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For the nonlinear Shrödinger equation with disorder it was found numerically that in some regime of the
parameters Anderson localization is destroyed and subdiffusion takes place for a long time interval. It was argued
that the nonlinear term acts as random noise. In the present work, the properties of this effective noise are
studied numerically. Some assumptions made in earlier work were verified, and fine details were obtained. The
dependence of various quantities on the localization length of the linear problem were computed. A scenario for
the possible breakdown of the theory for a very long time is outlined.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) [1] in a
random potential takes the form of

i∂tψ = H0ψ + β|ψ |2ψ, (1)

where H0 is the linear part with a disordered potential, which
on a lattice takes the form of

H0ψ(x) = −[ψ(x + 1) + ψ(x − 1)] + ε(x)ψ(x). (2)

In this work, it is assumed that ε(x) are identical independent
random variables (i.i.d.) uniformly distributed in the interval
of [−W

2 ,W
2 ].

The NLSE was derived for a variety of physical systems
under some approximations. It was derived in classical optics,
where ψ is the electric field by expanding the index of
refraction in powers of the electric field, keeping only the
leading nonlinear term [2]. For Bose-Einstein condensates
(BEC), the NLSE is a mean-field approximation where the
term proportional to the density β|ψ |2 approximates the
interaction between the atoms. In this field, the NLSE is
known as the Gross-Pitaevskii equation (GPE) [3–7]. It is
well known that in 1D in the presence of a random potential
with probability one, all the states are exponentially localized
[8–10]. Consequently, diffusion is suppressed and in particular
a wavepacket that is initially localized will not spread to
infinity. This is the phenomenon of Anderson localization
[11]. The problem defined by Eq. (1) is relevant for experi-
ments in nonlinear optics, for example, disordered photonic
lattices [12,13], where Anderson localization was found in
the presence of nonlinear effects as well as experiments on
BECs in disordered optical lattices [14–23]. The interplay
between disorder and nonlinear effects leads to new interesting
physics [20,21,24–27]. In spite of the extensive research, many
fundamental problems are still open [28]. In particular, there
is disagreement between the analytical and the numerical
results [29–37].

A natural question is whether a wave packet that is initially
localized in space will indefinitely spread for dynamics con-
trolled by Eq. (1). A simple argument indicates that spreading
will be suppressed by randomness. If unlimited spreading takes
place, the amplitude of the wave function will decay since
the l2 norm is conserved. Consequently, the nonlinear term
will become negligible and Anderson localization will take
place as a result of the randomness as conjectured by Fröhlich

et al. [38]. Contrary to this intuition, based on the smallness
of the nonlinear term resulting from the spread of the wave
function, it is claimed that for the kicked-rotor a nonlinear
term leads to delocalization if it is strong enough [39]. It is
also argued that the same mechanism results in delocalization
for the model Eq. (1) with sufficiently large β, while, for
weak nonlinearity, localization takes place [39,40]. Recently,
it was rigorously shown that the initial wavepacket cannot
spread so that its amplitude vanishes at infinite time, for
large enough β [41]. It does not contradict spreading of a
fraction of the wavefunction. Indeed, subdiffusion was found
in numerical experiments [39,40,42–44]. It was also argued
that nonlinearity may enhance discrete breathers [26,27]. In
conclusion, it is not clear what is the long time behavior of a
wave packet that is initially localized, if both nonlinearity and
disorder are present [28]. The major difficulty in numerical
resolution of this question is integration of Eq. (1) to long
time. Most researchers who run numerical simulations use
a split-step method for integration; however, it is impossible
to achieve convergence for long times, and, therefore, some
heuristic arguments assuming that the numerical errors do not
affect the results qualitatively are utilized [39,43]. Moreover,
the problem is chaotic; therefore, the trajectories that are found
are not the actual trajectories and it is argued that it does not
affect the statistical results.

Recent rigorous arguments [29,30] in the limit of strong
disorder combined with perturbation theory [31,32,45] indi-
cate that it is unlikely that subdiffusion persists forever and the
asymptotic growth is at most logarithmic in time. Also other
recent works based on a scaling theory [33] and phase space
considerations [36,46] lead to similar indications. It is clear
that there is a substantial regime in time and parameters where
subdiffusion may hold, and the purpose of the present work is
to analyze the dynamics in this regime.

Our analysis based on Refs. [43,44] is conveniently ex-
pressed, expanding the wavefunction

ψ(x,t) =
∑

n

cn(t)un(x)e−iEnt , (3)

where un are the eigenfunctions of H0 typically falling off
exponentially:

un(x) ≈ e−|xn−x|/ξ
√

ξ
ϕ(x), (4)
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where ϕ(x) is a random function of order unity where ξ is
the localization length. The localization center is xn. The cn(t)
satisfy

i∂t cn(t) = β
∑

m1,m2,m3

V m1,m2,m3
n ei(En+Em1 −Em2 −Em3 )t c∗

m1
cm2cm3

≡ Fn(t) (5)

and

V m1,m2,m3
n =

∑
x

un(x)um1 (x)um2 (x)um3 (x). (6)

In Refs. [43,44], it is argued that Fn(t) behaves as random noise
with rapidly decaying correlation functions. A major purpose
of the present work is to study the statistical properties of
the Fn and to show how these are related to the spreading
of the wavepacket found in previous works. The implications
of this statistical behavior are analyzed in Sec. II and tested
numerically in Sec. III. A scenario for the breakdown of the
effective noise theory is outlined in Sec. IV. The results are
summarized and open question are presented in Sec. V.

II. THE EFFECTIVE NOISE THEORY

In this section, a theory for the spreading of wavepackets
for the NLSE will be developed. It follows the theory of SKFF
(Skokos, Krimer, Komineas, and Flach [43,44]). It assumes
spreading from the vicinity of the initial localized wave packet
where the density is large to the regions where it is small.
We denote by m1,m2,m3 the states in the region where the
amplitude of the states is typically large and by n a state where
the amplitude is small, in particular–

|cm1 |2 ≈ |cm2 |2 ≈ |cm3 |2 ≈ ρ, (7)

where ρ is the density where it is large, while

|cn|2 � ρ. (8)

It is assumed that the RHS of Eq. (5) is a random function
denoted by Fn(t). We turn to estimate its typical behavior. First,
we note that the overlap sums of Eq. (6) are random functions.
Within the scaling theory for localization, one expects that
for sufficiently weak disorder their various moments are
determined by the localization length. For the case where all
indices (n,m1,m2,m3) are identical, the average is just the
inverse participation ratio that is proportional to 1/ξ . For the
general case, the scaling theory suggests it is a function only
of ξ . Experience with scaling theories leads us to assume it is
a power of ξ . Therefore, we try the form〈

V m1,m2,m3
n

〉 = C
(1)
0 ξ−η1 , (9)

and for the second moment, we try to fit to〈∣∣V m1,m2,m3
n

∣∣2〉 = C
(2)
0 ξ−2η2 . (10)

Here, C
(1)
0 and C

(2)
0 are constants and 〈..〉 is an average

over realizations. We note that when the mi and n are all
different, the average of the overlap integrals vanishes. We
should note that the localization length ξ is actually energy
dependent. For weak disorder in the center of the band,
ξ ∼ W−2 [47,48], this relation holds for most energies in the
energy band [47]. In what follows, we will estimate the values

of η1 and η2 for various disorder strengths and for various sites
(xn,xm1 ,xm2 ,xm3 ), which are within the localization length.
Otherwise, the sum of Eq. (6) is negligible. It is not obvious
that both Eqs. (9) and (10) will scale in this way, although it
is expected from the scaling theory of localization that this
is the case for sufficiently weak disorder, namely large ξ . We
demonstrate that this is indeed the case and there is a typical
magnitude of the value of the overlap sum of Eq. (6), and it
scales as

V = C1ξ
−η, (11)

where C1 is a constant. Here and in what follows, we denote by
ξ the localization length in the center of the band. In Sec. III B,
it will be demostrated that η ≈ 1.

Because of localization, the V m1,m2,m3
n of Eq. (6) take

appreciable values only if the localization centers of the states
n,m1,m2,m3 are within length scale of order ξ . Therefore, the
sum on the right-hand side of Eq. (5) consists of the order of ξ 3

terms, at least for weak disorder. These are rapidly oscillating
in time, and it is a nonlinear function of the cmi

(t). Therefore, it
is suggestive that it can be considered random. This assumption
will be tested in detail in Sec. III A. The right-hand side of
Eq. (5) is assumed to take the form [44]

Fn = VPβρ3/2fn(t) = C1

ξη
Pβρ3/2fn(t), (12)

where C1 is a constant and

P = A0β
γ ξαρ (13)

is proportional to the number of “resonant modes,” namely
ones that strongly affect the dynamics of the state n. Although
it is reasonable to assume that the number of resonant modes
is proportional to the density ρ, a strong argument for it is
missing; nevertheless, it is consistent with all numerical results
[43,44]. We assume here the form of Eq. (13), where A0 is a
constant independent of β and ξ . In the end of this section,
we argue that within these assumptions γ = 1 in agreement
with the assumption of [43,44]. The value of α is estimated
numerically (see Sec. III C). Under these assumptions, Eq. (5)
reduces to

i∂t cn(t) = Fn(t). (14)

With Fn(t) being a random variable rather than the explicit sum
in Eq. (5), and assuming Fn(t) can be considered random with
rapidly decaying correlations, in particular, we assume that
the distribution function of fn(t) is stationary, the assumption
tested in Sec. III A, and the integral of correlation function
C(t ′) = 〈f (0)f (t ′)〉, where 〈..〉 is the average over the random
potential, converges. Integration results in

cn(t) = −i
C1

ξη
Pβρ3/2

∫ t

0
dt ′fn(t ′). (15)

Integrating over a time interval that is sufficiently large yields

〈|cn(t)|2〉 = A1

ξ 2η
P2β2ρ3t = A1A

2
0β

2(γ+1)ρ5ξ 2α−2ηt, (16)

where A1 is a constant. The value of 〈|cn(t)|2〉 increases with
time and equilibrium is achieved when it takes the value ρ.
Transitions between states of the type of n (states with small
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amplitude) are ignored in this model. The required time for
equilibration is

T = 1

Bξ−2ρ4
, (17)

where we define

B = A1A
2
0β

2(1+γ )ξ 2α−2η+2. (18)

The equilibration time T varies slowly compared to t [see
discussion after (24)]. In other words, there is a separation of
time scales. On the time scale T , the system seems to reach
equilibrium by a diffusion process, and the density becomes
constant in a region that includes the site n. Hence, on this
time scale it seems to equilibrate. On longer time scales, there
is an even longer equilibration time scale, and the resulting
diffusion is even weaker. The consistency of the argument
results in the fact that dT

dt
→ 0 for t → ∞. Therefore, it is

assumed that the variations of ρ and T are slow on the scale of
t . This assumption is checked in the end of this section. The
resulting diffusion coefficient is

D = C
ξ 2

T
= CBρ4, (19)

where C is a constant. The assumption is that the nonlinear
term generates a random walk with the characteristic steps
T and ξ in time and space. At time scales t  T , there is
diffusion and

M2 = Dt, (20)

where M1 = ∑
x|ψ(x,t)|2 and the variance M2 = ∑

(x −
M1)2|ψ(x,t)|2 are the first and second moments. Since the
second moment M2 is inversely proportional to ρ2, one finds

1

ρ2
= A2CBρ4t, (21)

where A2 is a constant. Therefore,

1

ρ2
= (A2CBt)1/3. (22)

The second moment satisfies

M2 = 1

A
2/3
2

(CBt)1/3 (23)

and

T = 1

Bξ−2ρ4
= C2/3A

2/3
2 ξ 2t2/3

B1/3
= Cξ 2

M2
t. (24)

The density ρ and the equilibration time T change with
time as ρ ∼ t−

1
3 and T ∼ t

2
3 . Therefore, for dρ

dt
∼ t−

4
3 and

dT
dt

∼ t−
1
3 . First, note that in the long time limit t → ∞, both

derivatives vanish and dρ

dt
� dT

dt
. Therefore, for the derivation

of the equilibration time ρ can be considered constant and on
long scales of spreading T and D can be considered constant.
Therefore, the theory is consistent for large t . Since in the
NLSE β appears only via the combination β|ψ(x)|2, it can
appear in Eqs. (18) and (19) only in the power 4 (that is in the
combination β4ρ4); therefore, γ = 1.

In the next section this theory will be tested numerically.

III. NUMERICAL TESTS FOR THE EFFECTIVE
NOISE THEORY

In this section, the theory presented in Sec. II is tested
numerically. In Sec. III A the distribution of the Fn(t) is
computed, in Sec. III B the first moments of the overlap sums
are calculated while in Sec. III C the dependence of the second
moment M2 of Eq. (23) on ξ is evaluated.

A. Statistical properties of Fn(t)

In this subsection, the statistical distribution of Fn(t) is
explored. For this purpose, the time-dependent NLSE Eq. (1)
was solved numerically for a finite lattice of N sites, for NR

realizations of the random potential ε(x) and for W = 4. The
wavefunction ψ(x,t) at time t was calculated for a single site
excitation, namely the initial condition ψ(x,0) = δx,0 using
the split step method [44,49]. The details of the numerical
calculation are presented in the Appendix. The expansion
Eq. (3) of ψ in terms of eigenfunctions of the linear problem
Eq. (2) yields

i∂t cn(t) =
∑

x

β|ψ(x,t)|2ψ(x,t)un(x)eitEn ≡ Fn(t). (25)

This equation was used to calculate Fn(t) numerically for a
lattice of N sites. We sampled Fn(t) for various times and
verified that their distribution is stationary. In order to check
whether Fn(t) can be considered as noise, we calculated its
power spectrum and autocorrelation function. First, we present
results obtained for times up to t = 105 for β = 1, W = 4
(ξ ≈ 6.4), N = 1024 for a single site excitation at t = 0.
The calculation was preformed for NR = 50 realizations. For
nearly all these realizations it was found that the second
moment grows as M2 ∝ t1/3 in agreement with the results
of Refs. [40,43,44]. We focus first on such realizations and
present the results for a specific realization in Fig. 1.

The power spectrum is

Sn(ω) = |F̂n(ω)|2, (26)

where

F̂n(ω) = lim
t̃→∞

1√
t̃

∫ t̃

0
Fn(t)e(−iωt)dt. (27)

It is plotted for some realization in Fig. 1(a) for n = 0. It
exhibits a peak around |ω0| ≈ 1.72, and its width is �ω ≈ 0.1.
The finite width is characteristic of noise. Also, the Fourier
transform of

F̃n(t) = Fn(t)e−iω0t (28)

will exhibit a wide power spectrum near ω = 0, with the
width of �ω that is characteristic of noise. The autocorrelation
function of Fn(t) is

Cn(τ ) = Fn(t)F ∗
n (t + τ ), (29)

where bar denotes time average g(t) ≡ limt̃→∞ 1
t̃

∫ t̃

0 g(t)dt .
For F̃n(t), we define the autocorrelation function C̃n(τ ) that

is just Eq. (29) with Fn(t) replaced by F̃n(t). In Fig. 1(b)
we plot C(R)

n = Re[Cn(τ )] for n = 0 while in Fig. 1(c) the
zoomed version is plotted. Note an oscillation of frequency
of the order |ω0| ≈ 1.72 that is superimposed on the function.
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FIG. 1. (Color online) The correlation Cn(t) and power spectrum Sn(ω) of Fn(t) for W = 4, β = 1, N = 1024, t = 105,n = 0. (a) The

Power Spectrum S0(ω), (b) The autocorrelation function C
(R)
0 (τ ), (c) The zoomed C

(R)
0 (τ ), (d) The autocorrelation function ˜

C
(R)
0 (τ ), (e) the

zoomed ˜
C

(R)
0 (τ ), (f) the zoomed ˜

C
(I )
0 (τ ) [see text].

In the corresponding plots of C̃(R)
n = Re[C̃n(τ )], presented in

Figs. 1(d) and 1(e), one does not find this oscillation. Behavior
of the imaginary part of the autocorrelation function C̃(I )

n =

Im[C̃n(τ )] is similar [see Fig. 1(f)]. All results presented in
Fig. 1 are for n = 0. Similar results were found also for n = 3
and n = 15. We see that the autocorrelation function decays by
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FIG. 2. (Color online) The distribution of Y = F̃ (R)
n (kta) where k = (1,2,...K), K = 500, ta = 200, t = 105 and the bin size 0.0596.

(a) For the same realization described in the legend of Fig. 1. (b) The distribution of values found for all NR = 50 realizations.

2 orders of magnitude on the scale of �τ ≈ 140 (of the order of
2π/�ω ∼ 65). Therefore, the correlation of F̃n(t) behaves as
the one of noise with short time correlations. For realizations
where the growth of the second moment M2 ∼ t1/3 was not
found, the power spectrum was found to be substantially
narrower by 2 orders of magnitude. The calculations were
repeated for β = 2, where similar results were found, and
for β = 0.5. For the latter case, the number of realizations
where it was found that the second moment grows like t1/3

is substantially smaller than for β = 1 or β = 2. In all cases
where the width of the power spectrum was small the typical
growth of the second moment M2 ∼ t1/3 was not found and
vice versa. This demonstrates the strong relation between the
effective noise behavior and the diffusive growth of the second
moment. It also demonstrates the different behavior of various
realizations of the randomness.

We turn now to test the distribution of F̃n(t). For this
purpose we sample F̃n(t) for a sequence of points separated
by ta > �τ , that is for points where the values of F̃n(t)
are uncorrelated, and compute the distribution of F̃n(kta) for
k = (1,2,...K). The results are presented in Fig. 2 for t = 105,
ta = 200, K = 500.

B. Estimate of scaling of the matrix elements V m1,m2,m3
n with ξ

The overlap sum V m1,m2,m3
n is a random function. In this

subsection the scaling of its typical values with the maximal
localization length [47]

ξ ≈ 96

W 2
(30)

is evaluated. This relation holds in the limit of weak disorder.
In the numerical calculations presented in this paper, we
vary W as the control parameter and the localization length
is calculated from Eq. (30). The estimate of Eq. (30) is a
reasonable approximation for W < 5.5 or ξ > 3.15 as was
checked explicitly (and used) in this subsection. We note
that the V m1,m2,m3

n take values of substantial magnitude when
all the centers of localization of the states un,um1 ,um2 ,um3

are within a distance ξ. Only such overlap sums are con-
sidered. The average of the overlap sums over realizations
vanishes unless (n,m1,m2,m3) consists of two pairs of identical
values, n = m1 and m2 = m3 and all permutations. We
calculated 〈|V m1,m2,m3

n |2〉 and 〈V m1,m2,m3
n 〉 (where 〈·〉 denotes

average over NR = 5000 realizations), while xn,xm1 ,xm2 ,xm3

are fixed fractions of ξ and ξ (and W ) are varied. Assum-
ing 〈V m1,m2,m3

n 〉 ∼ ξ−η1 and 〈|V m1,m2,m3
n |2〉 ∼ ξ−2η2 while the

variance 〈(V m1,m2,m3
n )2〉 − 〈V m1,m2,m3

n 〉2 scales as ξ−2η3 , we
estimate these exponents from figures like Fig. 3. We conclude
that η1 ≈ η2 ≈ η3 ≈ 1. Therefore, the typical magnitude of
the random variable V m1,m2,m3

n scales as Eq. (11) with η = 1.
Although this result is expected from the scaling theory of

2 2.5 3 3.5 4 4.5 5 5.5
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

x=ln(ξ)

y

 

(b)

(r)

(g)

FIG. 3. (Color online) A log-log plot of (b) y = ln〈V 0,
ξ
3 ,

ξ
3

0 〉,
(r) y = ln〈(V 0,

ξ
3 ,

ξ
3

0 )2〉 and (g) y = ln(〈(V 0,
ξ
3 ,

ξ
3

0 )2〉 − 〈V 0,
ξ
3 ,

ξ
3

0 〉2) as
a function of x = ln(ξ ), for the parameters N = 512, NR = 5000.
The localization length varies in the interval 11 < ξ < 103. The
least square fit leads to η1 = 1.039 ,η2 = 0.958 and η3 = 0.853
respectively. The symbols denote the numerical results and the lines
the least square fit.
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localization, it is not obvious a priori. In particular, it is
not clear what is the effect of cancellations of various terms
resulting of opposite signs.

For ξ � 11 we could not obtain smooth curves of
V m1,m2,m3

n . The reason is that the centers of localization xmi

are equal to the integer part of ξ/a, where a is fixed and ξ

varies. For small ξ , the jumps in V m1,m2,m3
n are significant,

since ξ does not cover many integers. The results obtained
indicate that scaling of the overlap sums as ξ−1 holds also for
values ξ < 11. In summary, for a crude evaluation one can
assume Eq. (11) holds with η = 1.

C. The scaling of the second moment M2 with ξ

In this subsection, we will estimate the exponent α defined
in Eq. (13). For this purpose we write Eq. (23) in the form

M2 = At
1
3 (31)

with

A = A4ξ
ν, (32)

where ν = 2
3 (α − η + 1) [see Eq. (18)], while A4 is a constant

independent of ξ . We used the split-step method to obtain
ψ(x,t) for different realizations (NR = 30) and computed ψ

until t = 106. Only realizations that satisfied M2 ∼ t
1
3 at some

stage of the calculation were taken into account. This was the
case for nearly all the NR realizations for ξ > 7 and β < 4. In
the other regimes, it was not satisfied for a significant number
of realizations. Fixing β, we estimate ν from plots like Fig. 4.
For 1 < β < 3.5 using the fact that η ≈ 1, we find that for
1.235 < ν < 1.71 for various values of β. The exponent α of
Eq. (13) takes the values 1.85 < α < 2.56. We note the strong
uncertainty of ν and α. These results indicate that A∼ ξν . It is
an estimate of the order of magnitude but not a verification of
this power law.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

6

x=ln(ξ)

y

FIG. 4. (Color online) The dependence of A defined by Eqs. (31)
and (32) for β = 1 (blue circles) and for β = 3 (red squares) on ξ .
We denote y = ln(A) and x = ln(ξ ). From the least-square fit we
find ν = 1.684 for β = 1 (blue) and ν = 1.395 for β = 3 (red).

IV. POSSIBILITY FOR THE BREAKDOWN OF THE
EFFECTIVE NOISE THEORY

For the effective noise theory, it is essential that Fn(t) can
be considered random. For this the number of terms in the
sum of Eq. (5) that resonate with n should be large; namely,
P should not be too small. The density ρ and, therefore, P
decrease with time. If P is very small, there may be a situation
that as a result of fluctuations, the sum of Eq. (5) is dominated
just by one term and therefore it is effectively quasiperiodic.
If spreading is a result of the randomness of Fn, it will stop
then. Let us first estimate the time scale required to spread so
that P ≈ 1. For this purpose, let us write Eq. (13) in the form

P ≈ Aξαρ, (33)

where A = A0β. Since ρ decreases with time t , there is a time
scale when P will become very small. Assuming the constants
are of the order of unity, using Eqs. (18) and (21), the time t∗
when P ≈ 1 satisfies

ξ 2α 1

[ξ 2(α−η+1)t∗]
1
3

≈ 1 (34)

or

ξ ( 4
3 α+ 2

3 (η−1)) ≈ t∗
1
3
, (35)

resulting in

t∗ ≈ ξ [4α+2(η−1)] (36)

for 1.85 < α < 2.56 and η = 1,

t∗ ≈ ξ δ, (37)

where 7.4 < δ < 10.24
The time required for P � 1, when the effective noise

theory may fail, is even larger.

V. SUMMARY AND CONCLUSIONS

The effective noise theory was introduced in Ref. [39] and
was further developed in Refs. [40,43,44]. It was found to
be consistent with the numerical results in some regimes.
In Sec. II our interpretation of this theory was presented. In
Sec. III the details of this theory were tested numerically. In
particular, the distribution of the effective driving Fn defined
in Eq. (5) was studied. The correlation function was calculated
as well and was found to be characterized by a wide power
spectrum and rapid decay with time. These were found only
for realizations where subdiffusion with the second moment
growing as t1/3 is found, indicating the relation between this
spreading and the approximation of Fn as effective noise.
These results are purely numerical and support the effective
noise theory. An obvious challenge is to obtain these results
analytically. We determined that the behavior A ≈ ξν [see
Eq. (32)], with 1.235 < ν < 1.71 is a reasonable approxima-
tion. From this, we conclude that the dependence of P on ξ

in Eq. (13) is controlled by the exponent 1.85 < α < 2.56.
Although ξ varied over one decade and the evaluation of the
exponent is crude, we believe it may give the correct order of
magnitude.

We turn to speculate how the effective noise theory may
break down for a long time scale. Assuming the effective noise

046218-6
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theory holds for long time, P of Eq. (13) becomes extremely
small, consequently the number of terms in the sum of Eq. (5)
that contribute significantly may become of order unity and Fn

may turn to be quasiperiodic rather than random. Therefore,
there is a time scale t∗ given by the estimate of Eq. (35) so
that for t > t∗ the effective noise theory is invalid. For such
long time, a sequence of peaks may replace the continuous
region of the power spectrum in Fig. 1(a). If localization
is destroyed by the effective noise Fn, it is reasonable to
expect localization or spreading slower than subdiffusion (say
logarithmic in time) on time scale t∗ and larger. Existence of
such a time scale is consistent with Refs. [29–31,33,36,45].
The scaling arguments used here should improve when the
localization length ξ becomes large but then t∗ becomes
extremely large and it is impossible to explore numerically
the scenario for the breakdown of the effective noise theory
outlined in Sec. IV. Such a scenario may enable us to reconcile
the numerical results where subdiffusion is found [28,40–44]
with the analytical results predicting asymptotic spreading that
is at most logarithmic [28–31]. These points should be subject
of future research.
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APPENDIX: SOME DETAILS OF THE NUMERICAL
CALCULATIONS

We used the split-step method [44,49] to obtain the time
evolution starting from the initial wavefunction. The lattice
size N used is 512 or 1024. The reason we used the relativity
large lattice is because we wanted to avoid boundary effects,
namely we required the wavefunction amplitude to be smaller
than 10−12 on the boundary. The time step used in the split-
step method is dt = 0.1. We used this time step because it
is small enough relative to the time scales in the system at
hand and large enough in order to complete the numerical
calculation in reasonable time. It is the smallest time step
used in Refs. [43,44]. The initial condition used is a single-
site excitation in the middle of the lattice denoted by xn = 0;
namely, ψ(x,t = 0) = δx,0.
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