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Wavy regimes of film flow down a fiber
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Serafim Kalliadasis
Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom

(Received 5 October 2011; published 3 April 2012)

We consider axisymmetric traveling waves propagating on the gravity-driven flow of a liquid down a vertical
fiber. Our starting point is the two-equation model for the flow derived in the study by Ruyer-Quil et al.
[J. Fluid Mech. 603, 431 (2008)]. The speed, amplitude, and shape of the traveling waves are obtained for a wide
range of parameters by using asymptotic analysis and elements from dynamical systems theory. Four different
regimes are identified corresponding to the predominance of four different physical effects: advection by the flow,
azimuthal curvature, inertia, and viscous dispersion. Construction of the traveling-wave branches of solutions
reveals complex transitions from one regime to another. A phase diagram of the different regimes in the parameter
space is constructed.
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I. INTRODUCTION

A liquid film flowing down a vertical fiber is often
encountered in a wide variety of technological applications
such as condensers, emergency cooling of nuclear fuel rods,
and optical fiber coating. It can also serve as a simple prototype
for the study of wave instabilities and transitions in open flow
hydrodynamic and other nonlinear systems. As a consequence,
this problem has been an active topic of both experimen-
tal and theoretical research, especially over the past two
decades [1].

Experimental studies have revealed a complex wave dy-
namics dominated by axisymmetric and localized teardroplike
structures which continuously interact with each other [2–6].
These structures are robust as they propagate over long
distances without changing their speed or shape significantly;
they are also separated by portions of nearly flat film, and they
can be referred to as traveling waves. When the portions of
nearly flat film between these structures are much longer than
their characteristic length, the structures can be referred to as
solitary waves. The formation of solitary and traveling waves
results from the interplay between two different instability
mechanisms: (i) the classical instability of a liquid film flowing
down an inclined planar wall prompted by inertia effects, a
mode initially characterized experimentally and theoretically
by Kapitza and his son [7]; (ii) the interfacial instability of
a liquid cylinder, considered first in experiments by Plateau
and theoretically explained by Lord Rayleigh [8,9]. These two
mechanisms are hereinafter referred to as the K and RP modes
of instability, respectively.

The experimental study by Duprat et al. [6], provided
reports on the traveling waves’ characteristics, namely, shape,
speed, and amplitude, for very viscous fluids. The parameter
values in the experiments were chosen in order to investigate
the interplay of the K and RP modes on the waves; thus, the
study by Duprat et al. [6] completed the flow regime portrait
obtained by Kliakhandler [3] for very viscous fluids but in
the inertialess limit. Regular wave trains were generated by
means of a periodic forcing at the inlet. Two flow regimes
were identified. For thin fibers and/or small flow rates, the

RP mode is dominant and the solitary waves resemble beads
or sliding drops whose shape is affected by gravity. At the
same time, the flow field in a frame moving with the beads is
characterized by recirculation zones within the beads. When
closed streamlines exist in the moving frame, a fluid particle
is trapped in both moving and laboratory frames. Hence, the
beads transport the trapped fluid mass downstream. For these
reasons, we refer to the flow regime observed for thin fibers
and/or small flow rates, as the droplike regime.

For thick fibers and/or large flow rates, the K mode is dom-
inant and a steepening of the wave front is observed with an
increase of the wave amplitude. Mass transport is not observed
in this regime except for a few cases corresponding to the
largest waves. We refer to this regime as the wavelike regime.
We can conjecture that the onset of recirculation zones in the
wavelike regime is a signature of the increased prevalence
of the K mode. Eventually, we observe a transition from
the drag-gravity regime, where inertia plays a perturbative
role, to the drag-inertia regime, where inertia effects become
dominant. Similar regimes and a transition between the two
as inertia effects increase were first observed in the planar
case [10,11].

At the theoretical front, a number of modeling approaches
have been proposed within the framework of the long-wave
approximation of the Navier-Stokes equations and associated
wall and free-surface boundary conditions [3,4,12–17]: The
basic assumption of this approximation is that of slow spatial
and time modulations of the film thickness motivating the
introduction of a formal perturbation parameter, the “long-
wave” or “film parameter” ε measuring such modulations.
Perturbation expansions in terms of this parameter then lead
to simplifications of the governing equations and boundary
conditions. Additional assumptions lead to further simplifi-
cations, that is, small film thickness h in comparison to the
fiber radius R or negligible inertia. The resulting models are
either single evolution equations for the film thickness h, for
example, the model by Frenkel [12] based on the long-wave
approximation only, or systems of two coupled evolution
equations for the film thickness h and streamwise flow rate
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q which combine the long-wave approximation and other
approaches, for example, the model by Trifonov [13] based
on the “integral-boundary-layer” approximation and the more
recent model by Novbari and Oron [17] based on an “energy
integral” method.

It should be noted that all the above studies neglected
the second-order viscous terms originating from the stream-
wise momentum equation (streamwise viscous diffusion) and
tangential stress balance (second-order contributions to the
tangential stress at the free surface). The recent study by Ruyer-
Quil et al. [18] formulated a two-evolution equation model
for h and q that took into account the second-order viscous
terms but also included inertia and was not limited to small
aspect ratios h/R. The model was based on a combination
of the long-wave approximation and a weighted-residuals
approach using appropriate polynomial test functions for the
velocity field—a “weighted-residuals integral boundary layer”
(WRIBL) model following the terminology introduced by
Oron et al. [19]. It should be noted that the WRIBL model
is consistent [20] at O(ε) for the inertial terms and at O(ε2)
for the remaining contributions, whereas the models obtained
by Trifonov [13] and Novbari and Oron [17] are not consistent
at O(ε). Furthermore, the study by Duprat et al. [21] compared
the wave trains generated experimentally by periodic forcing at
the inlet to the traveling-wave solutions of the WRIBL model
showing remarkable agreement in all cases, thus validating
experimentally the model.

As was shown in Ref. [18], the second-order viscous terms
have a dispersive effect on the speed of the linear waves (they
introduce a wave-number dependence on the speed) and hence
we refer to this effect as viscous dispersion. Viscous dispersion
influences the shape of the capillary ripples in front of a
solitary hump, more specifically, the amplitude and frequency
of the capillary ripples, an effect which is amplified as the
Reynolds number is increased. Hence, viscous dispersion is,
in fact, a linear effect, but interestingly it can have some crucial
consequences on the nonlinear dynamics of the film and the
wave-selection process in the spatiotemporal evolution. These
points have been analyzed in detail in the recent work by
Pradas et al. [22] on coherent structures interaction on falling
films on planar walls and the influence of viscous dispersion on
interaction. Their analysis was based on the weighted-residuals
models obtained in Refs. [23–25].

The main aim of the present study is to characterize
theoretically the solitary and traveling waves propagating
down the fiber within the framework of the WRIBL model.
A first stab to the investigation of the traveling-wave solutions
of the WRIBL model was the recent study by Ruyer-Quil
et al. ( [18], Sect. 6). In this study traveling-wave solutions
were constructed numerically and were favorably compared
to the experiments by Kliakhandler et al. [3], as noted earlier.
Here we undertake an asymptotic analysis of the governing
equations for solitary and traveling waves in various limiting
cases. We also obtain both numerically and asymptotically
static drops in the droplike regime. Furthermore, by using
elements from dynamical systems theory, we provide a detailed
and systematic parametric study of the waves’ speed, shape,
and amplitude; that is, we construct bifurcation diagrams for
their speed as a function of pertinent parameters, as well
as obtain ranges in the parameter space for which the K or

RP modes of instability, prompted by inertia and azimuthal
curvature, respectively, are dominant. We scrutinize the four
different regimes described earlier (droplike, wavelike, drag-
gravity, drag-inertia) and provide detailed phase diagrams and
corresponding regime maps for very viscous and less viscous
fluids, thus providing a deeper understanding of the problem,
as well as new insights and also completing the flow regime
diagram provided in [6] for viscous fluids.

Section II introduces the pertinent nondimensionalization
and the WRIBL model. Solitary-wave solutions are con-
structed in Sec. III. Asymptotic limits for small and large
values of the pertinent parameters are analyzed in Sec. IV.
Traveling waves corresponding to the experimental conditions
considered in Refs. [3,5] are next discussed in Sec. V. Section
VI presents a phase diagram of the different regimes. Finally,
a summary of our findings and concluding remarks is offered
in Sec. VII.

II. FORMULATION

A. Natural set of parameters

Consider a film flowing down a vertical cylinder under
the action of gravity. The liquid has dynamic and kinematic
viscosity, μ and ν, respectively, density ρ and surface tension
σ . The flow is assumed to remain axisymmetric. r̄ , x̄, ū, and
t̄ denote the radial, pointing outward from the fiber centerline
coordinate, the axial coordinate oriented along gravity, the
axial velocity distribution and time, respectively (bars are
used to distinguish dimensional from dimensionless quantities
unless the distinction is unnecessary). From simple physical
considerations and without prior knowledge of the specific
details of the system, the following scales can be readily
identified: the fiber radius R̄, the Nusselt thickness h̄N of
the uniformly coated film, the length and time scales, lν =
ν2/3g−1/3 and tν = ν1/3g−1/3, based on gravity and viscosity
(making explicit the balance between gravity and viscous
forces giving rise to the Nusselt flat-film solution), and the
capillary length lc = √

σ/(ρg).
A first set of pertinent dimensionless groups arises from

these scales. The aspect ratio,

α̃ ≡ h̄N/R̄, (1a)

which assesses azimuthal curvature effects at the scale of the
film, the Goucher number [26],

Go ≡ R̄/ lc , (1b)

which compares azimuthal and axial surface tension effects,
and the Kapitza number,

� ≡ σ/(ρν4/3g1/3) = (lc/ lν)2 , (1c)

comparing surface tension and viscosity. Useful combinations
of these parameters are hN ≡ h̄N/lν and h̄N/lc. The former
compares the film thickness to the gravity-viscous length scale
and, indirectly, inertia and viscosity since the Nusselt base
flow is the result of the balance of gravity and viscosity. The
latter, h̄N/lc is related to the Bond number Bo = ρgh̄2

N/σ =
(h̄N/lc)2 comparing surface tension and gravity at the scale of
the film.

The advantage of the set of parameters α̃, Go, and � is
that when the geometry and the working fluid are fixed, the
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TABLE I. Fluid properties, capillary length lc, gravity-viscous length lν , and Kapitza number used in the present study. The data for silicon
oil v50 and castor oil have been taken from [3,5].

ν (mm2 s−1) ρ (kg m−3) σ (mN m−1) lc (mm) lν (mm) �

Water 1 998 72.5 2.7 0.047 3376
Rhodorsil silicon oil v50 50 963 20.8 1.5 0.63 5.48
Castor oil 440 961 31 1.8 2.7 0.45
Rhodorsil silicon oil v1000 1000 980 21.1 1.5 4.7 0.10

Goucher and the Kapitza numbers Go and � are constant
and the only free parameter is α̃. From an experimental
point of view, α̃ can be varied independently by varying the
inlet flow rate. The Kapitza number � is entirely defined by
the fluid properties independently of the flow characteristics,
whereas the Goucher number Go can be easily varied by
replacing the fiber. Hence, the parameters α̃, Go, and �

can therefore be viewed as “natural” for the fiber problem,
and we systematically recast our results in terms of these
parameters.

Table I gives the physical properties of four different fluids
of increasing viscosities commonly used in experiments and
corresponding to a wide range of Kapitza numbers together
with the corresponding capillary lengths and viscous-gravity
length scales. For simplicity, our results will be presented for
the Kapitza numbers listed in Table I.

B. WRIBL model

We now adapt Shkadov’s scaling [27] and introduce
different length scales for the streamwise (axial) and radial
directions. The length scale in the radial direction is the Nusselt
thickness h̄N, whereas the length scale in the streamwise

direction is chosen as κh̄N defined by the balance of the stream-
wise pressure gradient induced by capillarity, ∝σ∂xxxh, and
gravity acceleration, ρg, which gives κ = [σ/(ρgh̄2

N)]1/3 =
(lc/h̄N)2/3. The time scale is defined with reference to the
Nusselt solution of uniform thickness (a result of the balance
of gravity and viscosity). The volumetric flow rate per unit
length of circumference, qN = R−1

∫ R+hN

R
u rdr , of a film of

constant thickness h̄N is given by

q̄N ≡ gh̄3
N

3ν
φ(α̃), (2)

where φ is a geometric factor defined in Eq. (A1a) and
measures the deviation of the flow-rate-to-thickness relation
from the cubic dependency corresponding to the planar
geometry [φ(0) = 1]. Similarly to the streamwise length scale,
the time scale is stretched by a factor κ and thus defined as
3κh̄2

N/q̄N = νκ/[gh̄Nφ(α̃)].
Our basic equations for the analysis to follow are the

WRIBL model obtained in Ref. [18], a set of two evolution
equations for the local film thickness h(x,t), and the local flow
rate q(x,t) ≡ R−1

∫ R+h(x,t)
R

u rdr . For the sake of clarity and
completeness we rewrite the WRIBL model here,

∂th = − 1

1 + α̃h
∂xq , (3a)

δ∂tq = δ

[
−F (α̃h)

q

h
∂xq + G(α̃h)

q2

h2
∂xh

]
+ I (α̃h)

φ(α̃)

[
− 3φ(α̃)

φ(α̃h)

q

h2
+ h

{
1 + ∂xxxh + β

(1 + α̃h)2
∂xh

− 1

2
∂x

(
α̃

1 + α̃h
(∂xh)2

)}]
+ η

[
J (α̃h)

q

h2
(∂xh)2 − K(α̃h)

∂xq∂xh

h
− L(α̃h)

q

h
∂xxh + M(α̃h)∂xxq

]
, (3b)

in terms of the Shkadov scaling, where φ, F , G, I , J ,
K , L, and M are functions of the aspect ratio α̃ given in
Appendix A. Equation (3a) is the (exact) dimensionless mass
balance, whereas (3b) is the streamwise momentum equation
averaged across the film with a weighted-residuals approach.

Shkadov’s scales introduce three new dimensionless groups
besides the aspect ratio α̃ = hN/R, a “reduced Reynolds
number,”

δ ≡ 3q̄N/(νκ) = φ(α̃)�3/2 (α̃Go)11/3 , (4a)

which compares inertia and the viscous drag at the scale
κh̄N introduced by the balance of gravity and capillarity, a

streamwise “viscous dispersion parameter,”

η ≡ 1/κ2 = (h̄N/lc)4/3 = (α̃Go)4/3 , (4b)

and the dimensionless group,

β ≡ α̃2/η = α̃2/3Go−4/3, (4c)

which is a combination of α̃ and η and compares azimuthal to
axial surface tension effects. We have made explicit in Eq. (4)
the relations of δ, η, and β to the “natural” parameters α̃, Go,
and �. Notice that all second-order viscous-dispersion terms
are gathered in the last row of (3b) and are multiplied by η. Let
us also recall the usual definition of the Reynolds number based
on the flow rate, Re = q̄N/ν = h3

Nφ(α̃)/3, where again hN =
h̄N/lν . δ and Re are thus related one to another by δ = 3Re/κ .
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Let us emphasize that the WRIBL model has been validated in
Refs. [6,18] through direct comparisons to the experiments in
Refs. [3,5,6] as noted in Sec. I [for both very viscous and less
viscous liquids (castor oil and silicon oil v50, see Table I) and a
wide range of the parameters (0.15 � Go � 1, 0.5 � α̃ � 4.5,
and 0.05 � δ � 4)].

The advantage of Shkadov’s scaling stems from (i) the
direct reference to the Nusselt uniform film flow that simplifies
the comparisons between solutions, with the Nusselt solution
corresponding to constant values of the film thickness and
flow rates h = 1 and q = 1/3; (ii) the association of a single
parameter to each physical effect affecting the balance of the
different forces: Inertia (δ), azimuthal surface tension (β),
viscous dispersion (η), and geometry (α̃).

To end this section let us point out one apparent draw-
back of the Shkadov scaling, namely the divergence of the
dimensionless parameter β = α̃2/η as the viscous dispersion
parameter goes to zero for α̃ = O(1). The divergence of β

signals that the typical length of a wave is not determined
by the balance of gravitational and axial capillary forces, as
assumed in Shkadov’s scaling, but rather by the balance of
axial and azimuthal capillary forces, in which case the typical
curvatures of the beads in the azimuthal and axial directions
must coincide. The beads have thus a droplike rounded shape,
the long-wave approximation starts to be violated, and the
viscous dispersion effects cannot be a priori discarded as in
the planar case. Considering droplike beads (see Sec. IV A) it
can thus be useful to adopt a scaling based on the radius R̄

of the fiber, which gives the time scale ν/(gR̄). This scaling
introduces a Galilei number, Ga ≡ gR̄3/ν2 = Go3�3/2.

C. Surface equations and saturation numbers

Neglecting inertia and viscous dispersion, Craster and
Matar [4] formulated a single evolution equation for the film
thickness h, the Craster and Matar (CM) equation,

∂t

(
h + α̃

2
h2

)

+ ∂x

[
h3

3

φ(α̃h)

φ(α̃)

(
1 + β

(1 + α̃h)2
∂xh + ∂xxxh

)]
= 0. (5)

For sufficiently thin films, that is, α̃ → 0, we obtain from (5)

∂th + ∂x

[
h3

3
(1 + β∂xh + ∂xxxh)

]
= 0, (6)

which is the equation derived initially by Frenkel [12] (see
also [14]). Equations (5) and (6) are the simplest evolution
equations balancing all relevant physical effects, gravity,
viscous drag, surface tension, and the fiber curvature. They
are equations for the free surface h(x,t) only and, following
the terminology introduced by Ooshida [10], we refer to them
as surface equations.

The CM equation offers a simple prototype for the flow,
easily amenable to mathematical and numerical scrutiny for
which the set of parameters is reduced to only two: α̃ and
β (or equivalently Go). It can be obtained asymptotically
from (3) in the limit δ → 0 and η → 0 when the nonlinear
term −1/2∂x[α̃/(1 + α̃h)(∂xh)2] of the azimuthal curvature
gradient is omitted. Yet, as already stated, α̃ = O(1) implies

that β diverges to infinity and therefore that second-order
viscous dispersive terms cannot be a priori discarded and
that the long-wave assumption is invalid. By contrast, the
derivation of the Frenkel’s equation (6) can be obtained in
the distinguished limit α̃ → 0, η → 0, and β = α̃2/η = O(1).
Nevertheless, comparisons of the solutions to the CM equation
to the experiments show good agreement [18,21].

Using the surface equation (6), Kalliadasis and Chang [14]
and Chang and Demekhin [28] analyzed the mechanism of the
formation of drops observed by Quéré [2] when a fiber or wire
is drawn out of a liquid bath. Quéré observed suppression of the
RP mode for sufficiently small coating films. More specifically,
below a certain critical thickness the film deposited on the
wire develops small-amplitude interfacial waves with the flow
preventing their growth into drops (such drops would always
be observed when the wire is horizontal, as the suppression
of the RP mode induced by the flow is absent in this case).
On the other hand, beyond the critical film thickness growth
of the interfacial waves into drops was observed. Kalliadasis
and Chang [14] found that the amplitude of the solitary-wave
solutions to (6) diverges or “blows-up” for β larger than a
critical value βc = 1.413, which closely corresponds to the
formation of drops in Quéré’s experiments. These authors also
performed an analytical construction of the solitary waves for
β → βc using matched asymptotic expansions. They showed
that drop formation results from the inability of the flow
advection to saturate the instability growth through a nonlinear
saturation mechanism.

The advection and the growth of the instability can be
compared through the definition of the advection time τa of
an interfacial structure over its length and the definition of
a typical time of growth of the structure τg as the inverse
of the maximum temporal growth rate. Based on the Frenkel
equation (6), the stability analysis of the uniform film leads to
the dispersion relation

ω = k + ik2

3
(β − k2), (7)

which governs infinitesimal perturbations around the base
Nusselt flow of wave number k and angular frequency ω. τa

and τg are thus defined as 1/ωr (k = kmax) and τg = 1/ωi(k =
kmax), where ωr and ωi refer to the real and imaginary part of
the temporal mode (k ∈ R), respectively, the maximum of the
temporal growth rate ωi being reached at k = kmax. Based on
(7) the ratio τa/τg reads

τa/τg = ωi/ωr |k=√
β/2 = β2

12

√
2

β
=

√
2

12
β3/2, (8)

the maximum temporal growth rate being obtained at kmax =√
β/2 (see [18] for details). Therefore, β compares τa to τg . For

β < βc, the instability growth is slower than the advection by
the flow. The same mechanism is also in play in the saturation
of the drops though it is then strongly nonlinear. For these
reasons, we refer to β as a saturation number, a term that was
first introduced in Ref. [6].
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TABLE II. Summary of the different parameters defined in Eqs. (1), (4), and (10). The last row recalls the expressions of the reduced
parameters and saturation numbers as functions of the natural parameters. lc = √

σ/(ρg) and lν = ν2/3g−1/3 refer to the capillary length and
viscous-gravity length scale, respectively. The scale ratio κ is defined as κ = (lc/h̄N)2/3 and the kinematic wave speed ck is a function of α̃

given in Eq. (11).

Natural Reduced Saturation numbers

α̃ Go � δ η β β�

h̄N

R̄

R̄

lc

(
lc

lν

)2 3Re

κ

1

κ2

α̃2

η

β

c
2/3
k (1 + α̃)8/3

φ(α̃)�3/2 (α̃Go)11/3 (α̃Go)4/3 α̃2/3

Go4/3

From the CM equation (5), we get

τa/τg = ωi/ωr |k=kRP /
√

2 (9a)

= β2

12(1 + α̃)5

√
2(1 + α̃)

ck

√
β

=
√

2

12
(β�)3/2, (9b)

where kRP ≡ √
β/(1 + α̃) corresponds to the marginal stability

condition and the composite parameter β� is defined as [5,18]

β� = βc
−2/3
k (1 + α̃)−8/3. (10)

ck = limk→0 ω/k is the speed at which infinitesimal deforma-
tions of infinite lengths are kinematically transported by the
flow, or kinematic wave speed:

ck = 1

1 + α̃

[
1 + α̃φ′(α̃)

3φ(α̃)

]
(11a)

= 8(b − 1)(2 log(b)b2 − b2 + 1)
3(4 log(b)b4 − 3b4 + 4b2 − 1)

, (11b)

with b = 1 + α̃.
Since ck(α̃ = 0) = 1, limα̃→0 β� = β. In this limit the

Frenkel equation (6) limited to very thin films (α̃ � 1) applies
and β� is a generalization of the saturation number β to film
flows with thicknesses comparable to the fiber radius.

Table II regroups the main parameters of our study along
with the definition of the saturation numbers. As already stated,
experimental conditions are well represented by the natural

parameters (they can be independently varied by changing
the fiber radius, flow rate, or the fluid viscosity). We show in
Secs. III and IV that the composite parameters δ, η, and β�

are well suited to define the boundaries between the different
regimes.

III. SOLITARY WAVES AND DYNAMICAL SYSTEMS
THEORY

Experimental studies [3–6] reported the formation of
axisymmetric traveling waves (TWs) propagating without de-
formations and at constant speed over long distances. Solitary
waves, that is, TWs separated by constant-thickness layers
of fluid, or substrates, much longer than the characteristic
length of the waves, were commonly observed sufficiently
far downstream. Theoretically, solitary waves can be viewed
as periodic TWs with an infinitely long wavelength. The aim
of this section is to investigate infinite-domain solitary waves
using elements from dynamical systems theory.

In a frame of reference moving with the speed c of the
waves, ξ = x − ct , the flow is stationary and the set of partial
differential equations (3) can be converted into a set of ordinary
differential ones. The mass balance (3a) can be integrated once,

q − c

(
h + α̃

2
h2

)
≡ q0, (12)

where q0 is the rate at which the fluid flows under the waves.
The averaged momentum balance (3b) next reads

δ

[
cq ′ − F (α̃h)

q

h
q ′ + G(α̃h)

q2

h2
h′

]
+ I (α̃h)

φ(α̃)

[
− 3φ(α̃)

φ(α̃h)

q

h2
+ h

{
1 + h′′′ + β

(1 + α̃h)2
h′ + α̃

1 + α̃h
h′

[
h′′ − 1

2

α̃

1 + α̃h
(h′)2

]}]

+ η

[
J (α̃h)

q

h2
(h′)2 − K(α̃h)

q ′h′

h
− L(α̃h)

q

h
h′′ + M(α̃h)q ′′

]
= 0, (13)

where the primes denote differentiation with respect to the moving coordinate ξ . Using (12), (13) can be recast into h′′′ =
f (h,h′,h′′) , where f is a function of the thickness h, its first and second derivatives, and the parameters δ, α̃, η, and c. We thus
end up with a dynamical system of dimension three,

d

dξ
U = (U2,U3,f (U1,U2,U3))t , (14)

where U = (U1,U2,U3)t ≡ (h,h′,h′′)t .
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c/ck

FIG. 1. Film thicknesses hI = 1 and hII corresponding to the
location of the fixed points as function of the ratio of the normalized
wave speed c to the kinematic wave speed ck defined in Eq. (11).
Solid, dashed and dotted lines refer to α̃ = 0 (planar case), α̃ = 0.5,
and α̃ = 1, respectively.

Solitary waves correspond to homoclinic orbits in the phase
space connecting a fixed point to itself. Here we restrict our
attention to single-loop homoclinic orbits corresponding to
single-hump solitary waves in real space. The fixed points of
the dynamical system (14) satisfy h′ = h′′ = 0 and

h3

3

φ(α̃h)

φ(α̃)
− c

(
h + α̃

2
h2

)
= q0. (15)

Requiring that h = 1 is a solution to (15) gives

q0 = 1

3
− c

(
1 + α̃

2

)
. (16)

In addition to the solution h = 1, there is one more real positive
solution to (15) with (16) and the dynamical system (14)
admits two fixed points UI = (1,0,0)t and UII = (hII,0,0)t

whose positions are displayed in Fig. 1 as functions of the
wave speed c and aspect ratio α̃. The two fixed points coincide
when the wave speed c is equal to the speed of linear waves of
infinitesimal amplitude and infinite length that are neutrally
stable. This situation corresponds to the definition of the
linear kinematic waves in the zero-wave-number limit, whose
speed is given in Eq. (11). In the limit α̃ = 0, we recover
the expression hII = −1/2 + √

3(c − 1/4) corresponding to
a film flowing down an inclined plane [11,29]. We note
that extending this expression to the axisymmetric geometry
by replacing c with c/ck , gives a reasonable approximation
hII ≈ −1/2 + √

3[(c/ck) − 1/4] for the position of the second
fixed point even for α̃ = O(1) (see Fig. 1). Finally, we note that
it is sufficient to consider homoclinic orbits around only one
of the two fixed points because of the presence of a continuous
family of Nusselt flat-film solutions parameterized by the
reduced Reynolds number δ (or hN = h̄N/lν) when Go and
� are held constant. Indeed, homoclinic orbits connecting UII

correspond to phase-space trajectories connecting UI through
the transformation hN → hNhII.

The shape of the tail and front of a solitary wave can be
determined by considering how the corresponding homoclinic
orbit in the phase space approaches and leaves the fixed
point it connects to. Let us consider the linear stability of the
fixed point UI. The dispersion relation governing infinitesimal

perturbations ∼exp(λξ ) is

λ3 + λ2ηDη + λδDδ − 3(1 + α̃) (c − ck) = 0, (17)

where

Dη = φ

I

[
−L

3
+ c(1 + α̃)M

]
, (18a)

Dδ =
{

φ

I

[
(1 + α̃)

(
c2 − F

3
c

)
+ G

9

]
+ β

δ(1 + α̃)2

}
,

(18b)

and where the coefficients F , G, L, and M defined in Eq. (A1)
are computed with the argument m = α̃. Equation (17) can
be reduced to the canonical form P (y) = y3 + py + q = 0 by
the change of variable λ = y − ηDη/3, where

p = δDδ − η2D2
η

3
, (19a)

q = −3(1 + α̃)(c − ck) − δη

3
DδDη + 2η3

27
D3

η. (19b)

Using the Cardan formulas, (17) admits a real eigenvalue
and a complex conjugate pair when the discriminant � =
4p3 + 27q2 is > 0. When � < 0, (17) admits three real
eigenvalues. Therefore, UI changes from a saddle to a saddle
focus at � = 0. When UI is a saddle, the homoclinic orbit
departs and returns to the fixed point monotonically along the
two eigenspaces corresponding to the eigenvalues of smallest
absolute value, and the corresponding tail and front of the
solitary wave are monotonic. Conversely, when UI is a saddle
focus, the homoclinic orbit leaves monotonically along the
eigenspace spanned by the eigenvector corresponding to the
real eigenvalue and returns to the fixed point by spiraling on
the eigenspace spanned by the eigenvectors corresponding
to the complex pair. This spiral corresponds to capillary
ripples at the front of the solitary wave while the tail remains
monotonic.

Figure 2 displays the speed and maximum amplitude of
the solitary waves corresponding to homoclinic orbits around
UI = (1,0,0)t . Parameters correspond to the fluid properties
of silicon oil v50 (� = 5.48, see Table I) and to different
fiber radii, R = 1.5, 0.35, and 0.25 mm (Go = 1, 0.24, and
0.17). The solutions have been computed by continuation using
AUTO97 together with its subroutine HOMCONT [30]. In all cases
� > 0; that is, UI is a saddle focus and the solitary waves are
characterized by monotonic tails and oscillatory fronts.

Two different behaviors can be observed for small and large
thicknesses, or for δ � 1 and δ > 1. For small thicknesses
(δ � 1), the maximum height hmax and speed of the solitary
waves exhibit local maxima which strongly increase for thin
fibers corresponding to a stronger RP instability. In Figs. 2(a)
and 2(b), the characteristics of the solitary-wave solutions
of the WRIBL model (3) and of the CM equation (5) are
compared showing reasonable agreement. As the CM equation
is parameterized by the aspect ratio α̃ and β, the local maxima
are the result of the balance of curvature effects and the
advection by the flow. This is reminiscent of the sharp increase,
or “blow-up,” of speed and amplitude observed by Kalliadasis

046302-6



WAVY REGIMES OF FILM FLOW DOWN A FIBER PHYSICAL REVIEW E 85, 046302 (2012)

 0

 2

 4

 6

 8

 10

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

3

2

1

δ

c/
c k

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

3

2

1

δ

h
m

a
x

(b)

FIG. 2. Speed c (left) and maximum height hmax (right) of the
solitary waves as function of the reduced Reynolds number δ for
different fiber radii: R = 1.5 mm (curves 1), 0.35 mm (2), and
0.25 mm (3). Solutions to (3) (solid lines) are compared to the
solutions of the CM equation (5) and of the model (3) when inertial
terms are set to zero (dashed and dashed-dotted lines). The fluid
properties correspond to Rhodorsil silicon oil v50 (see Table I).

and Chang [14] at β = βc ≈ 1.413 in their study of the
solitary-wave solutions of the Frenkel equation (6).

One might expect that the sharp increase of the local
maxima of the speed and amplitude observed by lowering the
fiber radius is related to the nonlinear saturation mechanism of
the instability by the advection discussed earlier and, therefore,
it should be correlated with the saturation number β�. The
validity of this hypothesis is checked in Fig. 3, where the
maximum height of the solitary waves is depicted as a function
of β�. At a given value of the Goucher number Go, β� reaches
a maximum for α̃ ≈ 0.44 and tends to zero for α̃ → 0 and
α̃ → ∞. For a fixed radius R, δ and α̃ have the same trend.
This explains why β� tends to zero when δ → 0 and δ → ∞
and justifies the shapes of the curves. The local maximum
of hmax occurs at β� close to the maximum reached by this
parameter as δ is varied. The increase of the local maximum
of hmax is related to the increase of the maximal value of β�

achieved as the ratio Go is lowered.
We have also computed solutions of model (3) when the

inertial terms are canceled (δ → 0). The results are shown as
dashed-dotted lines in Figs. 2(a) and 2(b). As they asymptote to
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FIG. 3. Maximum height of solitary waves versus saturation
parameter β�. See also caption of Fig. 2.

the solid lines corresponding to (3) in the limit δ � 1, we can
conclude that the difference in speed and amplitude between
solutions to (3) and to the CM equation results from the viscous
dispersion effects.

We note that for δ � 10−2, viscous dispersion effects
contribute to a significant increase of the speed and amplitude
of the solitary waves. This unexpected nontrivial amplifying
effect of viscous dispersion can be understood by considering
the ratio τa/τg based on the dispersion relation corresponding
to (3) in the limit δ → 0, which reads

ω = k ck(α̃) − ηk2 φ

9(1 + α̃)I
[Lk − 3(1 + a)Mω]

+ i k2

3(1 + α̃)

(
β

(1 + α̃)2
− k2

)
. (20)

Equation (20) corresponds to the dispersion relation obtained
from the CM equation (5) augmented with a term ∝ηk2. Linear
long waves (k � 1) travel at a speed which is close to ck and
the effect of second-order viscous terms on these waves can be
evaluated by substituting ω with kck for ω in Eq. (20) except
for the “critical term” ckk − ω [18,31]. We thus get

ω = k ck(α̃) − ηϒη(α̃)k3 + i k2

3(1 + α̃)

(
β

(1 + α̃)2
− k2

)
,

(21)

where ϒη = φ[(1 + α̃)Mck − L/3]/[3(1 + α̃)I ] is a positive
function of α̃. The main effect of second-order viscous
terms on kinematic long waves is therefore dispersive with
a reduction of their waves speed from ck to ck − ηϒη(α̃)k2,
which thus justifies the use of the term “viscous dispersion” as
already discussed in Sec. I (see also [18]).

The growth time τg = 1/ωi(k = kmax) computed from (21)
remains given by 12(1 + α̃)5/β2 as in Eq. (9), whereas the
advection time τa = 1/ωr (k = kmax) is converted to

√
2(1 +

α̃)/[ck,η

√
β], where ck,η = ck − ϒη(α̃)β/[2(1 + α̃)2]. The ra-

tio τa/τg thus becomes

τa/τg =
√

2

12
(β�)3/2 ck

ck,η

. (22)
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Since ck,η < ck , the saturation of the instability by the flow
advection is therefore attenuated by viscous dispersion which
reduces the wave speed and thus raises the time τa of advection
of the structures.

However, the maximum of the temporal growth rate given
by (21) is reached at k = kRP/

√
2, which in practice is not

small. The previous argument is therefore not strictly valid in
this case. The advection time τa and the typical growth time τg

corresponding to (20) are complicated functions of α̃ and Go.
Viscous dispersion decelerates the wave and increases τa , but
also damps the RP instability and thus simultaneously raises
τg . Yet, τa increases more rapidly than τg as η is raised. The
deceleration of the waves by viscous dispersion is thus more
significant than its damping effect. The waves have therefore
more time to grow before reaching saturation, which explains
their nontrivial amplification by viscous effects.

Figure 2 reveals a sharp increase of the maximum height
and speed of the waves above δ ≈ 2, corresponding to the
predominance of the K mode. The characteristics of the
waves in this region will be considered in detail later on in
Sec. IV B. Let us simply stress here that the increase of the
wave amplitude is also accompanied by a sharp increase of the
maximum gradient of the film height, max |h′|. The separation
between the local maxima for the speed and amplitude
corresponding to the RP-dominated waves (δ � 1) and the
K-dominated waves at large δ increases for even more viscous
fluids like the castor oil used by Kliakhandler [3] (cf. Table I),
as can be observed when Fig. 2 is redrawn for � = 0.45 (not
shown). This increase can be understood by considering the
definition of β�, which is a function of the aspect ratio α̃

and Go and the definition of δ = (α̃Go)11/3φ(α̃)�3/2. Since �

decreases with the kinematic viscosity, the maximum of β�

for a given value of Go corresponds to smaller and smaller
values of δ as the viscosity of the fluid is increased. In contrast
with the results for silicon oil v50 (cf. Fig. 2), a transition
from a saddle focus to a saddle fixed point has been observed
corresponding to the disappearance of the capillary ripples at
the front of the solitary wave at values of δ above 0.1.

Conversely, the separation of the solitary-wave character-
istics, such as speed and maximum height, as a function of δ

into two distinct regions, at low and high reduced Reynolds
numbers, vanishes at low viscosities. Indeed, at low viscosities,
or equivalently, high Kapitza numbers, the RP mode occurs
at relatively high values of δ, where the K mode already
takes over. In Fig. 4(a) we have redrawn Fig. 2(b) for water
(� = 3376; see Table I), which is 50 times less viscous than
silicon oil v50. The figure compares the maximum height of
the solitary waves for a ratio of the Goucher number Go equal
to the ones chosen for the computations shown in Figs. 2, to
the amplitude of the solutions of the CM equation (5). At small
values of δ, the amplitude of the waves is significantly larger
than the amplitude of the solutions of the CM equation, which
signals the influence of the K mode on the RP instability.
Notice that this effect cannot arise from the second-order
viscous terms as the cancellation of the inertial terms leads
to results comparable to the solutions of the CM equation. On
the other hand, the influence of the RP instability on the K
mode is illustrated in Fig. 4(b), where β� and hmax are plotted
versus δ. At small fiber radii R = 0.64 mm and R = 0.46 mm
(Go = 0.24 and 0.17), the characteristic sharp increase of the
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FIG. 4. (a) Maximum height hmax of the solitary waves as a
function of δ. Solutions of (3) (solid lines) are compared to the
solutions of the CM equation (5) (dashed lines) and solutions of
(3) where the inertia terms are set to zero (dashed-dotted lines).
(b) Maximum height hmax (solid line) and parameter β� (dashed lines).
Parameters correspond to water (� = 3376) and different fiber radii:
R = 2.75 mm (curves 1), 0.64 mm (2), and 0.46 mm (3).

solitary-wave amplitude is displaced to values of δ smaller
than δ ≈ 2 corresponding to a generalized saturation number
β� � 1.

IV. LIMITING CASES

In this section, we focus on the different regions of the
wave-characteristics’ diagrams displayed in Figs. 2 and 4 and
consider all possible asymptotic limits.

A. Small Goucher number limit: The droplike regime

Let us first consider the local maxima of the amplitude hmax

and speed c with respect to δ for given values of the Goucher
number Go, or equivalently α̃, observed for viscous fluids like
silicon oils in the inertialess limit (δ � 1). From Fig. 2, it is
clear that the CM equation and the WRIBL model give very
close results since the former is recovered from the latter as
δ and η are set to zero. Since only α̃ and β = α̃2/3Go−4/3

enter in the CM equation (5), the local maxima of hmax and
speed c are functions of α̃ and Go only (and thus do not
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TABLE III. Local maxima of the speed c and amplitude hmax with respect to δ for given values of the Goucher number Go, or equivalently
α̃, obtained from the CM equation (5). cdrops refers to the speed of quasistatic drops sliding down coated fibers (see text and Appendix B ).

Go α̃ hmax c h̄max/R̄ c ν/(gR̄2) cdrops ν/(gR̄2)

0.236 0.23 3.3 3.1 0.77 0.22 0.25
0.168 0.15 6.9 8.8 1.05 0.25 0.30
0.110 0.075 18 38.5 1.36 0.24 0.29
0.055 0.022 81.2 383 1.80 0.19 0.22
0.044 0.014 129 773 1.85 0.16 0.18

depend on �). Table III depicts these quantities as obtained
from the CM equation. As Go tends to zero, the RP instability
mechanism becomes more and more efficient and we observe
a sharp increase of the local maxima of the amplitude hmax

and of the maxima of the speed of the waves. For such waves,
the amplitude can be several orders of magnitude larger than
the Nusselt flat film on which they stand, and variations of
the Nusselt thickness should only slightly modify the wave
characteristics (except perhaps when the film becomes so thin
that the corner dissipation at the wave front dominates over
the dissipation in the bulk).

Since R̄ � lc, azimuthal surface tension effects dominate
over gravity and the typical length scale and height of a wave
should correspond to the radius R̄ of the fiber as already
pointed out in Sec. II B. The wave speed should then be
determined by the balance of viscosity and gravity at the
scale R̄, which gives a typical velocity of gR̄2/ν for viscous-
gravitational drainage. Justification of the neglect of the inertial
terms demands that the Galilei number Ga = Go3�3/2 is
small, which is satisfied for all tested fluids except for water
(� = 3376). Our computations of the solutions to the CM
equation (5) confirm these scaling arguments as shown in
Table III.

In Fig. 5, we contrast the wave profiles rescaled with respect
to R̄ corresponding to Table III. Except from the front and
back of the waves corresponding to the return to the fixed
point, the wave profiles are rather symmetric. This front-to-

back symmetry shows that gravity does not affect the wave
profile, as expected, since the typical size of the wave R̄ is
much smaller than the capillary length lc. Therefore, solitary
waves in this regime resemble isolated drops sliding under the
action of gravity on a wettable fiber, which is precisely why we
refer to this regime as the droplike regime. [When R̄ is larger
and approaches lc, on the other hand, the drops will feel the
effect of gravity as they grow and they will eventually resemble
falling pendant drops.] It corresponds to the observation by
Quéré [2,26] in the coating of wires or thin fibers drawn out of
a bath of viscous liquids that the thin annular film deposited
on the wires and fibers breaks up into drops.

We have checked this analogy by computing the shape of
static drops with zero contact angles sitting on a fiber coated
with a base liquid film, or substrate film, of the same liquid
(details of the calculation are given in Appendix B). The
agreement of the wave shapes to the symmetrical static drop
shapes is remarkable even in the case of nearly spherical drops
such as those obtained at Go = 0.044, where the long-wave
assumption is no longer valid. We can therefore conclude that
the CM equation (5), and by extension the WRIBL model (3),
are accurate in the droplike regime where surface tension is
dominant and even if the long-wave approximation does not
hold. Besides, the remarkable agreement between the solutions
to the CM equation (5) and the WRIBL model (3) already noted
in Fig. 2, shows that the second-order streamwise viscous
terms do not affect the amplitude and speed of the drops.
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FIG. 5. Wave profiles corresponding to the solutions to the CM equation (solid lines) and static drop shape (thin dashed lines). Labels
correspond to the Goucher number. Values of the other parameters are listed in Table III.
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FIG. 6. Profile of single-loop homoclinic solutions to (3) corre-
sponding to single-hump solitary waves. Parameters correspond to
Rhodorsil silicon oil v50 (� = 5.48) and R = 0.25 mm. Solid and
dashed lines refer to δ = 5 and δ = 3 × 10−5, respectively.

Following [14], an analytical estimate of the amplitude
and speed of the droplike waves in the limit Go → 0 may be
obtained via matched asymptotic expansions. The appropriate
small parameter is the dimensionless speed of the drops. By
balancing viscous and capillary forces at the back of the waves,
one can easily extend to sliding drops the Landau-Levich-
Derjaguin law obtained by Quéré [26] in the case of fibers
drawn out of a bath. The speed of sliding drops is thus governed
by Eq. (B4), which compares favorably to the results from the
CM equation in Table III. As a matter of fact, this agreement
shows that the thickness of the residual film on which the
drops slide is determined by the balance of surface tension
and viscous dissipation in the meniscus region. To estimate
the speed and amplitude of droplike waves, one would have
to take into account the gravity acceleration and higher-order
corrections in the outer region, namely the viscous dissipation
in the drop, a task which is difficult, as (a) with the Frenkel
equation resolving fully the leading-order outer region requires
matching up to third order [14] and quite likely this is the case
here, (b) a single “composite equation” for the whole domain,
that is, for both the drop and residuals films, as, for example,
in the “drag-out” problem in coating theory [32], does not
exist.

B. Large δ limit: The drag-inertia regime

Even though, strictly speaking, δ is not allowed to tend to
infinity within the long-wave approach, the question of the
behavior of the different quantities of interest for large δ is a
valid one within the context of the WRIBL model as model
equations. Besides the change of behavior of the speed and
amplitude of the waves that occur around δ ≈ 1 will be clarified
by the asymptotical analysis.

To understand the change of behavior of the solitary-wave
characteristics at relatively large values of δ, it is instructive to
look at the wave profiles. Figure 6 compares two single-loop
homoclinic orbits for a small and a large value of δ. For δ � 1,
solitary waves have a relatively symmetric shape. Except from

the neighborhood of the fixed point UI, where the escape from
UI is monotonic and the return to it is oscillatory, a symmetry
between the front and the back of the waves is observed with
a steep front and a steep back. On the contrary, at large values
of δ, the front and back of the solitary waves present radically
different shapes, with a gentle sloping back edge and a steep
front edge.

The observed difference between the front and the back
of the solitary waves in the large-δ case can be explained
by examining the linearized dynamics around UI. The dis-
persion relation governing infinitesimal perturbations varying
as exp(λξ ) is given in Eq. (17). At a given radius R and
capillary length lc, large thickness, hN � 1, corresponds to
δ ∼ h

11/3
N φ(α̃) � 1, β/δ = (lc/R)2/(3Re) � 1 and possibly

large viscous dispersion since η ∼ h
4/3
N . Let λ1 be the positive

eigenvalue corresponding to the unstable manifold of UI. The
eigenvalues of the tangent subspace to the unstable manifold
satisfy Re(λ3) � Re(λ2) < 0. When UI is a saddle focus
(� > 0), we further denote λ2,3 by −� ± i� with � > 0
and � > 0. From (17) we obtain the estimate λ1 ∼ δ−1 � 1.
Since λ1 + λ2 + λ3 = −ηDη, we immediately get an estimate
of the mean value, (λ2 + λ3)/2 ∼ −η, so that � ∼ η when
� > 0. As a consequence, at the back of a solitary wave, the
monotonic escape from the fixed point is slow, whereas at the
front, the return to UI is fast. The above estimates have been
confirmed by computations of λ1 and � for the solitary waves
shown in Fig. 2 corresponding to silicon oil v50. A direct
consequence is that for δ � 1 the long-wave assumption does
not hold at the fronts of the waves, whereas it is still verified
at their backs: the WRIBL model cannot accurately capture
the front regions—the “capillary shocks”—but still adequately
describe the backs of the waves and thus their amplitude and
speed [11].

Focusing now at the back of the solitary wave and defining
a slow variable ξ̃ = ξ/δ, (13) reads{

(1 + α̃h)

[
c2 − cF (α̃h)

q

h

]
+ G(α̃h)

q2

h2

+ βI (α̃h)

δ(1 + α̃h)2φ(α̃)

}
dh

dξ̃

I (α̃h)

φ(α̃)

[
3φ(α̃)

φ(α̃h)

q

h2
− h

]
+O(η/δ2,δ−3), (23)

where q is given by (12) and (16). Equation (23) can be
formally rewritten as

G(h,c; α̃,β/δ)
dh

dξ̃
= −H(h,c; α̃) + O(η/δ2,δ−3), (24)

expressing the balance at the back of the solitary waves
of inertia (at the left-hand side), viscous drag, and gravity
acceleration (at the right-hand side). As a consequence, the
roots of the right-hand side of (23) correspond to the fixed
points of (14).

As the homoclinic orbit departs from UI, h increases up
to hII, which is larger than unity since c > ck (cf. Fig. 1). At
this point, h goes through a maximum if G is nonzero. The
resulting orbit is thus a heteroclinic one linking UI and UII

which contradicts the fact that we are considering a single-loop
homoclinic orbit [11]. As a consequence, G must go to zero at
h = hII, which signals a “critical film thickness” hc at which
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inertial terms must go to zero. In the limit δ → ∞, we thus
obtain the condition

hII(c; α̃) = hc(c; α̃,β/δ), (25)

which gives a unique solution ccrit and then hcrit as function of
α̃ and β/δ. As the limit speed ccrit is governed by the balance
of inertia, wall friction, and gravity acceleration, we may refer
to this situation as the drag-inertia regime [10].

Having shown that G possesses at least one root, G can
be factorized into G = (1 + α̃h)[c − cd+(α̃h,q/h,β/δ)][c −
cd−(α̃h,q/h,β/δ)], where

cd±(α̃h,q/h) = q

h

F (α̃h)

2
± √

�α̃h,q/h,β/δ (26a)

and �α̃h,q/h,β/δ =
(

q

h

)2 [
F (α̃h)2

4
− G(α̃h)

1 + α̃h

]

− βI (α̃h)

δ(1 + α̃h)3φ(α̃)
(26b)

are the speeds of linear dynamic waves for a uniform layer
of thickness h and averaged speed q/h [18]. In other words,
the position of the second fixed point must coincide with the
critical layer hc at which the speed of the solitary wave c is
equal to the speed of one of the dynamic waves cd±—in fact
the fastest one with speed cd+—which separates the flow into
a “subcritical region” (c < cd+) and a “supercritical region”
(c > cd+). The condition hII = hcrit is similar to the “Thomas
condition” derived in the mathematical treatment of periodic
bores on steep slopes, or roll waves [33,34] made of the regular
succession of laminar flows and hydraulic jumps. For δ � 1,
the front of the solitary waves, where surface tension arrests the
breaking of the waves, plays a role similar to that of a hydraulic
jump connecting the subcritical and supercritical regions of a
roll wave. For this reason, we may also refer to this regime as
the roll-wave regime.

Considering now large but finite values of δ, condition (25)
is not verified and one has to go back to (24). At the critical
point h = hc we have G(hc,c; α̃) = 0 and a Taylor expansion
close to criticality gives

hc − hcrit ≈ − [∂cG/∂hG] (hcrit,ccrit) (c − ccrit) (27)

whenever ∂hG(hcrit,ccrit) = 0. Proceeding next to a Taylor
expansion of H(h,c), (24) yields[

∂cH − ∂hH∂cG
∂hG

]
(c − ccrit) ≈ Kη

η

δ2
+ Kst

δ3
, (28)

where the constants Kη and Kst are functions of hcrit, ccrit and
the derivatives h′

crit, h′′
crit and at h′′′

crit at the critical thickness
of the asymptotic solution. Since for hN � 1, δ ∼ h

11/3
N and

η ∼ h
4/3
N the asymptotically dominant terms in the right-hand

side of (28) are the viscous terms Kηηδ−2. Consequently, the
convergence of the speed of the waves to the asymptotic value
ccrit(α̃) satisfies

c − ccrit(α̃,β/δ) ∝ η/δ2 ∼ 1/Re2, (29)

in agreement with our numerical computations.
Figure 7 compares the phase speed c of the solitary waves

to the asymptotic limit ccrit as a function of δ for the four
different fluids of increasing viscosity that we considered (fluid
properties are gathered in Table III). For weakly viscous flows,
the RP and K mode reinforce each other and the speed c of the
waves is much higher than the asymptote ccrit [see Fig. 7(a)].

At larger viscosities [Figs. 7(b) and 7(c)] the K mode ceases
to be affected by the RP instability and a rapid convergence
to ccrit is observed as δ is increased. Whereas for very viscous
fluids like silicon oil v1000 (1000 times more viscous than
water; cf. Table I), the curves start again to separate, signaling
the arrest of the convergence to the asymptote ccrit by the axial
viscous effects.

C. Weakly nonlinear analysis

Let us now consider the regions of the speed and maximum
height diagrams in Figs. 2 and 4 corresponding to the transition
between the droplike regime and the drag-inertia regime. They
correspond to situations where neither the K nor the RP
instability mechanisms are strong enough to promote large
amplitude waves, that is, when δ � 1 and β� � 1. We can
then proceed to a weakly nonlinear analysis to characterize
the shape, speed, and amplitude of the waves. Since δ � 1,
we substitute h = 1 + H and q = 1/3 + Q where H = O(θ )
and Q = O(θ ) are small deviations from the base state (h,q) =
(1,1/3), (i.e., θ � 1). Taking the distinguished limit θ � ε2,
we are led from the WRIBL (3) model to a single-evolution
equation for the deviation H :

∂tH + ck∂xH + �(α̃)H∂xH + β

3(1 + α̃)3
∂xxH + 1

3(1 + α̃)
∂xxxxH

+ δ
φ(α̃)

3I (α̃)

[
∂ttH + F (α̃)

3
∂txH + G(α̃)

9(1 + α̃)
∂xxH

]
+ η

φ(α̃)

3I (α̃)

[
M(α̃)∂xxtH − L(α̃)

3(1 + α̃)
∂xxxH

]
= O(θε5,θ2ε2), (30)

where

�(α̃) = 3(2 + α̃)φ + α̃[(6 + 5α̃)φ′ + α̃(1 + α̃)φ′′]
3(1 + α̃)2φ

(31)

is a function of the aspect ratio α̃. Noteworthy is that a stability analysis of the base state (h,q) = (1,1/3) based on (30) leads to
the same dispersion relation as for (3).
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FIG. 7. Speed c of the solitary waves as a function of the reduced Reynolds number δ for three values of the Goucher number Go = 1.01
(curves 1), 0.236 (curves 2), and 0.168 (curves 3) for fluids of decreasing Kapitza numbers. Solutions to (3) (solid lines) are compared to the
asymptotic predictions ccrit (dashed lines).

1. Drag-gravity regime

We consider here the limit of a thin film compared to
the fiber radius, α̃ � 1, when the radius of the fiber is con-
stant or equivalently Go is constant. Since η = (h̄N/lc)4/3 =
α̃4/3Go4/3, viscous dispersion is negligible in this limit and
(30) reduces to

∂tH + ∂xH + 2H∂xH + β

3
∂xxH

+ 2

5
δ

[
∂ttH + 17

21
∂txH + 1

7
∂xxH

]
+ 1

3
∂xxxxH = 0. (32)

By making use of the first-order equivalence of the time and
space derivatives of H , ∂tH ≈ −∂xH , (32) reduces to the
Kuramoto-Sivashinsky (KS) equation:

∂tH + ∂xH + 2H∂xH + 1

3

[
2

5
δ + β

]
∂xxH + 1

3
∂xxxxH = 0.

(33)

To look for the TW solutions to (33) in their moving frame, ξ =
x − ct , we rescale the velocity as c = 1 + C and the amplitude

as H = θA and stretch the moving coordinate as ξ = BX:

−3CB3A + 3θB3A2 + B2ϒ
d

dX
A + d3

dX3
A = 0, (34)

where ϒ = 2
5δ + β and the condition limξ→±∞ H = 0 has

been enforced, yielding a vanishing integration constant.
Balancing each term in Eq. (34) gives CB3 ∼ θB3 ∼ B2ϒ ∼
1 so that B ∼ ϒ−1/2, θ ∼ ϒ3/2, and C ∼ ϒ3/2.

Writing B = ϒ−1/2, θ = 2
3ϒ3/2, and C = μϒ3/2/3 then

leads to

−μA + 2A2 + d

dX
A + d3

dX3
A = 0, (35)

which is an ordinary-differential equation governing the TW
solutions to the KS equation propagating at speed μ. Equation
(35) admits a one-hump solitary-wave solution for a particular
value of μ = μ0 ≈ 1.216 and an amplitude Amax ≈ 0.784.
Consequently, in the limit α̃ → 0, the speed c and the
amplitude hmax of the one-hump solutions to (3) follow power
laws of the form

c ≈ 1 + 0.405 ϒ3/2, hmax ≈ 1 + 0.523 ϒ3/2. (36)
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Recall that the relations (36) have been obtained under the
assumption of small amplitude, hmax − 1 � 1; hence, ϒ must
be small, which implies that both inertia and azimuthal
curvature effects must be small. Viscous drag and gravity
acceleration are the dominant physical effects. Following [10],
we may refer to this regime as the drag-gravity regime.

It is possible to interpret this regime as one characterized by
the arrest of the instability growth by the flow advection. The
dispersion relation corresponding to the KS equation (33) and
governing infinitesimal perturbations around the base Nusselt
flow of wave number k and angular frequency ω is identical to
(7) when β is substituted with ϒ . One can then follow the same
line of reasoning in going from (7) to (8) and define the ratio
of the typical time of advection of the structure over its length,
τa = k−1, to the typical time of growth, τg = [max(ωi)]−1, of
the instability:

τa/τg = ωi/ωr |k=√
ϒ/2 ∝ ϒ3/2. (37)

Therefore, ϒ � 1 corresponds to τa � τg . The flow advection
is much faster than the instability and the ratio τa/τg controls
the amplitude and speed of the observed structures as reflected
by (36).

2. Solitonlike regime

We consider in this section the limit of a thick film,
α̃ � 1 (though in practice, if α̃ is large, the axisymmetry of
the flow might be difficult to attain). We thus have φ(α̃) ∼
(3/4)α̃ log(α̃), ck ∼ 4/3α̃−1 and β� ∼ (3/4)2/3(α̃Go)−4/3, δ ∼
3
4 α̃ log(α̃)�3/2(α̃Go)11/3, while in all cases η = (α̃Go)4/3.
Therefore, the conditions δ � 1 and β� � 1, necessary for
the weakly nonlinear analysis, can be justified if, for example,
α̃Go = O(1), that is, η = O(1) and �3/2 � 1. For silicon oil
v1000, � = 0.1 so that �3/2 = 0.03. [We note that, strictly
speaking, the derivation of the WRIBL model (3) demands
that � is at least O(1) since the long-wave approximation is
sustained only when surface tension effects are strong [18].]

Neglecting inertial effects and looking for the dominant
terms in Eq. (30) leads to

∂tH + 4

3α̃
∂xH + 8

3α̃
H∂xH + 1

3α̃η
∂xxH

+ 1

3α̃
∂xxxxH − η log(α̃)

[
3

2
∂xxtH + 1

α̃
∂xxxH

]
= 0. (38)

The first-order equivalence of the time and space derivatives
of H , that is, ∂tH = −[4/(3α̃)∂xH ] + O(εθ2,ε2θ ), can again
be utilized. Equation (38) is then simplified into

∂tH + 4

3α̃
∂xH + 8

3α̃
H∂xH + 1

3α̃η
∂xxH

+ η log(α̃)

α̃
∂xxxH + 1

3α̃
∂xxxxH = 0, (39)

the “Kawahara” equation that was scrutinized numerically by
Kawahara and co-workers [35,36]. The equation is also often
referred to as the “generalized KS” equation [21,37,38], and it
is the KS equation appropriately extended to include dispersion
(∂xxxH ). As before, we look for TW solutions in their moving
frame, ξ = x − ct . Stretching the moving coordinate as ξ =√

ηX, the amplitude as H = η−3/2A/2, and the speed as

c = (4/3)α̃−1(1 + μη−3/2/4) then gives

−μA + 2A2 + d

dX
A + δK

d2

dX2
A + d3

dX3
A = 0, (40)

where δK = 3η3/2 log(α̃) is a parameter that measures the
relative importance of dispersion. Equation (40) governs TW
solutions of the Kawahara equation propagating at speed μ.
Since α̃ � 1 and η = O(1), the dispersion parameter δK is
large, in which case the speed of the one-hump solitary-wave
solutions to (40) is given by μ ≈ 0.3256δK . Solitary-wave
solutions of (3) in the limit α̃ � 1 and δ � 1 should therefore
satisfy

c

ck

≈ 1 + 0.24 log(α̃). (41)

However, our computations show that for moderate values of α̃

the wave speed is, in fact, closer to c/ck ≈ 1.65 + 0.24 log(α̃).
The reason for this discrepancy can be traced in the violation
of the assumption of small-amplitude deviations from the base
state (h − 1 � 1) that was necessary to obtain (39) from (3).
Indeed, TW solutions to the Kawahara equation have a speed
and an amplitude that diverge as δK becomes large.

D. Speed to amplitude relation

The weakly nonlinear analysis presented in Sec. IV C pro-
vides us with the dependencies (36) of the speed and maximum
height as functions of ϒ = 2

5δ + β for small film thicknesses.
Combining these two relations gives a linear dependence
of the deviation amplitude hmax − 1 to the deviation speed
c/ck − 1, where the wave speed c has been normalized with
the kinematic wave speed ck:

hmax − 1 ≈ 1.29

(
c

ck

− 1

)
. (42)

A linear dependence of the speed as a function of amplitude
was initially found by Chang [39],

hmax − 1 ≈ c

ck

− 1, (43)

by utilizing a normal form analysis of the TW solutions of the
KS equation (33). This linear dependence is a characteristic
of the drag-gravity regime and must be contrasted with the
experimental relation

hmax − 1 ≈ 1.67

(
c

ck

− 1

)
(44)

obtained by Tihon et al. [40] for solitary waves running down
a plane inclined at an angle 5◦. A linear dependence of hmax

with respect to c/ck has also been found experimentally in the
recent study by [6] for solitary waves on a relatively thick fiber.

Similarly, in the droplike regime, a law relating c and hmax

can easily be obtained by recognizing that the wave amplitude
hmax − 1 should be proportional to the distance hII − 1
separating the fixed points. The constant of proportionality is
determined by continuity with (42) in the limit hII − 1 � 1 for
which hII − 1 ≈ c/ck − 1 (see Fig. 1). Next, by approximating
hII with −1/2 + √

3[c/ck − 1/4] we arrive at

hmax − 1 ≈ 1.29

(
− 3

2
+

√
3

[
c

ck

− 1

4

])
. (45)
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FIG. 8. Deviation wave amplitude hmax − 1 versus relative wave
speed c/ck − 1 for the solitary-wave solutions to (3) for Go = 1.01,
0.236, and 0.168. The dashed-dotted lines correspond to the estimates
(42) and (45).

Figure 8(a) presents the dependency of hmax − 1 on the relative
speed c/ck − 1 for the results in Fig. 2 corresponding to the
WRIBL model (3) and to silicon oil v50. The direction of
increasing reduced Reynolds number δ along the curves is
indicated by arrows. There is good agreement with relation
(42) in the limit c ≈ ck . A good agreement with relation (45)
is also found in the case of fast waves (c/ck > 6), typical of
the droplike regime observed at small Goucher numbers. In the
drag-inertia regime, however, at large values of δ, the speed
of the waves saturates to the limit ccrit(α̃,β/δ) and no univocal
mapping of the amplitude to the wave speed is observed.

When the droplike regime is affected by inertia for weakly
viscous liquids, the linear relation (45) is no longer applicable
reflecting the influence of the K mode on the droplike waves
and in particular the steepening of the wave fronts [see
Fig. 8(b)].

It is then clear from the above that Eq. (45) provides a
good approximation to the speed-to-amplitude dependence for
solitary waves both in the droplike and the drag-gravity regime.

V. TRAVELING WAVES

In this section, we compare periodic TW solutions of the
WRIBL model (3)—that is, limit cycles of the dynamical
system (14)—with (η = 0) and without viscous dispersion
(η → 0) and of the CM equation (5) (both δ → 0 and η → 0)

for the experimental conditions considered in Refs. [3,5]. We
revisit the description of the TWs branches of solutions given
in Ref. [18] with reference to the characteristics of TWs of
infinite extension, that is, as TWs approach homoclinicity. In
the experimental setups of [3,5] the flow rate was controlled
and maintained at a constant value at the inlet. Amplification
of the ambient noise resulted in a wavy dynamics with waves
traveling with constant shapes and speeds over long distances.
Periodic TWs can be produced experimentally by applying
periodic perturbations at the inlet [6,41]. If the signal remains
periodic in time at each location in space, an integration in time
of the mass balance (3a) shows that the time average of the
flow rate, T −1

∫ T

0 q dt , where T is the period, is conserved
all along the fiber and is equal to its value at the inlet
which gives the condition T −1

∫ T

0 q dt = 1/3 [42]. Periodic
TW solutions of the model equations aiming to describe the
experimental conditions must therefore verify the condition
〈q〉 ≡ k/(2π )

∫ 2π/k

0 q dξ = 1/3, where k again denotes the
wave number.

Let us first consider the experimental conditions corre-
sponding to the very viscous fluid considered by [3] (castor
oil, � = 0.45; see Table I). The bifurcation diagram of TW
solutions of the WRIBL model (3) and of the CM equation
(5) are compared in Fig. 9(a). The parameters in the figure
correspond to regime “c” reported by Kliakhandler et al.
(qN = 21 mg/s and R = 0.25 mm). We have normalized
the wave number k with the reference kRP ≡ √

β/(1 + α̃)
corresponding to the marginal stability condition (real k ad ω)
for linear waves solutions to the CM equation kRP corresponds
to a dimensional wavelength 2π (R̄ + h̄N) proportional to the
diameter of the liquid cylinder.

Figure 9(c) shows corresponding wave profiles with reg-
ularly spaced streamlines in the moving frame, that is,
isocontours of the function ψ = ∫ r

R
ux rdr + c(R2 − r2)/2 at

levels nq0/N , 1 � n � N with N = 10. The surface of the
fiber corresponds to ψ = 0 and the free surface to ψ = q0.
The axial velocity ux is here computed assuming a self-
similar velocity distribution corresponding to the Nusselt base
flow [18]. In the case of the WRIBL model (3), only one
branch of TW solutions has been found emerging from the
marginal linear stability conditions at k ≈ kRP through a Hopf
bifurcation, whereas a secondary branch has also been found
by period doubling for the CM equation (5). We note that
weakly nonlinear TW solutions of (3) travel at a smaller
speed than the TW solutions of the CM equation (5) since
the speed of linear kinematic waves is significantly affected
by the second-order viscous effects as emphasized in Sec. III.
At small wave numbers, TW solutions of the branch emerging
from k ≈ kRP accelerate, become more and more localized,
and terminate into the single-hump solitary waves discussed
in Sec. III. The speed, amplitude, and shape of the solutions
of (3) and (5) are comparable in this limit. Following the
terminology introduced by Chang and co-workers for falling
films on a planar substrate [43,44], we refer to this branch of
solutions as the “γ2 waves.” The branch of solutions to (5)
emerging through period doubling terminates by slow waves
with a shape made of a trough followed by capillary ripples.
Following again [43,44] for planar substrates, we refer to these
TWs as the “γ1 waves.”
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FIG. 9. TW branch of solutions bifurcating from the marginal stability conditions. (a) Normalized speed c/ck as function of the normalized
wave number k/kRP, where kRP = √

β/(1 + α̃) (see text). Solid and dashed lines refer to (3) and to the CM equation (5), respectively.
(b) Maximum thickness hmax (dashed line) and substrate thickness hs (dashed-dotted line) as functions of the normalized wave number k/kRP.
The solid line refers to the relative maximum thickness hmax/hs . Labels 1 refer to model (3), whereas labels 2 refer to the CM equation (5).
(c) Wave profiles and streamlines in the moving frame for solutions indicated by crosses in panel (a); left, solutions to (3); right, solutions to (5).
Parameters correspond to the experimental conditions of [3]: qN = 5.3 mg/s and R = 0.25 mm (Go = 0.138, α̃ = 2.04, δ = 0.01, η = 0.18,
and β� = 2.1).

For the conditions of Fig. 9, the fiber radius is small
compared to the capillary length (Go = 0.138) and the Nusselt
film thickness is comparable to the fiber radius (α̃ = 2.04).
As a consequence, the RP instability mechanism is strong
and TWs have amplitudes comparable to the fiber radius,
which corresponds to the typical situation of the droplike
regime of the solitary waves discussed in Sec. IV A. Yet, a
direct transposition of the results obtained in Sec. IV A to
solitarylike wave trains in the limit k → 0 is not possible
since the reference thickness of the substrates of the soli-
tarylike waves is not constant (recall that in the treatment
of solitary-wave solutions, the constant film thickness far
from the solitary waves was the reference thickness). We
have computed the parameter β�

s based on the substrate
thickness hs (again, “substrate” refers to the base liquid film
on which the waves travel) defined by the position of the
fixed point in the phase space when the corresponding limit
cycle approaches homoclinicity. The maximum of the relative
thickness hmax/hs , 6.5 here, is reached for a value of the local
number β�

s close to its maximum, namely 3.65, as expected
since the waves’ characteristics are piloted by the balance
between the advection by the flow and the RP instability in
the droplike regime. Figure 9(b) shows the evolution of the
maximum thickness, hmax, of the substrate thickness hs and

of the ratio of the two as function of the normalized wave
number k/kRP. At small k, a TW is solitarylike and travels
on a portion of nearly flat substrate of increasing length. The
mass transported by the wave decreases in comparison to the
mass carried by the substrate and hs asymptotes to the Nusselt
film thickness. As a consequence, hs increases as k tends to
zero. This trend is followed by the maximum height hmax. As
a TW gets more and more localized, it tends to have bigger
and bigger size. However, the maximum relative thickness,
hmax/hs , is a rapidly decreasing function of k at small wave
numbers. Indeed, larger substrate thicknesses imply weaker
RP instability mechanisms and stronger advection: β�

s (not
shown) follows a trend similar to hmax/hs . We therefore
obtain a rather paradoxical picture: Despite the weakening
of the RP instability—thus the lowering of hmax/hs—a
TW has its absolute amplitude augmented as k tends to
zero.

For the experiments by Kliakhandler et al., the RP instabil-
ity mechanism is strong while inertia and viscous dispersion
are weak (δ = 0.01, η = 0.18), which explains the good
agreement obtained with the results from the CM equation (5).
However, as the RP instability is weakened by raising the
Goucher number, streamwise viscous dispersion should play
an increasingly important role. We have checked this by
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FIG. 10. TW branch of solutions bifurcating from the marginal stability conditions. Parameters correspond to castor oil (� = 0.45),
qN = 10 mg/s and R = 0.5 mm (δ = 0.01, η = 0.22, α̃ = 1.15, and β� = 1.16). See caption of Fig. 9.

computing the TW solutions of (3) and (5) corresponding to
a flow rate qN = 10 mg/s and a larger radius R = 0.5 mm,
that is, for δ = 0.01, β� = 1.16, and η = 0.22, parameters
that are comparable to those corresponding to the regime
“c” discussed by Kliakhandler et al. (δ = 0.01, β� = 2,1 and
η = 0.18) but with a value of β�∼ two times smaller. Branches
of solutions are compared in Fig. 10(a) in the (k/kRP,c/ck)
plane. γ2 fast TW solutions of (5) are again observed to emerge
from the marginal conditions k ≈ kRP, whereas γ1 solutions
are obtained through a period doubling bifurcation of the γ2

branch. We note again that only the γ2 branch of solutions can
be found for the WRIBL model (3), with no period doubling
bifurcation being detected in this case. We therefore conclude
that the inclusion of second-order viscous effects reduces
the number of wave families and, as a consequence, it may
drastically simplify the complex sequence of bifurcations and
topological structure of associated bifurcation diagrams. In
fact, such a reduction of the number of wave families by the
second-order viscous terms was also evidenced in the planar
case [45].

In comparison to Fig. 9(a), the γ2 branches portrayed in
Fig. 9(a) now deviate significantly from each other even at
small wave numbers. The TW solutions of model (3) have
a larger amplitude than the TW solutions of equation (5) as
indicated in Fig. 10 which compares the wave profiles of waves
of equal wave number. When approaching homoclinicity, this
effect is enhanced, and solutions of (3) travel with a notably
higher speed and larger amplitude than solutions of (5). They
are also preceded by smaller capillary ripples.

Figure 10(b) compares hs and hmax. Again, the substrate
thickness and the maximum thickness have the same trend as k

tend to zero whereas the maximum relative thickness hmax/hs

evolves in the opposite direction. However, a comparison of
Fig. 10(b) to Fig. 9(b) reveals that the maximum reached
by hmax/hs is approximately three times smaller than with
the experimental conditions considered by [3]. Computations
of the local values of the parameters based on the substrate
thickness show that β�

s does not exceed 1.41 and decreases with
k, whereas ηs increases. The local parameters are β�

s = 1.2
and ηs = 0.19 for the wave profile labeled (iii) in Fig. 10 so
that viscous dispersion effects start to be comparable with the
RP instability mechanism. Viscous dispersion amplifies the
RP instability mode by increasing the advection time τa , thus
giving more time for the waves to grow, as already stated in
Sec. III. This unexpected amplification mechanism is here very
significant. The γ2 waves computed with the WRIBL model
having an amplitude that is much larger than with the CM
equation [compare panels (iii) and (vi) in Fig. 10(c)].

For less viscous fluids like Rhodorsil silicon oil v50, one
may expect a more significant effect of inertia and of the K
mode of instability. In Fig. 11(a), we compare the substrate,
maximum, and relative maximum thicknesses, hs , hmax, and
hmax/hs , respectively, corresponding to the TW branch of
solutions to (3). Parameters are chosen to correspond to one of
the experimental conditions considered by [5] (R = 0.23 mm,
qN = 151 mg/s) and to a Goucher number Go = 0.155 close
to the corresponding one for the experiments in Ref. [3]
(Go = 0.137).
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FIG. 11. (a) Maximum thickness hmax (dashed line) and substrate
thickness hs (dashed-dotted line) versus the normalized wave number
k/kRP. The solid line refers to the relative thickness hmax/hs .
(b) Local reduced Reynolds number δs and β�

s versus k/kRP.
Parameters correspond to Rhodorsil v50 silicon oil (� = 5.48),
qN = 151 mg/s, and R = 0.23 mm (Go = 0.155, δ = 3.9, α̃ = 3.0,
and η = 0.36).

As k is lowered and the TWs approach homoclinicity, hs and
hmax grow, a trend similar to what is observed in Figs. 9(b) and
10(b) for a more viscous fluid. However, the relative amplitude
hmax/hs follows a surprising nonmonotonic behavior with an
S-shape curve in the plane (h,k/kRP). This behavior can be
understood by examining the local values of δ and β� based
on the substrate thickness hs and presented in Fig. 11(b). As
k is lowered to zero, β�

s decreases, whereas δs varies in the
opposite direction. As a result, the two curves ultimately cross
and very long waves correspond to a relatively stronger K
instability mode than the initially dominant RP instability. We
thus recover the usual trend observed with the solitary waves
propagating on a planar film: Larger substrates imply larger
amplitudes hmax and also larger relative amplitude hmax/hs

[44,46].
Interestingly, TWs can be found at a wave number k higher

than the critical wave number kc ≈ kRP corresponding to
the marginal stability conditions, in which case the Nusselt
solution is linearly stable. This subcritical bifurcation of TW
solutions from the Nusselt uniform film occurs at small radii

of the fiber, that is, small Goucher number (see Figs. 9 and
10). The subcritical onset of TWs has also been reported in the
recent work by Novbari and Oron [47] based on an “energy
integral method” though these authors did not give a physical
interpretation of this phenomenon. Since the RP instability
mechanism is strong when Go � 1, we can conjecture that
the onset of subcriticality is related to surface tension effects
associated with the azimuthal curvature (hence, this effect is
absent in the planar case). From a thermodynamic viewpoint,
surface forces tend to reduce the free energy of the system
and equilibrium is reached when the contact area between
the liquid and the surrounding gas is minimum. Obviously,
the flow is out of equilibrium and a thermodynamic argument
must be taken with care [48]. Yet, when δ � 1, η � 1, and
Go � 1, the WRIBL model (3) reduces at leading order to
the long-wave Young-Laplace equation and the shape of the
TWs thus only slightly differs from the shape of static drops
on fibers as was shown in Sec. IV A and in Fig. 5.

We have computed the TW solutions to the CM equation (5)
for Go = 0.02 and Go = 0.055, and for α̃ = 0.5 and α̃ = 8.
(We recall that the CM equation corresponds to the inertialess
δ → 0 and dispersionless η → 0 limits of the WRIBL model
for which the set of parameters reduces to α̃ and Go.) The
maximum amplitude hmax, and the interfacial area A of the
waves normalized by the area of the uniform film solution
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FIG. 12. TW solutions to the CM equation (5) for α̃ = 8 and α̃ =
0.5. Thick and thin solid lines refer to Go = 0.02 and Go = 0.055,
respectively. Curves labeled 1 (2) correspond to α̃ = 8 (α̃ = 0.5).
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FIG. 13. Location of the maximum of the normalized wave
number k/kRP as function of the aspect ratio α̃ for the TW solutions
of the CM equation (5). Crosses (squares) correspond to Go = 0.02
(Go = 0.055). The solid line denotes the static drop solution to (B1)
with a normalized area A = 1 (see text and Appendix B ).

of the same volume are displayed in Fig. 12. The subcritical
onset of the TW solutions is accompanied by a normalized
interfacial area lower than unity, and therefore a lowering of
the free-surface energy in comparison to the Nusselt uniform
film solutions, which supports our conjecture that subcriticality
is promoted by capillary effects. We note that the minimum
wave number at which TWs are observed seem to depend only
on α̃ independently of Go. Conversely, at a given value of α̃, the

amplitude of the waves is strongly affected by the value of Go,
a small Goucher number implying larger waves as expected,
since the saturation number β = α̃2/3Go−4/3 is also larger.

In Fig. 13 the maximum of the normalized wave number
k/kRP of the TW solutions of the CM equation is depicted
as function of the aspect ratio α̃ for Go = 0.02 and Go =
0.055. We note again that the location of this local maximum
only weakly depends on the Goucher number. The shape of
the corresponding TW solutions (not shown) is also nearly
symmetrical. We thus conclude that the subcritical behavior
of the TW solutions is not affected by gravity effects at small
values of the Goucher number but is strongly dependent on the
parameter α̃ and therefore on the geometry of the base flow.

By neglecting gravity effects and assuming a wettable
substrate, the shape of a static drop is governed by its length
and volume. Therefore, for a normalized area A set to unity,
the shape of a static drop depends only on the aspect ratio α̃ of
the uniform film solution with the same volume. The solid line
curve in Fig. 13 represents the wave number of static drops with
unit normalized areas. Above this curve, A > 1 and the static
drop solution is not energetically favorable, whereas below it
the static drop solution is favored. Indeed, large drops have a
nearly spherical shape with an interfacial area that is lower than
the uniform film with the same volume, with further lowering
of the interfacial area being forbidden by the presence of the
fiber. For a given amount of liquid, the thicker the uniform
film solution is, the lower the normalized area of the static
drop would be. Therefore, the range of energetically favored
wave numbers of the static drop solution increases with the
aspect ratio α̃ as can be observed from Fig. 13.
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FIG. 14. (Color online) Maps of the different regimes in the Go − α̃ parameter space for fluids of increasing viscosity. The different curves
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We can now deduce two more arguments from Fig. 13 which
support a capillary origin of the subcritical behavior of the
branch of TW solutions that emerge from the Hopf bifurcation
of the uniform film solution: (i) Since all points lie below the
solid curve, TWs only exist when an energetically favorable
static drop solution is available; (ii) the trend of the maximum
of the TW wave number with respect to the aspect ratio α̃ is
similar to the trend of the boundary separating energetically
favored and unfavored static drop solutions.

VI. PHASE DIAGRAM

We are now in a position to give a phase diagram of
the different regimes found for all possible TW solutions
on a film flow down a fiber. The onset of the “droplike”
regime and the “drag-inertia” regime corresponds roughly to
β� ≈ 1 and δ ≈ 1. The “solitonlike” regime arises when the
instability mechanisms are weak (δ � 1 and β� � 1), the film
is thick, α̃ = O(1), and viscous dispersion is strong, η = O(1).
Finally, the “drag-gravity” regime is observed when all other
effects are weak (δ � 1 and β� � 1 and η � 1). Therefore,
a phase diagram can be obtained for a given fluid, thus a
given Kapitza number �, by drawing the curves δ = 1, η = 1,
and β� = 1 in the plane (α̃, Go). Since η = (α̃Go)4/3 and
β� = {α̃ck(α̃)/[Go2(1 + α̃)4]}2/3 are functions of α̃ and the
Goucher number only, the corresponding curves β� = 1 and
η = 1 are independent of the working fluid considered. Thus,
δ = 1 is the only boundary that moves in the plane (α̃, Go)
when � is varied. Figure 14 is a tentative representation of
the phase diagrams for the four working fluids considered
in this study, from weakly viscous fluids like water with a
high Kapitza number, � = 3376, to highly viscous fluids like
silicon oil v1000 corresponding to a small Kapitza number,
� = 0.10. In the case of water, a large overlap region exists
for the droplike and the drag-inertia regime corresponding
to a mutual reinforcement of the two K and RP instabilities.
The solitonlike regime takes over at relatively high viscosities
where the curve δ = 1 moves below the curve η = 1.

VII. CONCLUSIONS AND DISCUSSION

We have presented new results and insights on the char-
acteristics of axisymmetric waves propagating down a fiber.
Our analysis was based on the two-equation model derived
in Ref. [18] using a weighted-residuals approach [Eq. (3)].
The model accounts for all physical effects, namely inertia,
azimuthal curvature, and viscous dispersion and has been
validated in the studies by Ruyer-Quil et al. [18] and Duprat
et al. [6] through direct comparisons to the experiments by
Kliakhandler et al. [3] and Duprat et al. [5,6].

We first focused on isolated waves running on a constant
thickness substrate or solitary waves. The dynamics of the film
seems to be dominated by these structures even when the flow
becomes disordered [3,4]. We examined in detail, via both
asymptotic analysis and through elements from dynamical
systems theory, the shape, speed, and amplitude of the waves
for four fluids of increasing viscosities: water, Rhodorsil
silicon oils v50 and v1000, and the castor oil utilized in the
experiments by [3].

We identified four distinct regimes corresponding to the
competition of the two instability modes, the K and RP
modes, prompted by inertia and azimuthal curvature (the
fiber curvature effectively), respectively, with the viscous
dispersion (i.e., the second-order axial viscous diffusion and
second-order viscous contributions to the tangential stress at
the free surface) and with the advection of the structures by
the flow, which results from the balance between gravity and
viscous drag. Two of these regimes are similar to what is
found in the planar geometry [10]. The drag-gravity regime
corresponds to the predominance of the flow advection over the
instability mechanisms, either when inertia effects are weak,
that is, for δ � 1 or when the azimuthal curvature effects are
nondominant, β� � 1. In both cases it is possible to interpret
the drag-gravity regime as one where the instability growth is
arrested by the flow which determines the amplitude and speed
of the solitary waves as reflected by the asymptotic relations
(36). The drag-inertia regime is observed at large reduced
Reynolds numbers, δ � 1, when the wave characteristics are
determined by the balance of inertia, drag, and gravity. We
have obtained the asymptotic limit of the speed and showed
that the rate of convergence to this limit is governed by
η/δ2 ∝ Re−2.

The droplike regime corresponding to the predominance
of the RP instability mechanism over the flow advection. It
is specific to the cylindrical geometry and is observed for
small fiber radii R compared to the capillary length lc, that
is at small Goucher numbers Go, when the typical time of
growth of the RP instability is greater than the advection
time of a wavy structure, that is, for β� � 1. The maximum
reachable amplitude and speed of the waves in this regime
is governed by the radius R of the fiber and the balance of
gravity and viscous drag. Comparisons to quasistatic drop
solutions of the Laplace-Young equation (B1) sliding down a
fiber with a speed verifying the Landau-Levich-Derjaguin law
(B4) show excellent agreement, even in the case of spherical
drops where the long-wave assumption does not strictly apply.
In this regime, waves have a droplike nearly symmetrical shape
determined by capillary effects. The thickness of the substrate
film on which the drops slide is governed by the balance
of viscosity and capillarity. Droplike TW solution branches
subcritically emerge from the Nusselt uniform film branch. We
have given an explanation for this subcritical onset based on
geometric and thermodynamic arguments and thus completed
its recent investigation in Ref. [47]. This phenomenon arises
from capillary effects and depends only on the aspect ratio α̃

for sufficiently low Goucher numbers.
We have also found a possible fourth regime for very

viscous fluids and thick films (α̃ = O(1)), for which both
K and RP instability mechanisms are weak (δ � 1 and
β� � 1) and viscous dispersion is significant (η = O(1)).
This solitonlike regime corresponds to the balance of the
nonlinearities with the dispersion induced by second-order
viscous effects, with the speed and amplitude of the solitary
waves being functions of the logarithm of the aspect ratio α̃.

Our study of the solitary-wave solutions has been followed
by construction of the TW branches of solutions corresponding
to the experimental conditions for which the average flow rate
is the true control parameter, with the substrate thickness being
determined by the solution itself. If the substrate thickness hs
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and the maximum amplitude hmax grow when TWs approach
homoclinicity, the ratio of the two, hmax/hs , evolves in a
manner that strongly depends on which instability mechanism
is dominant. If the RP instability is dominant, hmax/hs

decreases as the wave number k tends to zero, whereas if the K
mode is dominant hmax/hs has an opposite trend. This picture
can be even more complex since the predominance of the
instability modes can be exchanged by varying the periodicity
of the waves and thus the substrate thickness (cf. Fig. 11). The
selected wave regime depends not only on the properties of
the Nusselt flow at the inlet but also on the periodicity selected
by the system. Indeed, the boundaries separating the different
regimes are not only functions of Go and α̃ but also functions
of the thickness of the substrate, which is determined by
the typical distance separating solitarylike waves. Therefore,
the phase diagrams displayed in Fig. 14 must be taken with
caution. The wave-selection process of a noise-driven falling
film is the complex result of the linear amplification of
inlet perturbations and the downstream nonlinear interaction
mechanisms [22,50,51].

Noteworthy is that we have evidenced a nontrivial am-
plification mechanism of the RP instability when viscous
dispersion becomes strong. This effect has been explained by
a reduction of the wave speed, thus an increase of the typical
time of advection τa of the structures. As the waves have
more time to grow before reaching saturation, their amplitude
becomes larger. Besides, in our previous study on the fiber
problem [18], we have shown that the wave-selection process
of the noise-driven wave dynamics down the fiber is strongly
affected by viscous dispersion. This effect is generally weak
in the experiments devoted to falling films on planar substrate,
where working fluids were often weakly viscous, that is, water
[40,41,52]. In the case of films down fibers, the oils used in the
experiments are much more viscous than water, which explains
that viscous dispersion can be dominant and can promote a
solitonlike regime. In this regime and despite the dissipative
nature of the flow, it is possible to observe the formation of
solitons, that is, solitary waves whose shape and speed are not
altered by collisions with other solitary waves (such waves are
still dissipative but they share several common features with
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FIG. 15. Simulation of the response of the film in the solitonlike regime. Initial conditions consist of two pulselike perturbations of different
amplitudes. Parameters are δ = 0.18, α̃ = 1.9, and η = 1.2 (Rhodorsil silicon oil v1000, qN = 300 mg/s, and R = 0.89 mm). (a)–(d) Snapshots
of the film thickness at increasing times; (e) spatiotemporal diagram. Vertical and horizontal ranges are 1.25 m and 28 s, respectively. Elevations
(depressions) of the free surface are coded in dark (light) gray.
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solitons in conservative systems [53]). We explore such effects
in Fig. 15 which depicts a simulation of the interaction between
two solitons. Chosen parameters correspond to Rhodorsil
silicon oil v1000 and Go = 0.6. Two pulselike perturbations of
different amplitudes are initially placed in the computational
domain (cf. panel a). The excess mass carried by these two
perturbations are then drained behind the two pulses creating
two wave packets. The spatial extent of these packets grows
in time due to the convective instability of the film [5,18].
Panel b shows the interaction of the second pulse with the
mass ejected by the first pulse. The spatiotemporal diagram
shown in panel e indicates that the second pulse first overtakes
this excess mass and next the first pulse without absorbing
them (cf. panels c and d). The coalescence of the two pulses
is accompanied by a phase shift but no notable modifications
of the speeds and amplitudes of the pulses as in Hamiltonian
systems: The initial wave profiles get superimposed as the
waves collide and reappear as the waves move apart. Yet,
a slow evolution of the amplitude and speed of the two
solitons can be observed toward the speed c = 7.5 cm/s and
amplitude hmax = 3.3 mm of the infinite-domain solitary-wave
solution for the given set of parameters (the initially larger
pulse slightly reduces its amplitude, whereas the second pulse

grows by extracting energy from the substrate base film
solution).

Our hope is that this new evidence of existence of solitons
on a liquid film flowing down a fiber, a dissipative system
as opposed to a Hamiltonian one, may motivate a renewed
interest for the experimental investigation of the resulting wave
dynamics and, in particular, on the role of viscous dispersion.
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APPENDIX A: COEFFICIENTS OF THE MODEL (3)

The expressions of the coefficients entering the averaged
momentum balance (3b) consist of ratios of polynomials in
αh and log(1 + αh). Introducing b = 1 + m, where m is the
argument of the different functions, the coefficients read

φ(m) = [3((4 log(b) − 3)b4 + 4b2 − 1)]/[16(b − 1)3], (A1a)

F (m) = 3Fa(m)/[16(b − 1)2φ(m)Fb(m)], (A1b)

Fa(m) = −301b8 + 622b6 − 441b4 + 4 log(b){197b6 − 234b4 + 6 log(b)[16 log(b)b4 − 36b4 + 22b2 + 3]b2 + 78b2 + 4}b2

+ 130b2 − 10, (A1c)

Fb(m) = 17b6 + 12 log(b)[2 log(b)b2 − 3b2 + 2]b4 − 30b4 + 15b2 − 2, (A1d)

G(m) = Ga(m)/[64(b − 1)4φ(m)2Fb(m)], (A1e)

Ga(m) = 9b{4 log(b)[−220b8 + 456b6 − 303b4 + 6 log(b)(61b6 − 69b4 + 4 log(b)(4 log(b)b4

− 12b4 + 7b2 + 2)b2 + 9b2 + 9)b2 + 58b2 + 9]b2 + (b2 − 1)2(153b6 − 145b4 + 53b2 − 1)}, (A1f)

I (m) = 64(b − 1)5φ2/[3Fb(m)], (A1g)

J (m) = 3Ja(m)/[128(b − 1)4φ(m)2Fb(m)], (A1h)

Ja(m) = 9{(490b8 − 205b6 − 235b4 + 73b2 − 3)(b2 − 1)3 + 4b2 log(b)[2b4 log(b)(72 log(b)(2 log(b)b4 − 6b4 + b2 + 6)b4

+(b − 1)(b + 1)(533b6 − 109b4 − 451b2 + 15)) − 3(b2 − 1)2(187b8 − 43b6 − 134b4 + 17b2 + 1)]}, (A1i)

K(m) = 3Ka(m)/[16b3(b − 1)2φFb(m)], (A1j)

Ka(m) = 4b4 log(b)(233b8 − 360b6 + 12 log(b)(12 log(b)b4 − 25b4 + 12b2 + 9)b4 + 54b4 + 88b2 − 15)

− (b2 − 1)2(211b8 − 134b6 − 56b4 + 30b2 − 3), (A1k)

L(m) = La(m)/[8b(b − 1)2φ(m)Fb(m)], (A1l)

La(m) = 4b2 log(b){6 log(b)(12 log(b)b4 − 23b4 + 18b2 + 3)b4 + (b − 1)(b + 1)(95b6 − 79b4 − 7b2 + 3)}
− (b2 − 1)2(82b6 − 77b4 + 4b2 + 3), (A1m)

M(m) = 3 + [24 log(b)b8 − 25b8 + 48b6 − 36b4 + 16b2 − 3]/[2b2Fb(m)]. (A1n)
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We note that in Appendix B in Ref. [18] a small misprint
can be found in the definition of the factor J—a missing factor
of three—that is here corrected.

APPENDIX B: STATIC DROPS ON COATED FIBERS:
COMPUTATIONS AND ASYMPTOTIC ANALYSIS

The shape of an axisymmetric drop sitting on a vertical fiber
has been computed numerically by Kumar and Hartland [54]
and determined analytically by Carroll [55] by neglecting
gravity effects. When the contact angle of the liquid with
the solid fiber vanishes, the analytical solution corresponds
to an unduloid [8,56] that can be written parametrically
using elliptic integrals of the first and second kind. However,
the analytical solution is cumbersome to use and requires
numerical evaluation of the different integrals involved. Hence,
we choose to determine the solution by solving numerically
the Laplace-Young equation parametrically rewritten as [54]

dφ

ds̃
=

(
dφ

ds̃

)
t

+ 1

Rt

− sin φ

r̃
, (B1a)

dr̃

ds̃
= cos φ, and

dx̃

ds̃
= sin φ, (B1b)

where the length scale is the fiber radius, R̄. The radial and axial
coordinates are denoted by r̃ and x̃, respectively. s̃ denotes the
curvilinear arc length along the drop interface whereas φ is
the angular inclination of the drop interface to the radial axis
whereas (dφ/ds)t + 1/Rt denotes the mean curvature at the
top of the drop, s = 0. The set of equations is completed by
the boundary conditions:

φ = π/2, r̃ = Rt, x̃ = 0, at s̃ = 0. (B1c)

The contact area Ã separating the liquid and gas phases and
the volume Ṽ of the drop has been computed by solving

dÃ

ds̃
= 2πr̃ and

dṼ

ds̃
= π

(
r̃2 − R2

t

)
. (B1d)

We have solved system (B1) using the AUTO07P software
[30]. We have adjusted Rt to the coated fiber radius 1 + α̃,
and the drop volume V to the volume of the corresponding
solitary wave, after subtracting the volume of the residual
film.

The speed of the quasistatic drops sliding on a vertical fiber
can be estimated using the Landau-Levich-Derjaguin theory
[57,58]. For this purpose we divide a large amplitude sliding
drop in two separate regions. The “inner” one corresponding
to the thin films at the upper and lower ends of the drop where
viscosity balances capillary forces, and the “outer” one, the
quasistatic drop itself which is governed by the Laplace-Young
equation given above. In the inner region, h � R and the
equation to be solved reduces to (6), whose TW solutions are
governed by

h3

3
(1 + βh′ + h′′′) − c(h − 1) − 1 = 0. (B2)

Following [14], we introduce the inner coordinates X =
c−1/3ξ where c � 1 and get to leading order,

h′′′ = 3(h − 1)/h3, (B3)

the so-called “Bretherton equation” [14,59], originating from
Bretherton’s work on the motion of a long gas bubble in
a capillary tube. In the upper region, the solution of the
Bretherton equation with boundary conditions h = 1, h′ =
h′′ = 0 at X = 0 is monotonic. The numerical solution of
(B3) yields limX→∞ h′′ = 1.34. The speed of the drops is
then selected by asymptotically matching the solutions of (B1)
and (B3) in the upper overlap region between inner and outer
domains. This can be easily done by imposing that the Laplace
pressures corresponding to the two solutions are equal in this
region, giving(

dφ

ds̃

)
t

+ 1

Rt

= 1 + 1.34
Ca2/3

α̃
, (B4)

where Ca = cdropsBo = μc̄drops/σ in the limit α̃ � 1.
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