen values the spectral density for the nearest
distance h = 5a shows a minimum and a maximum, whereas
for the experimental data for this case there is no extremum.
It is necessary to choose b0 � b∞ to cause a decrease of
S(ω) at low frequency and produce the first zero crossing of
S(ω) − S(0). The spectral density shows a strong dependence
on the parameters in Eq. (5.9). In Fig. 4 we compare with
the reduced spectral density S(ω)/S(0) − 1 for b0 = 10 nm,
b∞ = 10 μm, and τs = 10−7 s, and in Fig. 5 for b0 = 10 nm,
b∞ = 1 mm, and τs = 10−4 s, but otherwise the same values.
The plots in Fig. 2 suggest that a large slip length b∞ is required
if the data [16] are to be explained in the framework of the
present theory. It may be preferable to regard the inverse of
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FIG. 3. log10 |S(ω)/S(0) − 1| as a function of log10(ω/ωc) for the
same values as in Fig. 2.

the slip length as the physical quantity of interest [38]. A large
b∞ corresponds to near frictionless sliding at high frequency.

The slip length may be defined from the ratio f = σ/vs ,
where σ is the shear stress at the wall and vs is the fluid
velocity at the wall [39]. The slip length is defined as b =
η/f . In most cases with simple fluids the slip length is of the
order of the molecular diameter, but for polymer melts and
for a hydrophobic wall the slip length can become large. de
Gennes [39] has suggested that in the latter case a gaseous
film may form at the liquid/solid interface, and has estimated
the slip length from a kinetic theory calculation. A dynamic
mechanism involving nanobubbles at the wall, and leading
to a frequency-dependent slip length, has been proposed by
Lauga and Brenner [40]. In their model the friction f vanishes
altogether at high frequency. They estimate a relaxation time
of order 1 ms or less in connection with an experiment by
Zhu and Granick [30]. It has been suggested by Granick [3]
that collective two-dimensional motions near the wall can be
responsible for a long relaxation time. It must be expected
that surface stiffness and surface mass affect the frequency
dependence [41].

It is useful to consider the total fluid momentum in the
point-particle limit [42] in order to check that a dynamic slip
length of the form Eq. (5.9) is physically possible. The total
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log10 c
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FIG. 4. As in Fig. 2, but for a smaller value of the slip length b∞,
as detailed in Sec. V.
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FIG. 5. As in Fig. 2, but for a larger value of the slip relaxation
time τs , as detailed in Sec. V.

fluid momentum generated by the time-dependent force E(t)
acting on a point particle located at r0 has the Fourier transform

Pω(r0) = �(r0,ω) · Eω. (5.10)

with the tensor [43]

�(r0,ω) = ρ

∫
z>0

G(r,r0,ω) d r. (5.11)

In the spatial Fourier representation Eq. (3.4), the integration
over the horizontal coordinates x and y leads to a delta function
δ(q) in the wave vector q = (qx,qy). It can be checked from
the explicit expression for the transformed Green function
Ĝ(q,z,z0,ω) at q = 0 that the tensor �(r0,ω) is diagonal
with equal elements �xx = �yy and �zz = 0. In fact, a similar
statement is valid before the integration over z. The element
�xx is given by

�xx(r0,ω) = 1

−iω

[
1 − e−αh

1 + αb

]
. (5.12)

Substituting here b = b(ω), as given by Eq. (5.9), we obtain

�xx(r0,ω) = 1

−iω

[
1 − 1 + α2ντs

1 + αb0 + α2ντs(1 + αb∞)
e−αh

]
,

(5.13)

where ν = η/ρ is the kinematic viscosity. For positive values
of the parameters the cubic in α in the denominator has positive
coefficients. This implies that one zero of the cubic is negative
and the other two zeros are each other’s complex conjugates.
Moreover, one of the complex zeros lies in the sector π/3 <

ϕ < 2π/3 of the complex α plane. This behavior guarantees
that after an initial impulse E(t) = P0δ(t) the fluid momentum
P(t) decays as a function of time [44]. More generally, b0 can
be negative [45], but the argument of the first complex zero of
the cubic must be in the sector π/4 < ϕ < π .

VI. COMPRESSIBLE FLUID

The theory can be extended to compressible fluids. This
is relevant for dense gases and computer simulation fluids.
The modification of the admittance Y0(ω) due to fluid
compressibility has been described elsewhere [20,46]. The
expressions for the reaction field factors Fxx and Fzz for a wall
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with no-slip boundary condition and a compressible fluid have
been derived earlier [20]. For a wall with perfect-slip boundary
condition the reaction field factors are easily derived by the
method of images from the Green function G0 for an infinite
compressible fluid [47]. Here we present the reaction field
factors for a compressible fluid and a wall with partial-slip
boundary condition. The effect of a partial-slip boundary
condition in viscous compressible hydrodynamics in other
geometries has been studied by Erbas et al. [48].

We introduce the notation

β = ω

ρ0c
2
0

, μ = ω

c
, c = c0

[
1 − iβ

(
4

3
η + ηv

)]1/2

,

(6.1)

where ρ0 is the mean fluid density, c0 is the long-wave sound
velocity, c is the frequency-dependent sound velocity, and
ηv is the volume viscosity. Instead of Eq. (3.8) we use the
abbreviations [28]

n = exp[rh], u = exp[sh], s =
√

q2 + α2, (6.2)

where in the definition of α in Eq. (2.3) we must replace ρ by
ρ0, and r is defined by

r =
√

q2 − μ2. (6.3)

The reaction field factors take the form of Eqs. (3.5)–(3.7).
The numerator Nx(q,ω) takes the form

Nx(q,ω) = 4nuq2rs2(1 + sb) − u2q2s[q2(1 − rb)

+ rs(1 + sb)](1 + sb) + n2r{q2s[r(1 − 3s2b2)

− 2s2b] − q4(1 + rb)(1 − sb) − 2rs3(1 − s2b2)}.
(6.4)

The denominator Dx(q,ω) takes the form

Dx(q,ω) = 2n2u2rs(q2 − s2)(1 + sb)

× [q2(1 + rb) − rs(1 + sb)]. (6.5)

The numerator Nz(q,ω) takes the form

Nz(q,ω) = 4nuq2rs − u2rs[q2(1 − rb) + rs(1 + sb)]

− n2q2[q2(1 + rb) + rs(1 − sb)]. (6.6)

The denominator Dz(q,ω) takes the form

Dz(q,ω) = n2u2s(q2 − s2)[q2(1 + rb) − rs(1 + sb)]. (6.7)

For b = 0 these expressions reduce to those given in Ref. [28],
apart from a common factor of −1. In the limit of an
incompressible fluid they reduce to those given in Sec. III
apart from a common factor of q. In the steady-state limit and

at low frequency one obtains exactly the same expressions as
in Sec. IV.

The tensor element Hxx(r,r0,ω) takes again the value
Eq. (5.13), independent of the compressibility. The tensor
element �zz(r,r0,ω) becomes

�zz(r,r0,ω) = 1

−iω
[1 − eihμ], (6.8)

independent of the slip length.
We have checked that for a wall with partial-slip boundary

condition the Green function satisfies the reciprocity relation

G(r,r0,ω) = G̃(r0,r,ω), (6.9)

where the tilde indicates transposition of the tensor. The
relation was derived earlier for general confined geometry with
the no-slip boundary condition [47]. It was used to simplify
calculations of fluid dynamics in situations with one or two
planar walls [43].

VII. DISCUSSION

The analysis shows that the concept of a frequency-
dependent slip length may be useful for the description of
dynamic surface phenomena in liquids. Whether it provides
the correct explanation of the recent experiment [16] on
the spectral density of Brownian motion remains to be
seen. Further experimental work and computer simulations
are desirable. The theoretical framework developed above
provides a clear prediction in a wide range of circumstances.

A striking result of the recent experiment [16] is the
initial decrease with frequency of the spectral density of
Brownian motion. In the present theory this requires that
the high-frequency value b∞ of the dynamic slip length is
larger than the low-frequency value b0. This feature has been
confirmed in computer simulations [41]. The result is also
suggested by the measured strong increase of the slip length
with shear rate [29,30] combined with an argument due to
Zwanzig [31].

The main point of the above analysis is the calculation of
the effect of a wall with partial-slip boundary condition on the
motion of a particle at a distance from the wall large compared
to its radius. The fluid can be incompressible or compressible.
The observed motion can serve as a tool of investigation of the
boundary condition. The motion can be extracted from the
analysis of Brownian motion of a particle confined to a
harmonic optical trap, or it can be observed more directly
in atomic force microscopy with a tip at large distance from
the wall. The theoretical analysis allows in particular the study
of the frequency dependence of the boundary condition [40].
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L. Forró, and S. Jeney, Nature (London) 478, 85 (2011).
[16] A. Jannasch, M. Mahamdeh, and E. Schäffer, Phys. Rev. Lett.
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