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Resonance drifts of spiral waves on media of periodic excitability
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Spiral waves subjected to an external periodic force exhibit very rich spatiotemporal dynamics including
resonance attractors. In previous research, the modulation was mainly described as additional induced flow in the
system, and a theory has been developed based on reducing the spiral wave dynamics to a low-dimensional map.
In this paper, another perspective for study of the resonance attractors is suggested. The periodic modulation of
excitability is directly described by the time dependence of the parameters. This approach gives us nice results
that are well consistent with the experiments. Additionally, when we force the spiral with a frequency larger than
its intrinsic frequency, another branch of spiral meandering with qualitatively different properties is observed.
Full resonances are also clearly indicated. Furthermore, a kinetic model for spiral movement suggested in our
previous paper is applied to this case. The theoretical results are in good quantitative agreement with numerical
simulations. The model could be widely used in different excitable systems.
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I. INTRODUCTION

Spiral waves are encountered in many kinds of excitable
media; examples include the Belousov-Zhabotinsky (BZ)
reaction [1,2], aggregating slime mold [3], the catalytic
oxidation of CO on Pt [4], and effects in cardiac tissue
[5–7]. They display many drift behaviors with different
external fields, i.e., illumination [8], electric fields [9–14],
and magnetic fields [15]. In particular, under external forcing
by periodic light pulses and feedback-controlled sequences
of light pulses, spiral wave entrainment and resonance can
be observed [16,17]. In the feedback-controlled experiment,
a spiral wave induced in the light-sensitive BZ system was
disturbed by a sequence of short light pulses, which were
applied immediately or after some time delay τ , corresponding
to the passage of the wave front through a prechosen measuring
point. Then the trajectory of the spiral wave tip represents
a closed circular orbit around the measuring point [18].
Subsequent studies both experimental and theoretical revealed
that the resonance attractor exhibits a complex structure with
multiple orbits [19–21].

Actually, before the whole set of resonance attractors was
observed in experiment [19], the above phenomenon had been
theoretically studied [20]. Following the basic ideas proposed
by Karma and Zykov [20], the theoretical analysis and
numerical simulation are done mainly with the two-component
Oregonator model, which is widely used to simulate the
light-sensitive version of the BZ reaction:

∂u

∂t
= ∇2u + 1

ε

[
u − u2 − (f v + φ)

u − q

u + q

]
,

(1)
∂v

∂t
= u − v.

The term φ = φ(t) describes the additional bromide pro-
duction that is induced by the external illumination of the
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system. When the function φ(t) presents as a sinusoidal
form, this dynamic system will induce the spiral wave to
undergo resonance drift. In Refs. [20,22], the authors found
the dependence of the attractor radius R on the time delay τ

by a kinematical analysis.
This consideration is based on the light-sensitive BZ

system. The light pulses result in additional induced flow in the
system and that can be described by the function φ(t) in Eq. (1).
Actually, just as pointed out by Zykov et al. [17], the additional
flow of the inhibitor Br− will suppress the excitability of the
medium (for instance, it decrease the propagation velocity of
the excitation waves). So the illumination will finally affect the
excitability of the medium. Thus the above experiments and
phenomena could also be described by periodic disturbance of
the excitability of the medium. The modulation of excitability
provides us a more general perspective for investigating the
effects of external forces. It has already been shown that
parametric modulation of the excitability can induce very rich
spatiotemporal dynamics of spiral waves. This approach could
be applied to different kinds of excitable systems in addition
to the light-sensitive BZ reaction.

In models of spiral wave dynamics, there are usually several
parameters that govern the dynamics of the system. Although
almost all the parameters are related to the medium excitability,
the key parameter is the rate parameter ε. Thus in this paper, we
suggest that a periodic change of the parameter ε can produce
the same phenomenon of resonant drifting of the spiral wave.
In fact, we have done the simulation with the Oregonator model
given by Eq. (1). With periodic modulation of the parameter
ε, the spiral wave given by the Oregonator model shows the
same drifting behavior as that we present in this paper with
the Barkley model. In the following discussion, to investigate
how periodic modulation of the excitability of the medium can
generate the same resonance drift of spiral waves, we use the
Barkley model given by Eq. (2) to stimulate the experiment.
The main reason is that, for the Barkley model, we already
know the dependence of the core radius Rc and rotation period
Pc on the parameter ε. Thus we can use the kinematic model
to describe the drift dynamics.
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Thus, in this paper, the sequence of short light pulses is
described by corresponding changes of the parameter ε in the
Barkley model. It may supply another reasonable explanation
for the entrainment attractors. First, we reproduce all sets of
resonance attractors by feedback control of the excitability of
the system as was done in the experiment. We can see that
the final radius of the attractor is determined by the position
of the measuring point and the time delay τ . We suggest that
it is actually related to the period of the perturbations. Thus,
second, in Sec. III, we try to drive the spiral wave by disturbing
the excitability of the medium periodically with square waves
with a certain time delay and with sinusoidal waves. In the
case of parametric modulation by square waves, the results
are qualitatively the same as those obtained in experiment.
Then we extend the external force to a sinusoidal parametric
modulation, and the system shows similar resonance drift
behavior. Based on our previous work [23,24], we know
that the intrinsic period and radius of spiral stable rotation
are all determined by the parameters. A temporal change of
parameters will let the spiral adjust between different stable
circulations and induce spiral drift behavior. In Sec. IV, the
corresponding kinematics model also displays these results
successfully. Some concluding remarks are given in Sec. V.

II. REPRODUCTION OF RESONANCE DRIFT WITH
FEEDBACK CONTROL ON EXCITABILITY

In this paper, we use the Barkley model for all the
simulations:

∂u

∂t
= ∇2u + 1

ε
u(1 − u)

(
u − v + b

a

)
,

(2)
∂v

∂t
= u − v.

The parameter ε affects the excitability of the system.
In this and the next section our simulations are under the

parameter set a = 0.55, b = 0.05, and ε = 0.02, which
correspond to a sparse spiral wave, and we use a spiral
wave rotating in the clockwise direction. The equations were
investigated by an explicit Euler method with no-flux boundary
conditions on a grid of 128 × 128 elements with �t =
0.002 44 s and L = 40. In this case, without being disturbed,
the spiral wave is rigidly rotating, the rotation period is about
5.39 s (2209�t), and the diameter of the core is 5.16 grid
lengths.

Following the processes of the experiment, we chose the
point (60,60) as the measuring point previously, which is about
20 grid lengths away from the spiral tip. Whenever the wave
front went through this point or after some time delay τ ,
we changed the value of the parameter ε to 0.022 or 0.018
(corresponding to being disturbed positively or negatively)
with 0.61 s (250�t) duration. This feedback control gives a
repetitive force on the excitability. Like the phenomena shown
in the experiment, the parametric modulation induced a spiral
wave drifting along a circular orbit centered at the measuring
point [as shown in Fig. 1(b)]. In addition, with variation of
the delay time, the size of the circular orbit was also varying.
Figure 2 displays the relationship between the radius of the

(a) (b)

FIG. 1. Trajectories of the spiral wave tip (thin lines). (a) The
initial spiral wave is rigidly rotating without being disturbed. The
trajectory of its tip is a rigid circle. (b) When the spiral wave is under
parametric modulation, it begins to meander along a circular pathway
centered at the measuring point, which is marked by a cross. Here ε

switches between 0.02 and 0.022, and the delay time is 0.

circular orbit R and the delay time τ . Qualitatively, it is the
same as the result of the experiment.

A larger radius can be reached in two ways. One is by
increase of the initial distance between the spiral wave tip
and the measuring point d, as shown in Fig. 3. The other
is by a switch in the modulation condition as was done in
the experiment [19]. In Fig. 4(b), we show the trajectory
of the spiral wave under the following feedback control: (1)
negative disturbance, τ = 0; (2) positive disturbance, τ =
750 time steps; (3) positive disturbance, τ = 0; (4) negative
disturbance, τ = 750 time steps; (5) maintenance of the control
of step 1. Each of steps 1–4 lasts for 30 000 time steps.

Obviously, the final radius of the resonance attractor is
determined both by the position of the measuring point and
by the time delay. But what is the crucial factor in making
the radius different? We found that, when the spiral core
drifts along a circular orbit stably, the period of the parameter
modulation is also fixed (Fig. 5), and the period matches the
only value of the radius (as shown in Fig. 6).

So we suspect that it is the period of stimulations that
determines the radius R of the circular orbit, and the delay time
τ only affects the choice of the adaptive period. We also can use
external stimulation with a fixed period to drive the meandering

FIG. 2. variation of the radius with the delay time; the sign of
the parameter changes. R vs τ plotted as squares (triangles) for
positive (negative) disturbance, when ε is changed to 0.022 (0.018).
The qualitative properties of the spiral drift are well consistent with
the experiment.
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(a) (b)

FIG. 3. Different radii of two trajectories with different initial
distances d under the same feedback control. These two spiral waves
are both disturbed positively, and the delay time τ = 0. They are
simulated on a grid of 512 × 512, with the same initial conditions.
(a) The distance between the spiral tip and the measuring point
(300,300) is about 56 grid lengths, and the final radius R is about
39.71 grid lengths. (b) The measuring point is (350,350), which is
about 126 grid lengths far away from the spiral tip. The final radius
R is about 100.26 grid lengths.

of the spiral wave, and it becomes easier to regulate the size
of the circular orbit by adjusting the external period.

III. DENSE AND SPARSE SPIRAL DRIFT UNDER
EXTERNAL STIMULATIONS WITH FIXED PERIOD

To investigate the relation between the radius of the circular
orbit and the stable period of stimulations, we first disturbed
spiral waves periodically with a square wave with a fixed
period T . Within a period T , we changed the parameter
ε to 0.022 or 0.018 (corresponding to positive or negative
disturbance) with 0.61 s (250�t) duration, and then reset it
back to ε = 0.02. It turns out that the spiral core drifts along
a circular path, as the experiment shows, and the radius is the
same as what is observed in simulation of the experiment with
feedback control (see Fig. 6).

For the feedback control, the period of disturbance is
determined by the movement of the spiral wave itself. It is
always larger than the intrinsic period of the original spiral
wave. Otherwise, unlike the feedback control, when we disturb
the spiral wave directly with a periodic function, the period
of disturbance can be set at any value. Thus, by forcing the

(a) (b)

FIG. 4. (a) Negative disturbance, τ = 0, R = 11.09 grid lengths.
(b) Through a sequence of control method transitions, the radius
reaches a larger one, R = 67.39 grid lengths.

FIG. 5. Time interval t (measured by time steps) before each stim-
ulation. It reaches a fixed value after several periods of modulation.
Here the stimulation is negative with delay time τ = 250.

spiral wave with periodic functions, we can get more drifting
behaviors than with feedback control, especially in the cases
where the disturbing period is less than the intrinsic period of
the spiral (as shown in Fig. 7).

For a wide range of forcing periods, there are always
resonance attractors for spiral wave drift. However, the spiral
wave changes its rotation direction once when the forcing
period pass a critical value. In Fig. 7, the hollow triangles
representing its trajectories are epicycloids, whereas the solid
triangles represent hypocycloid trajectories, and each of these
two lines follows an exponential function. The results show
clearly the existence of a critical disturbance period and
full resonance drifts. We have also tried the same numerical
simulation for a dense spiral wave with a = 1.0, b = 0.03, and
ε = 0.02 (the parameter sets for a dense spiral wave are all the
same in this paper); the results are the same qualitatively.

Furthermore, based on the above approach, we may just as
well change the parameter ε continuously and periodically, by
using a sinusoidal function:

ε(t) = 0.021 + 0.001sin

(
2πt

T

)
. (3)

With a change of the period T , the results for resonance drift
are similar to those obtained by periodic disturbances by square

(a) (b)

FIG. 6. (Color online) Radius R corresponding to the stable
modulation period for positive (a) and negative (b) disturbance. The
hollow squares are the results observed in the experimental simulation
of feedback control, while the solid triangles present the results of a
simulation with fixed period T modulation. There is a critical point
of T . When T is near this critical point, the radius R tends to infinity.
When T is too large, the resonance attractor is not observed.
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(a) (b)

FIG. 7. (Color online) For a sparse spiral wave, the radius R

changes with the external forcing period T on both positive (a)
and negative (b) disturbances. The red open triangles represent
the epicycloidal trajectories, while the filled triangles represent the
hypocycloidal trajectories.

waves (as shown in Fig. 8). Furthermore, the drift behavior
of a dense spiral wave [Fig. 8(a)] does not have qualitative
differences from that of a sparse spiral wave [Fig. 8(b)].

IV. A KINEMATIC MODEL FOR THE RESONANCE
DRIFTS OF A SPIRAL WAVE

We know that the intrinsic period and radius of a spiral
stable rotation are all determined by the parameters. A spatial
or temporal change of parameters will let the spiral adjust
between different stable circulations and induce the spiral
drift behavior. In previous studies, we developed a kinematic
model for spiral wave drift [23,24], which can well capture the
different drifting behaviors of dense and sparse spiral waves in
the same conditions. In the present study, we apply this model
to periodic disturbances, when the parameter ε is a sinusoidal
function of time.

We describe the tip motion using the following differential
equations:

ẋ = cgcos θ − hcnsin θ,

ẏ = cgsin θ + hcncos θ, (4)

θ̇ = hω,

where h is the chirality of the vortex (h = +1 for counter-
clockwise and h = −1 for clockwise rotation).

When the spiral is in stable circulation, the dependence of
the core radius Rc and rotation period Pc on the parameter ε,

(a) (b)

FIG. 8. (Color online) The radius R vs the period T for a dense
spiral wave (a) and a sparse spiral wave (b), when the parameter
changes following the trigonometric function Eq. (3). The red open
triangles represent the epicycloidal trajectories, while the filled
triangles represent the hypocycloidal trajectories.
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FIG. 9. A schematic diagram of spiral drift.

i.e., Rc = Rc(ε) and Pc = Pc(ε), can be obtained by numerical
simulation. For the dense spiral wave, both Rc and Pc increase
almost linearly with ε; we fit them by

Rc = (0.365 + 13.235ε) × 40/128,
(5)

Pc = 1.78 + 80.84ε.

For the sparse spiral wave, both Rc and Pc increase with ε

nonlinearly, and we fit them by

Rc = (−0.62e3 + 0.9e5ε − 4.6e6ε2 + 0.75e8ε3) × 40/128,
(6)

Pc = −596.5 + 8.8e4ε − 4.3e6ε2 + 7.2e7ε3.

Since the sparsity of the spiral wave is due to low excitability
of the medium, the diameter and cycle length of the sparse
spiral wave are larger than those of the dense spiral wave.

The conduction velocity of the spiral tip Q satisfies Vc(ε) =
2πRc(ε)/Pc(ε). Just like the core radius, the rotation period
and the conduction velocity are functions of the parameter
ε; when the spiral wave is subjected to external periodic
forcing, they will be changed accordingly and induce the
resonance drifting behavior. As shown in a schematic diagram
of spiral drift in Fig. 9, a change of the above quantities will
lead to a change of the normal velocity of the spiral tip, cn,
the instantaneous rotation period P , and the instantaneous
angular velocity ω, and lead to the additional radial velocity
cg . Thus, when the system is disturbed with a continuous
periodic function subject to the parameter ε, we assume that
these quantities obey the following equations:

cn(ε) = Vc(ε) + λ�Vc = Vc(ε) + λV ′
c (ε)ε′(t), (7)

P (ε) = Pc(ε) + γ�Pc = Pc(ε) + γP ′
c(ε)ε′(t), (8)

cg(ε) = ρ�Rc − α�Vc = (ρR′
c − αV ′

c )ε′(t), (9)

ω = 2π

P
− β

cg

cn

, (10)

where (and in the following formulas) a prime on Rc, Vc, and
Pc means their derivatives with respect to the parameter ε. λ,
γ , ρ, α, and β are adjustable parameters. In this paper, we use
the trigonometric function (3) to disturb the system. So the
parameter ε is time dependent as in Eq. (3), and its derivative
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(a) (b)

FIG. 10. (Color online) Drifting behaviors of a dense spiral wave
from simulation and the kinematical model for the same initial
conditions. The external period T = 1400 is shown in (a). The
parameter sets for the kinematic model are λ = 1.56, γ = 0.8,
ρ = 2.73, α = 1.56, and β = 0.003.

is

ε′(t) = 0.001
2π

T
sin

(
2πt

T

)
. (11)

Combining Eqs. (7)–(11), one can obtain the spiral wave
drift behaviors. For example, Fig. 10(a) shows the tip
trajectory of a dense spiral wave and the corresponding result
from the kinematic equations with the external period T =
1400, and Fig. 10(b) shows their radii corresponding to the
external periods. While the Fig. 11 shows the results for a
sparse spiral wave. They all show a very good agreement.

V. CONCLUSION

In previous research on spiral wave dynamics under an
external force, especially in the light-sensitive BZ reaction,
the effects are usually described via the periodic modulation
of the term φ in the Oregonator model, which represents
the light-induced flow of Br−. In this paper, a more general
approach, that is, modulation of the system excitability, is

suggested. It is revealed that it can produce qualitatively the

(a) (b)

FIG. 11. (Color online) Drifting behaviors of a sparse spiral wave
from simulation and the kinematical model for the same initial
conditions. The external period T = 2340 is shown in (a). The
parameter sets for the kinematic model are λ = 0.6, γ = 0.1, ρ = 3,
α = 6, and β = −3.

same phenomenon of resonant drifting of the spiral wave.
This approach provides us a more general perspective to
investigate the effects of external forces. Thus, in addition to
the light-sensitive BZ reaction, the forced dynamics of spiral
waves in many other excitable media can also be investigated
in this approach. Furthermore, it is found that the radius of
the circular orbits of resonance drift is determined only by
the period of the external forces. Then the drift of dense and
sparse spiral waves is given under external stimulations with
fixed period, i.e., with square wave and sinusoidal functions.
With change of the forcing period, the trajectory of the spiral
wave changes from an epicycloid to a hypocycloid (the spiral
rotates in the clockwise direction). Between these two phases,
there is a certain value of T at which the spiral core drifts in a
straight line. Moreover, these results can be calculated through
our kinematical model very well. This demonstrates again
that kinematical considerations can well capture the drifting
dynamics observed in reaction-diffusion equations.
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