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We theoretically show that completely stochastic fast physical random bit generation at a rate of more than one
gigabit per second can be realized by using lasers with optical delayed feedback which creates high-dimensional
chaos of laser light outputs. The theory is based on the mixing property of chaos, which transduces microscopic
quantum noise of spontaneous emission in lasers into random transitions between discrete macroscopic states.
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I. INTRODUCTION

Random numbers are very important for many applications,
including cryptography [1], numerical computation [2], and
stochastic modeling [3]. Various methods are used to generate
random numbers depending on the properties required by
the applications. Applications such as quantum cryptography
require true random number generators [4]. On the other
hand, many applications in computing and communications
use pseudorandom numbers, which mimic some statistical
property of randomness, but can be generated with determin-
istic algorithms [5]. Applications that require true randomness
extract random numbers from random physical processes.
Common physical random number generators utilize random-
ness of noises or turbulence [6–13]. A fundamental source
of randomness for physical random number generation is
detection of quantum mechanical phenomena [14,15], which
is unpredictable in principle. A practical problem of physical
random number generators is that it is difficult to extract bits
with good randomness properties at high bit rates.

Recently it has been demonstrated that bit sequences that
pass strict statistical tests of randomness can be robustly
generated at more than one gigabit per second (Gbps) by
sampling the output of chaotic semiconductor lasers [16–20].
It has been also experimentally demonstrated that it is possible
to achieve the fast generation of random bit sequences passing
statistical tests of randomness even with compact on-chip
chaos lasers [21,22] in contrast to previous laser systems
with many discrete optical components. However, it is still
unclear whether such random bit generation methods are
really nondeterministic. As yet there have been no detailed
theoretical or numerical investigations of this aspect. The
purpose of this paper is to provide a theoretical description
of the role of chaos in random bit generation and a numerical
verification of fast nondeterministic random bit generation for
chaotic laser systems based on the theory.

A chaotic laser can be modeled by using deterministic
equations of motion for a set of macroscopic observables
coupled with small amplitude perturbations caused by intrinsic
noise such as thermal and quantum mechanical fluctuations.
The properties of randomness required by true random number
generators depend essentially on the effect of perturbations on
the evolution of macroscopic observables. It is important to
analyze this effect to understand the randomness of the bits
extracted from the macroscopic observables.

In this paper, by considering the mixing property of chaos,
it is theoretically shown that nondeterministic random bit
sequences can be generated at a gigabit per second rate by using
chaotic lasers with optical delayed feedback. It is shown that
nondeterminism is guaranteed by the presence of spontaneous
emission noise, which is quantum mechanical in origin. The
relation between the randomness of the bit sequences and the
rate of random bit extraction can be understood in terms of
the convergence toward the natural invariant density due to the
dynamical mixing process.

II. MICROSCOPIC NOISE AND MACROSCOPIC
PROBABILITY

Let us consider a physical device whose input and output
are respectively microscopic noises and discrete macroscopic
random state sequences as shown in Fig. 1.

We assume that the microscopic noises have an infinite
bandwidth and the physical device has a finite dynamical
response. Even if the microscopic noise can be assumed to
be truly random, the randomness of the sequence depends on
the dynamical properties of the physical device and the method
of extracting discrete sequences.

There are various methods for realizing physical random
number generators by amplifying the microscopic noises and
assigning discrete symbols to ranges (i.e., partitions) of the
values of the macroscopic observables.

For example, thermal noise can be amplified with an
amplifier to produce a large amplitude noise signal that is
input into a bistable system, causing transitions between two
stable states corresponding to macroscopic observables. The
first amplifier stage may not be necessary if the bistable system
is repeatedly reset precisely to an unstable point separating the
basins of the two stable states.

In practice a common method is to use electrical amplifiers
to amplify intrinsic electronic noise which is input into a
threshold device such as a D-type flip flop (D-FF), driven by
a periodic clock signal to produce a stream of random binary
states [7,8,23].

The finite bandwidth of amplifiers and threshold devices,
and the finite accuracy of the threshold level with respect to
the distribution of the fluctuations make it difficult in practice
to achieve random bit sequences at high bit rates.
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FIG. 1. Schematic illustration of a physical device producing
sequences of discrete macroscopic states a, b, c, and d appearing
randomly. Microscopic noises act as entropy sources.

On the other hand, it is known that chaotic devices are able
to generate large amplitude signals that depend sensitively
on microscopic noise, and so chaotic devices are of interest
from the viewpoint of overcoming the practical problems of
generating random sequences at high rates. In this paper we
consider this issue from the viewpoint of basic dynamical
theory, and its application to large bandwidth chaotic lasers.

Let us start with a brief review of fundamental properties
of dynamical mixing [24] in a chaotic dynamical system with
noise, which can be used to describe physical randomness.

Suppose that the time evolution of a system state x(t) is
defined by a differential equation dx/dt = F (x) + n(x,t),
where n represents random perturbations caused by other
degrees of freedom, which we call “noise.” First let us
focus on the deterministic part of the evolution of a system
obtained in the limit of zero noise amplitude. Suppose that
the deterministic part of the time evolution of a system (i.e.,
without the noise term) on a manifold M is described as
x(t) = f tx(0), and this flow is chaotic. If the flow is chaotic,
then the flow has the mixing property. The mixing property
means that statistical correlations between observables seen
at different times decrease as the length of time between the
observations increases. The mixing property also implies that
the flow is ergodic. These mean that any arbitrary smooth initial
state probability density distribution converges to a unique
density distribution, known as the natural invariant density
ρ(x). Let us describe each of these.

First we introduce the correlation function

CAB(τ ) = 〈A[f t+τ x(0)]B[f tx(0)]〉t − 〈A〉t 〈B〉t , (1)

where observables A and B are differentiable functions
on M , and it is assumed that the time averages 〈X〉t ≡
limT →∞ 1/T

∫ T

0 Xdt converge. The mixing property means
that the correlation between observables seen at different
times decreases as the length of time between the observations
increases, which is expressed as follows,

CAB(τ ) = 〈A(f τx)B(x)〉 − 〈A〉〈B〉 −−−−→
|τ |→∞

0 (2)

for arbitrary square integrable functions A and B.
The mixing property also implies ergodicity, namely that

the time average 〈X〉t is equal to the ensemble average 〈X〉 ≡∫
ρ(dx)X, where ρ is the invariant density.
In Eq. (2), choosing B(x) = ρ0(x)/ρ(x), where ρ0(x)

represents the initial density yields∫
M

A(f τx)ρ0(x)dx − 〈A〉 −−−−→
|τ |→∞

0. (3)

Since A(x) is an arbitrary function, the following equation is
satisfied:

lim
t→∞ Ltρ0(x) = ρ(x) almost surely, (4)

where the initial density ρ0(x) is an arbitrary smooth function,
and Lt is the Frobenius-Perron operator defined by using the
Dirac δ function as Ltρ0(x) ≡ ∫

M
δ(x − f ty)ρ0(y)dy. The

mixing property means that any arbitrary smooth initial density
function converges to the natural invariant density.

The distribution function of an observable Y also converges
to a unique invariant distribution function D(Y ),

D(Y ) =
∫

M

δ[Y − Ỹ (x)]ρ(x)dx. (5)

By using D(Y ), we can define a discrete number N

of macroscopic states such that the probabilities of the
macroscopic states Xi are all equal, that is, 1/N . Specifically,
we define (N − 1) thresholds Si of the observable Y such that∫ S1

S0

D(Y )dY =
∫ S2

S1

D(Y )dY = · · · =
∫ SN

SN−1

D(Y )dY. (6)

Then we define a set of discrete macroscopic states Xi (i =
1,2, . . . ,N ) of the system such that the system is in state
Xi (i = 1,2, . . . ,N ) when the observable Y is found in the
interval between the thresholds Si−1 and Si (i = 1,2, . . . ,N ).
The Shannon entropy is defined as

H (X) ≡ −K

N∑
i=1

p(Xi) log p(Xi), (7)

where X = {Xi, i = 1,2, . . . ,N} and K = 1/ log N [25].
With the macroscopic states defined using the thresholds in
Eq. (6), the Shannon entropy has a maximum value of unity.

The convergence toward the invariant density due to the
mixing property is a very important feature of the transduction
of microscopic noise to macroscopic randomness by chaotic
dynamics. No matter how accurately we observe the state of the
system, the effect of microscopic noise after the observation
means that the state should be modeled by an ensemble. If the
ensemble due to microscopic noise has a smooth probability
distribution, then from Eq. (4) one can easily see that the
time evolution of such an ensemble is ruled by the Frobenius-
Perron operator and always converges to the natural invariant
density in the long time limit if the system has the mixing
property. Moreover, if discrete macroscopic states are defined
appropriately, the probability of asymptotically being in any
of the macroscopic states is equal, and the Shannon entropy is
unity.

Now let us describe a method of generating random
sequences. Assuming that microscopic noise is random,
corresponding to a smooth probability distribution, and the
time between observations of the state is sufficiently long,
then the correlation (mutual information) between successive
states (symbols) will be zero, so the sequence will be truly
random.

Strictly zero correlation is obtained only in the limit of
infinite time between observations. In practice, it is important
to quantitatively estimate the time Tε when the entropy
becomes 1 − ε where ε is a small finite value.

Figure 2 shows a schematic illustration of the typical time
dependence of the entropy of discrete macroscopic states. The
time Tε will depend on the initial distribution and on the rate of
mixing by the flow. In order to achieve a fast rate of generation
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FIG. 2. Schematic illustration of the growth of entropy during the
convergence of an initial microscopic noise distribution to the natural
invariant density, due to the mixing property Eq. (4).

of random state sequences, physical devices should have a
strongly chaotic property. Then the correlation function decays
exponentially fast and the time Tε can be made short.

(Note: Polygonal billiards are examples of dynamical
systems that have the mixing property, but they are not
hyperbolic and thus not strongly chaotic. Their Lyapunov
exponents are zero and the correlation function decays slowly
in an algebraic manner [26,27].)

The time evolution of the density function is ruled by
the resonances of the Frobenius-Perron operator. Let us give
an example to illustrate this. The spectral decomposition
of the Frobenius-Perron operator of the r-adic map xt+1 =
rxt (mod 1), where r is an integer larger than 1, yields
the expansion of the time evolving density function by the
Bernoulli polynomials Bm(x),

Ltρ0(x) = ρ(x) +
∞∑

m=1

(−1)m−1

m!rmt
cmBm(x), (8)

where ρ(x) = 1, m is the mode index, and the coefficients cm

are given as follows [28]:

cm =
∫ 1

0
[δ(m−1)(x − 1) − δ(m−1)(x)]ρ0(x)dx. (9)

Therefore, the difference between the time evolving density
function and the natural invariant density decreases at least
as fast as the slowest decay mode, 1/rt . For example, it is
less than 10−5 when r = 2 and t = 17. This means that the
frequencies of bits 0 or 1, which can be obtained by the
integrals of the density function over the intervals (0,0.5) and
(0.5,1), respectively, is approximately (50 ± 10−3)% at the
17th iteration.

It is important to note that the density can approach the
natural invariant density much faster than estimated from the
slowest decay mode if the decay mode is only a small part of
the initial density. For example, let us suppose that the initial
distribution is distributed normally with average μ = 10−2

and variance σ 2 = 10−6 for the r-adic map with r = 2. A
numerical evaluation of the time evolution of the entropy is
shown in Fig. 3. Notice that the numerically calculated entropy
approaches 1 much faster than the slowest decay mode.
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FIG. 3. Numerical calculation of the time dependence of the
entropy of the bit obtained by using the r-adic map with r = 2.
The entropy actually approaches 1 much faster than the theoretical
prediction.

In this solvable example of a prototype chaotic system we
considered the effect of microscopic noise only in terms of an
ensemble of initial states. In physical systems the action of the
noise is continuous in time. When the noise is sufficiently small
and additive, and the system is strongly chaotic, it is expected
that the natural invariant density and the rate of the convergence
from the initial density to the natural invariant density will not
be drastically affected by the addition of microscopic noise
during the time evolution. This is confirmed by the numerical
result in Fig. 3 for the map with microscopic noise added at
each iteration. The numerical simulations show that a lower
bound of the convergence rate can be estimated from just the
deterministic part of the equation.

We emphasize that the property that the asymptotic in-
variant probability density and the rate of convergence to the
invariant density do not depend on details of the microscopic
noise is an important feature for ensuring the robustness of the
randomness in chaotic random number generators.

Finally, we comment that in practice, it is difficult to
precisely set the thresholds in Eq. (6). Moreover, the speed
of the detector response may limit the generation rate. Such
detector system issues are not dealt with in this paper.

III. CHAOS LASERS WITH DELAYED OPTICAL
FEEDBACK

In this section we study the dynamics of mixing in chaotic
lasers with delayed optical feedback and spontaneous emission
noise. In the following section, we will apply the results of this
section and the previous section to random bit generation using
chaotic lasers.

In a single-mode semiconductor laser with delayed optical
feedback, the dynamics of the macroscopic variables of light
field amplitude E and the carrier density N is described by the
Lang-Kobayashi equations [29] as

dE

dt
= 1 + iα

2

(
G − 1

τp

)
E + κ

τin

E(t − τD)e−iθ

+
√

CsN

τs

ξ (10)

and
dN

dt
= J − 1

τs

N − G|E|2, (11)
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where the gain G depends on E and N ,

G ≡ G0(N − N0)

1 + ε|E|2 . (12)

ξ is white Gaussian noise with zero mean and unitary variance
so that the last term of the right-hand side of Eq. (10) represents
the effect of the quantum noise of a spontaneous emission. The
value of the parameters are fixed by taking account of the phase
diagrams in Fig. 8: The linewidth enhancement factor is α = 5,
the differential gain G0 = 10−12 m3 s−1, the gain saturation
coefficient ε = 8.16 × 10−24 m3, the propagation time in the
DFB laser τin = 14 ps, the delay time τD = 0.182 ns, the delay
phase shift θ = 0 rad, the carrier lifetime τs = 2.04 ns, the
feedback strength κ = 0.32, and the transparent carrier density
N0 = 1.4 × 1024 m−3. The spontaneous emission factor is set
at Cs = 10−3 by taking account of the properties of the the
optical integrated circuits used for physical random number
generation with laser chaos [21].

The Lang-Kobayashi (LK) model has been studied exten-
sively, and has been used to explain chaotic phenomena ob-
served in laser experiments. The phase space of the LK model
is infinite dimensional because of the delayed feedback. In
general, it is difficult to theoretically analyze high-dimensional
chaos, and the dynamical properties of the LK model have not
been fully elucidated although it has been studied for 30 years.
Most works on the LK model have focused on cases of long
delay time, typically several tens of nanoseconds, since most
laser experiments have used discrete optical components such
as optical fibers in order to put the light back into the laser
and easily control the delay. However, when the delay time
is long there are significant recurrences in autocorrelations at
multiples of the delay times. For this reason, lasers with shorter
delay times are expected to be more suitable for fast physical
random bit generation.

Lasers with shorter delay times require higher feedback
strength to achieve strong chaos [30]. Recently chaotic laser
chips have been fabricated using optical circuit integration
technologies, which enable strong delayed optical feedback
[21,22]. Therefore, our study focuses on lasers with short delay
times corresponding to chaotic laser chips.

First we show a typical example of the evolution of a smooth
initial probability density of the light intensity I (t) and the
carrier density N (t) for a laser exhibiting chaotic oscillations.
An example of the time evolution of the probability density
in the most strongly chaotic regime is shown in Fig. 4.
Irrespective of the initial probability density of I (t) and N (t),
the distribution converges to a unique distribution, which is a
natural invariant density for the specified parameters.

In this example, an ensemble of trajectories is calculated
for one initial state of I and N105 different trajectories
representing perturbations due to the spontaneous emission
noise. The ensemble distribution is stretched and folded in the
phase space by the chaotic dynamics as shown in Figs. 4(b)–
4(g), and finally converges to an invariant distribution as shown
in Fig. 4(h). The invariant probability density ρ(I ) of the light
intensity is compared with the transient distribution after 1.25
ns time evolution in Fig. 5. Here the invariant probability
density is obtained by long time evolution of a typical orbit.
The difference between the time-evolving density and the
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FIG. 4. The time evolution of the probability density distribution
of the light intensity and the carrier density at times (a) 0.1 ns, (b)
0.13 ns, (c) 0.16 ns, (d) 0.22 ns, (e) 0.40 ns, (f) 0.86 ns, (g) 1.00 ns,
and (h) 1.25 ns.

invariant probability density decays exponentially due to the
strongly chaotic dynamics, as shown in Fig. 6.

The transient probability density is difficult to obtain
experimentally because of the need to reset the laser to the same
initial state many times, or to wait a long time until the laser
revisits the neighborhood of the same initial state many times.
Observation of the autocorrelation is a more practical way to
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FIG. 5. The invariant probability density of the light intensity
(solid curve) and the time-evolving probability density of the light
intensity after 1.25 ns (crosses).
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FIG. 6. The difference between the average transient probability
density and the invariant probability density (solid curve). The
average transient probability density was averaged over the transient
probability densities obtained for 10 different randomly chosen initial
states of N and I on the chaotic attractor. The transient probability
density for each initial condition was obtained using 105 different
microscopic noise trajectories. The dotted line represents exp(−5.3t).

monitor the rate of convergence of the probability distribution.
The mixing property of the convergence to the invariant density
implies the decay of the autocorrelation function C(τ ),

C(τ ) = 〈I (t + τ )I (t)〉t − 〈I 〉2
t −−−−→

|τ |→∞
0, (13)

where the bracket defines the time average: 〈X(t)〉t ≡
limT →∞ 1/T

∫ T

0 X(t)dt . Figure 7 shows that the autocorre-
lation function decays exponentially with the same decay rate
as the difference between the time-evolving density and the
invariant probability density.

The decay rate λ can be estimated solely from the
deterministic part of the LK equation corresponding to the
eigenvalue of the Frobenius-Perron operator with the second
largest absolute value.

We point out that for the specific value of microscopic noise
amplitude corresponding to the spontaneous emission which
is expected to be truly random due to its quantum mechanical
origin, the correlation value reaches a value of 0.1 in 1 ns.

In terms of the tolerances for the errors that occurs
in the fabrication processes of the actual devices and the
fluctuations in their operating environments, it is important
that the continuous region in the parameter space where the
autocorrelation function decays quickly is large enough to
produce strong chaos stably. The parameter dependence of
the time required for autocorrelation functions to become less
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FIG. 7. The autocorrelation function of the time evolution of the
light intensity. The dotted line represents exp(−5.3t).

(a)

(b)

FIG. 8. (Color) The “vanishing time” of the autocorrelation func-
tions. The colors indicate the time (ns) required for the exponentially
decaying envelope of the autocorrelation function to become less
than 0.1 calculated numerically with the spontaneous emission factor
Cs = 10−5. (a) Phase diagram of time delay and feedback strength
for a fixed phase θ = 0. (b) Phase diagram of the delay phase shift
and feedback strength for a fixed time delay τD = 0.182 ns.

than 0.1 is shown in Fig. 8(a). One can see that there are
continuous areas where the autocorrelation function becomes
less than 0.1 within 1 ns as long as the feedback strength
is high and the delay time is short. Although strong chaos
disappears when the delay time becomes too short, over most
of this range the autocorrelation function vanishes faster as
the delay time decreases. It is important to note that this range
is not the so-called “short cavity regime,” where the inverse
delay time exceeds the relaxation oscillation frequency and the
dynamical behavior sensitively depends on the phase of the
delayed feedback field [22,31–33]. Indeed, Fig. 8(b) clearly
shows that the vanishing time is almost independent of the
delay phase shifts if the feedback strength κ is higher than
about 0.2.

The power spectrum of the time evolution of the light
intensity is also a convenient measure to check the strong
chaotic property since it can be measured as the radio
frequency (rf) spectrum in an actual experiment. The peaks
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FIG. 9. (Color) The rf spectra of the chaos laser with delayed
optical feedback (red curve) and a solitary laser (green curve). The
spontaneous emission factor Cs is 10−3 for the chaos laser and 10−5

for the solitary laser in correspondence with laser experiments (see
text).

in the rf spectrum correspond to the recurrences contained
in the autocorrelation function. Therefore, there are no large
peaks in the rf spectrum of the light intensity of a strongly
chaotic laser.

Figure 9 shows the rf spectra of the chaos laser with the same
parameters as when the convergence of the probability density
and the decay of the autocorrelation function are exponential.
One can see that the intensity of the rf spectrum is about
30 dB larger than that obtained without the delayed optical
feedback.

IV. FAST NONDETERMINISTIC PHYSICAL RANDOM BIT
GENERATION BY CHAOS LASERS

We apply the random bit generation method that we
proposed in Sec. II to chaos lasers with the parameter values
of the strongly chaotic regime shown in Sec. III.

To extract binary bits from the observed chaos laser inten-
sity, a threshold Ibit is set so that

∫ Ibit

0 ρ(I )dI = ∫ ∞
Ibit

ρ(I )dI,

and bit 0(1) is assigned to the light intensity less (greater)
than the threshold Ibit, where ρ(I ) is the invariant probability
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FIG. 10. An example of the time series and the bit sequences
obtained by numerically solving the Lang-Kobayashi Eqs. (10) and
(11). Temporal waveforms of the light intensity, and corresponding
binary digitized signals 10110001· · · . The dots mark points sampled
with a 0.8 GHz sampling rate. The broken line represents the threshold
value for digitizing the light intensity. The random bit sequences
are generated after the XOR operation combining two bit sequences
extracted from two different time series starting from different initial
states.
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FIG. 11. The entropy averaged over 105 random bit sequences
generated by sampling the time series numerically produced by the
Lang-Kobayashi model with the clock times corresponding to the
horizontal axis.

density. According to Eq. (6), it is possible to extract more
bits from one sampling of the light intensity by increasing
the number of thresholds and assigning bit sequences to each
section divided by the thresholds. The bit generation rate
depends not only on the convergence rate to the invariant
probability density but also on the number of thresholds, that
is, the resolution of analog-digital converters. However, in
practice, the extraction of more bits could be more susceptible
to external noise, which is unrelated to chaos lasers. In this
paper we focus on the above bit extraction method using a
single threshold, which is the simplest and robust method
for directly investigating the statistical property of the bit
sequences generated from the chaotic light intensity.

If the chaos laser dynamics starts from an arbitrary
initial state and evolves in time subject to perturbations by
microscopic noise, such as spontaneous emission, and finally
ends with an observation assigning a binary bit, then if the
interval between observations is sufficiently long, the bits
will be random with equal probabilities of 0 or 1, that is,

TABLE I. Results of NIST Special Publication 800-22(rev. 1a)
statistical tests. The tests have been performed using 1000 samples of
1 Mbit data and a significance level α = 0.01. The P value (uniformity
of p values) should be larger than 0.0001 and the proportion should
be in the 0.99 ± 0.0094392 range. For the tests that produce multiple
P values and proportions, the worst case is shown.

Statistical test P value Proportion Result

Frequency 0.000181 0.9820 Success
Block frequency 0.080519 0.9890 Success
Cumulative sums 0.000294 0.9810 Success
Runs 0.224821 0.9880 Success
Longest runs 0.783019 0.9870 Success
Rank 0.388990 0.9940 Success
FFT 0.000390 0.9870 Success
Nonoverlapping templates 0.000799 0.9830 Success
Overlapping templates 0.262249 0.9870 Success
Universal 0.410055 0.9880 Success
Approximate entropy 0.380407 0.9840 Success
Random excursions 0.102098 0.9860 Success
Random excursions variant 0.072585 0.9825 Success
Serial 0.508172 0.9860 Success
Linear complexity 0.684890 0.9890 Success
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TABLE II. Typical results of the “Diehard” statistical test suite.
KS denotes the Kolmogorov-Smirnov test. Significance level α =
0.01. For tests with multiple p values, the worst case is shown.

Statistical test p value Result

Birthday spacing 0.140624 [KS] Success
Overlapping 5-permutation 0.875211 Success
Binary rank for 31×31 matrices 0.527490 Success
Binary rank for 32×32 matrices 0.362914 Success
Binary rank for 6×8 matrices 0.746760 [KS] Success
Bitstream 0.015400 Success
Overlapping-Pairs-Sparse-Occupancy 0.030000 Success
Overlapping-Quadruples-
Space-Occupancy 0.023100 Success
DNA 0.049200 Success
Count-the-1’s on a stream of bytes 0.104320 Success
Count-the-1’s for specific bytes 0.133742 Success
Parking lot 0.490047 [KS] Success
Minimum distance 0.072981 [KS] Success
3D spheres 0.827151 [KS] Success
Squeeze 0.932692 Success
Overlapping sums 0.638165 [KS] Success
Runs 0.723110 [KS] Success
Craps 0.480631 Success

a probability of 1/2. Figure 10 shows an example of the
time series of the light intensity of the chaos laser and the
bits obtained every 1.25 ns. We can check the bit frequency
ratio for the binary bit sequences by employing the Shannon
entropy defined by Eq. (7) with N = 2. Figure 11 shows
the entropy of the bit sequences obtained by averaging 105

different trajectories of the light intensity of the chaos laser. It
is clearly seen that the entropy becomes very close to 1, more
precisely the difference from 1 is less than 2.0 × 10−6, when
the sampling clock time is longer than 1.25 ns. This means
that the bit sequences generated up to a rate of 0.8 Gbps by
numerically solving the Lang-Kobayashi model of the chaos
lasers with the parameter values fixed in this paper are almost
random at least in the sense that the bit frequency ratio is
50 ± 0.08%.

If the probabilities of successive bits are to be independent
and depend only on the invariant probability density ρ(I )
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FIG. 12. The entropy averaged over 105 random bit sequences
obtained by a logical XOR operation on pairs of bits generated
by sampling the different time series produced numerically from
the Lang-Kobayashi model with clock times corresponding to the
horizontal axis.

TABLE III. Results of NIST Special Publication 800-22(rev. 1a)
statistical tests for bit sequences obtained by a logical XOR operation
on pairs of bits generated at the rate 1.6 Gbps by two chaotic lasers.
The tests have been performed using 1000 samples of 1 Mbit data
and a significance level of α = 0.01. The P value (uniformity of p
values) should be larger than 0.0001 and the proportion should be in
the 0.99 ± 0.0094392 range. For the tests that produce multiple P
values and proportions, the worst case is shown.

Statistical test P value Proportion Result

Frequency 0.014150 0.9880 Success
Block frequency 0.798139 0.9920 Success
Cumulative sums 0.066051 0.990 Success
Runs 0.741918 0.9910 Success
Longest runs 0.651693 0.9890 Success
Rank 0.889118 0.9940 Success
FFT 0.759756 0.9880 Success
Nonoverlapping templates 0.001091 0.9810 Success
Overlapping templates 0.146982 0.9940 Success
Universal 0.516113 0.9820 Success
Approximate entropy 0.138860 0.9920 Success
Random excursions 0.082322 0.9811 Success
Random excursions variant 0.149786 0.9828 Success
Serial 0.020973 0.9920 Success
Linear complexity 0.127393 0.9910 Success

and the bit-extraction threshold, then the vanishing time of
the autocorrelation function should be smaller than the bit
extraction interval. Conversely, if the bit extraction interval
is smaller than the vanishing time of the autocorrelation
function, then successive probabilities of the appearances of
bits 0 and 1 cannot be described by the theory introduced in
Sec. II.

The sequences are only truly random in the limit of infinite
sample intervals. Next we examine strict tests of the statistical
randomness of bit sequences generated with finite sampling
intervals. We use the statistical test suite provided by National
Institute of Standard Technology (NIST) and the Diehard test
suite [34,35]. Bit sequences generated by the above scheme
with sampling rates up to 0.8 GHz passed all of the NIST and
Diehard tests at a common statistical significance level of α =
0.01 [34,35]. The tests were performed using 1000 instances
of 1 Mbit sequences for the NIST tests, and 92 Mbit sequences
for the Diehard tests. The results are shown in Tables I and II.
Consequently, the bit sequences generated from the time series
simulation of the light intensity of the chaos laser up to the
generation rate of 0.8 Gbps are statistically random in the sense
that they pass the standard statistical test suites of NIST and
Diehard.

It is important to note that real systems cannot exactly
achieve the above equality which assumes that the observation
of intensities and comparison with the threshold value are
performed with infinite precision. In the real experiments, I (t)
is typically measured with 8-bit precision. Therefore, taking
the real chaos laser systems into consideration, we combine
the bit sequences obtained from a numerically calculated
time series of the light of two identical chaos lasers by a
logical Exclusive-OR (XOR) operation, which is a simple and
common way to make the bit frequency ratio closer to 50%.
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TABLE IV. Typical results of “Diehard” statistical test suite for
bit sequences obtained by a logical XOR operation on pairs of the
bits generated at a rate of 1.6 Gbps by two chaotic lasers. KS denotes
the Kolmogorov-Smirnov test. Significance level α = 0.01. For tests
with multiple p values, the worst case is shown.

Statistical test p value Result

Birthday spacing 0.902520 [KS] Success
Overlapping 5-permutation 0.70349 Success
Binary rank for 31×31 matrices 0.499604 Success
Binary rank for 32×32 matrices 0.821451 Success
Binary rank for 6×8 matrices 0.62506 [KS] Success
Bitstream 0.083190 Success
Overlapping-Pairs-Sparse-Occupancy 0.078500 Success
Overlapping-Quadruples-
Sparse-Occupancy 0.039500 Success
DNA 0.011000 Success
Count-the-1’s on a stream of bytes 0.263346 Success
Count-the-1’s for specific bytes 0.061611 Success
Parking lot 0.180784 [KS] Success
Minimum distance 0.166405 [KS] Success
3D spheres 0.663964 [KS] Success
Squeeze 0.988839 Success
Overlapping sums 0.256445 [KS] Success
Runs 0.486020 [KS] Success
Craps 0.486023 Success

Figure 12 shows the entropy of the bit sequences obtained
by this XOR operation scheme. One can see that the entropy
approaches 1 much faster than the case of single chaos laser
shown in Fig. 11.

Bit sequences generated by this scheme with sampling rates
up to 1.6 GHz passed all of the NIST and Diehard tests at a
common statistical significance level of α = 0.01 [34,35]. The
tests were performed using 1000 instances of 1 Mbit sequences
for the NIST tests, and 92 Mbit sequences for the Diehard tests.
The results are shown in Tables III and IV. The results show
that the bit sequences generated by this XOR operation on the
pairs of bits obtained from the time series simulation of the

light intensity of the chaos laser up to the generation rate of
1.6 Gbps are statistically random in the sense that they pass
the standard statistical test suites of NIST and Diehard.

V. CONCLUSION

We have described theoretically the generation of nonde-
terministic random bits using chaotic physical systems, which
transduce nondeterministic microscopic noise to nondetermin-
istic macroscopic states based on the mixing property of chaos.
We emphasized that while the nondeterminism has its origins
in that of the microscopic noise, due to the mixing property the
chaotic physical system can be characterized by a probability
distribution of macroscopic states that does not depend on the
details of the probability distribution of the microscopic noise.
We also described how the rate of convergence of a probability
distribution corresponding to a single macroscopic state with
microscopic noise perturbations to an asymptotic probability
distribution of macroscopic states can be estimated from the
deterministic chaos obtained in the limit of vanishing noise
amplitude.

We have also shown numerically that lasers with delayed
optical feedback exhibit the mixing characteristic of strongly
chaotic systems, with exponential convergence to the natural
invariant probability density starting from an arbitrary smooth
initial density. We also showed specifically that spontaneous
emission noise, which is of quantum mechanical origin, can
cause close to unity entropy of macroscopic states within a
short time of the order of 1 ns. Moreover, such strongly chaotic
behavior is robust with respect to the perturbations of laser
parameters.

Finally, we applied the above results to show that bits with
almost no correlation can be generated at fast rates of the order
of gigabits per second. The sequences are sufficiently random
to pass the common randomness statistical test suites of NIST
and Diehard at statistical significance levels of 0.01.

The results confirm that physical devices such as the chaotic
lasers reported in [21] can indeed be used for nondeterministic
random bit generators operating at fast rates of over 1 Gbps.
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