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Bounded phase phenomena in the optically injected laser
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Two routes to phase-locking in the optically injected laser system are investigated both involving limit cycles
where the phase of the slave laser is unlocked but is nevertheless bounded. We use an experimental phase-resolving
technique to unambiguously demonstrate the phenomenon via explicit phasors for the slave laser electric field.
Theoretical considerations show that for locking mechanisms involving Hopf bifurcations, such limit cycles of
bounded phase are generic. For weakly damped devices, such as quantum well lasers, this can involve an excited
resonance at the relaxation oscillation frequency. For highly damped devices there is no such excitation but the
bounded phase behavior must persist. Phasor portraits for other regimes are also obtained including a chaotic
regime.
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I. INTRODUCTION

The optically injected laser provides an excellent test-bed
for coupled oscillators in general and for synchronization phe-
nomena in particular. Many interesting nonlinear dynamical
regimes can be observed in the system and while certain
features are generic, the details can differ depending on the
type of slave laser in question. Conventional Class B (quantum
well and bulk) lasers are treated extensively in Ref. [1]
and references within; quantum dot lasers are considered in
Refs. [2,3] and comparisons with quantum well lasers are
described in Ref. [4]; optically injected Class A lasers are
treated in Ref. [5]. Inherently bistable lasers have also attracted
considerable attention with studies of dynamics in optically
injected vertical-cavity surface-emitting lasers [6–8], semicon-
ductor ring lasers [9], and two-mode Fabry Pérot lasers [10].

The relaxation oscillations (ROs) of a semiconductor laser
describe the underdamped oscillator-like response to perturba-
tions from steady-state operation. For certain parameter ranges
under optical injection, the ROs of conventional semicon-
ductor lasers can be excited and become self-sustained. As
the injection strength is varied there are three possibilities.
The first is that the injected field may be too weak to excite the
resonance; in this case the locking bifurcation is a saddle-node
bifurcation, and the physics of the system is similar to
the Adler model [11]. Generalizations of the Adler model
may be required to accurately model the behavior [12,13] but
the principle is the same. The second possibility is to have the
injection strength in the right range so that the resonance can
be excited. In this case, the locking bifurcation is of Hopf form,
and the frequency of the limit cycle created in the bifurcation is
approximately that of the ROs. Once the locking mechanism is
a Hopf bifurcation, any approximation using the Adler model
is fundamentally flawed. The third possibility is that the
injection strength is too high to excite the RO resonance. The
locking mechanism is still of Hopf form, but there is never a
limit cycle at the RO frequency. We show below that this last
case is of particular interest for highly damped devices.

There are also three possible generic behaviors for the phase
of the slave laser. It is possible for the master laser to phase
lock the slave in which case the frequency of the slave matches

that of the master and the phase is fixed relative to that of
the master. The second is found when the laser is neither
frequency locked nor phase locked and the phase of the slave
is unbounded (for example, far from the locking region where
the operation approximates frequency beating between the two
lasers). The third case is where the slave is not phase locked
to the master but in some sense its average frequency is still
that of the master. In this case the phase of the slave varies but
is bounded both above and below. This regime was originally
recognized in Refs. [14,15] and elsewhere since. As we show
below, the phase operation just outside the locking boundary
is deeply related to the type of bifurcation that produces the
locking. When the locking is via saddle node, then the phase
can be unbounded until locking is obtained just as in the Adler
model. However, if the locking is via Hopf, then one should
expect the bounded phase behavior.

The phenomenon of varying but bounded phase behavior
is by no means limited to the optically injected laser, but
the laser system is one that lends itself well to experimental
analysis and the phenomenon was recently demonstrated in
Ref. [16]. In this work we demonstrate the phenomenon via
direct measurements of bounded phase limit cycles using the
phase-resolving technique described in Ref. [17]. This phasor
technique allows a more complete analysis and description
of the dynamics than can be obtained using only the conven-
tional spectral and intensity measurements. We show explicit
experimental phasors for two routes to unlocking through
a bounded phase regime. The first results from a quantum
well device and involves the resonance related to the ROs. A
chaotic regime is also investigated. The appearance of chaos is
typical at low injection strengths for weakly damped devices
and often appears as an intermediate regime between the RO
related bounded-phase limit cycle and the detuning related
unbounded-phase limit cycle. The second route we examine
is for a highly damped quantum dot device at a high injection
level where the bounded phase regime is not associated with
any intrinsic frequency in the device. There is no intermediate
regime between the bounded and unbounded cycles; rather the
bounded cycle simply grows and migrates in the electric field
plane becoming unbounded when it surrounds the origin. This

046212-11539-3755/2012/85(4)/046212(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.046212


B. KELLEHER et al. PHYSICAL REVIEW E 85, 046212 (2012)

route is typical of highly damped and Class A devices and even
weakly damped devices at high injection levels.

II. RATE EQUATION MODEL

The conventional Class B [18] semiconductor laser rate
equations are

Ṙ = NR + K cosφ, (1)

φ̇ = −� + αN − K

R
sinφ, (2)

Ṅ = γ [P − N − (1 + 2N ) R2]. (3)

Here a dot means differentiation with respect to T , where
T = t/tph is time measured in units of the photon lifetime tph,
R is the slave field amplitude, φ is the phase of the slave minus
that of the master, N is the carrier density of the slave, K is the
injection rate, � is the detuning (the frequency of the master
minus that of the slave), α is the linewidth enhancement factor
of the slave laser, γ is the ratio of the photon lifetime to the car-
rier lifetime, and P gives the pumping current above threshold.
(In the phasor figures throughout this work, the real part of the
slave electric field Rcosφ is denoted by ER and the imaginary
part of the slave electric field Rsinφ is denoted by EI .)

By linearizing Eqs. (1)–(3), one can find the characteristic
equation which is of third order in this system [19]. From this
we find an expression for the frequency �H of the limit cycle
created in the Hopf bifurcation:

�2
H = 2γP + η2 − 4γN

(
1 + P + N

1 + 2N

)
. (4)

Here η ≡ K
R

, and N and η both take their steady state values
at the Hopf bifurcation parameters in question. There are three
separate terms: the first is the square of the free-running RO
frequency, the second is an injection induced term, and the third
is a combination of RO properties and injection terms (through
injection induced changes in N ). This expression allows us to
easily find some general results about the frequency of the
Hopf bifurcation. First let us consider the well-known (but
still instructive) case of weak damping and weak injection
[20]. From these assumptions one finds easily that at a Hopf
bifurcation, the frequency of the resulting limit cycle is given
by �2

H ≈ 2γP = �2
RO. That is, the Hopf frequency is that of

the free-running ROs. This result is of course already very well
known. It is strictly a low injection level result. Let us consider
now weak damping but high injection levels.

In this case the Hopf bifurcation no longer results in
sustained oscillations at approximately the free-running RO
frequency. This is quite clear by examining Eq. (4). As the
injection strength is increased, the second term in Eq. (4) can
become greater than the other two and so, for weak damping
and sufficiently high injection levels �H ≈ η. Of course, the
Hopf bifurcation still results in sustained oscillations, but the
value of the frequency for these oscillations is no longer
approximated by the free-running RO frequency. Using the
steady state solutions we find two further expressions that will
allow us to find �H in terms of the detuning. Firstly, the steady
state value of N is bounded, satisfying

− 1
2 < N � P. (5)

Secondly, the trigonometric identity cos2φ + sin2φ = 1 can
be used to find

η2 = �2 − 2α�N + (1 + α2)N2. (6)

Since N is bounded we have that for sufficiently high injection
levels η2 ≈ �2 and so �2

H ≈ �2 from Eq. (4). That is, the Hopf
frequency for high injection levels is given to leading order by
the absolute value of the detuning (a fact previously recognized
in Ref. [21]).

Nonetheless, the route to locking must still involve a
bounded phase limit cycle. That this must be so can be
shown as follows. The phase-locked point results from
the collapse of the limit cycle in the Hopf bifurcation.
If the cycle always surrounds the origin, then the locked
point would have to be the origin and so the intensity of
the slave would be zero. This is manifestly not the case and
so the cycle must be of bounded phase prior to locking. This
high injection level behavior will be of great relevance below
when we consider highly damped slave lasers.

Note that if the locking bifurcation is of saddle-node form,
then no such restriction applies. In this case there are two
typical scenarios. The fixed points can be born on a limit cycle
of unbounded phase as in the Adler locking scenario. Alterna-
tively, the fixed points can be born away from the limit cycle,
and the phase-locked solution can coexist with the limit cycle
until the cycle is destroyed in a homoclinic bifurcation [12,22].
In both cases the cycle can remain one of unbounded phase.

III. EXPERIMENTAL QUANTUM WELL PHASORS

The experimental setup used the interferometric system
introduced in Ref. [17] and since used in Ref. [12] to investigate
the phase behavior of optically injected semiconductor lasers.
The master laser was a commercial tunable laser with a
linewidth of approximately 100 kHz. The slave laser was a
single (discrete) mode quantum well based device (Eblana
Photonics) emitting at approximately 1.3 μm. The phase of
the slave laser in the frame of the master was measured, and
Fig. 1 shows time series plots of the slave laser intensity and the
associated phasor plots. In Figs. 1(a) and 1(b) the intensity and
phasor of a phase-locked point at a detuning of approximately
−0.68 GHz are shown. The detuning was increased until at a
value of approximately 0.9 GHz the slave unlocked via a Hopf
bifurcation producing an oscillating output of frequency 6.4
GHz, close to the RO frequency of the free-running device. As
the detuning was further increased the intensity oscillations
became more pronounced, and the intensity and the associated
phasor of such a cycle are shown in Figs. 1(c) and 1(d),
respectively. The detuning at this point was approximately
2 GHz. The origin is quite clearly outside the cycle providing
a definitive, unambiguous example of a bounded limit cycle.

By increasing the detuning even further the behavior
became chaotic, a regime of interest to many researchers
(see [23] and references therein). An example of the intensity
and the associated phasor in this regime are shown in Fig. 2. In
the intensity trace we see pulsations of varying height with no
obvious underlying pattern. There is a strong influence on the
trace from the ROs; the time between successive pulsations in
many cases is close to the RO period. The phasor plot shows
the underlying phase trajectories and there are two notable
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FIG. 1. (Color online) Experimental intenisty and associated
phasor traces. The device was operated at approximately 1.5 times
threshold current. (a), (b) Phase-locked behavior with fixed phase
(modulo noise) at a detuning of approximately -0.68 GHz. (c), (d)
Unlocked behavior with bounded phase at a detuning of approxi-
mately 2 GHz.

features. The first is that the phase is now unbounded as
the trajectory surrounds the origin. The second is that there
appear to be two components to the trajectory. One is the large
“unbounded” component on the right of Fig. 2(b) and the other
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FIG. 2. (Color online) Experimental intensity and associated
phasor traces for a chaotic regime at a detuning of approximately
3.4 GHz.

is the crowded “bounded” region on the left of the figure. The
bounded component results from the weakly damped ROs
and produces the smaller pulsations in the intensity, while
the unbounded component produces the large pulsations and
will develop into an unbounded limit cycle at large detunings
[17]. The phasor shows quite clearly the combination of the
influences of both the unbounded behavior prevalent at large
detunings and the bounded behavior prevalent closer to the
locking region.

IV. HIGHER DAMPING: THEORY

We considered earlier the effect of increasing the injection
strength using Eq. (4) and showed that the association of the
Hopf bifurcation with RO undamping ceased to be valid. We
consider now an increase in the damping. This has a similar
effect. The first consideration is the effect on the location
of the codimension 2 intersection of the saddle-node and
Hopf bifurcations. In Ref. [19] it was shown that for weak
damping the detuning at this point is proportional to γ . At low
injection levels this means that the injection strength at the
codimension 2 point is also proportional to γ , and so as the
damping is increased, the codimension 2 point moves to ever
higher injection levels. This codimension 2 point is the point at
which the Hopf bifurcation becomes stable. Thus, as this point
moves to ever higher injection strengths, eventually there is no
longer a stable Hopf bifurcation at low injection levels and so
the physical interpretation of undamped ROs no longer holds
since the weak injection approximation is no longer valid.
Instead, there is a mixture of injection and RO terms involved
in the Hopf frequency. As the damping becomes very high
in the Class A limit [18] there are of course no ROs at all,
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and yet there is still a Hopf bifurcation and so for a Class B
laser with sufficiently high γ the Hopf bifurcation must be (at
least approximately) independent of any RO phenomena. This
should also be clear physically. Since the undamping of the
ROs can be viewed as a resonance phenomenon, one needs
to have a frequency close to �RO to excite them. However,
at high injection strengths the locking range is large and so
the magnitude of the detuning at the locking boundary is also
large. Thus the frequency of the ROs is never reached and the
resonance cannot occur. Nonetheless, as explained earlier, this
route to locking must still involve a limit cycle of bounded
phase.

The Class A rate equations are obtained by adiabatically
eliminating the carrier equation from Eqs. (1) to (3) leading to
the following pair of equations:

Ṙ = P − R2

1 + 2R2
R + K cosφ, (7)

φ̇ = −� + α
P − R2

1 + 2R2
− K

R
sinφ. (8)

This system has previously been considered in Refs. [5,12] but
not for the features under consideration here. Note that in the
free-running Class A laser, perturbations from the steady state
decay exponentially and there is no intrinsic resonance that
may be excited. Thus, the frequency of the Hopf bifurcation
can only be associated with the injection parameters. By
finding the characteristic equation, we can find this frequency

�2
H = �2 − (1 + α2)N2(R), (9)

where N (R) ≡ P−R2

1+2R2 and R2 is evaluated at the Hopf point.
N (R) is bounded with the same limits as N in the Class B case,
and so as the injection strength is increased the detuning term
becomes ever more prominent and for high injection strengths
we recover the same result as for the Class B system, namely,
that �2

H ≈ �2.
In fact, in the Class A system the value of R2 is fixed at

a Hopf bifurcation and is independent of the detuning and
injection strength and dependent only on P and must satisfy

R4 + R2 − P/2 = 0. (10)

To illustrate a specific example let us take α = 2 and P = 0.5.
We thus have R2 ≈ 0.207 and

�2
H = �2 − 0.214. (11)

This shows that for P = 0.5 we can only have a Hopf
bifurcation for |�| �

√
0.214. It also shows that the value

of the detuning is crucial for determining the Hopf frequency
at all injection strengths in stark contrast to the Class B system.

Figure 3 shows a locked to unlocked transition through
a Hopf bifurcation. From top to bottom we see the phase
evolution from (a) phase locked, through (b) unlocked with
bounded phase to (c) unlocked with unbounded phase. At this
injection level the angular frequency of the cycle created in
the Hopf bifurcation is approximately �H = 4.79 and occurs
at a detuning of approximately � = 4.81 (both in units of
radians per inverse photon lifetime), and so we have a close
correspondence between the two. This must also hold for a
Class B laser undergoing sufficiently high injection levels,
in agreement with Eq. (4). Note that there is no bifurcation
associated with the unbounding of the phase. An experimental
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FIG. 3. (Color online) Numerical simulation of the evolution of
the phase in a transition from phase locked to unlocked for a Class
A laser. (a) Fixed phase corresponding to phase-locked behavior;
(b) unlocked behavior with a limit cycle of a bounded phase; and
(c) unlocked behavior with a limit cycle of an unbounded phase. The
parameters were K = 2, α = 2, P = 0.5, and � = 0, 4.82, and 10,
respectively.

transition to locking via such a Hopf bifurcation for a highly
damped quantum dot device is shown in the next section.

V. EXPERIMENTAL QUANTUM DOT PHASORS

To experimentally probe a highly damped device we
used a single mode distributed feedback (DFB) quantum
dot laser with an InAs/InGaAs active region emitting at
approximately 1.3 μm of similar construction to those used
in Ref. [24]. These devices have a much higher RO damping
than conventional semiconductor lasers [25–27]. This leads
to several important differences when compared to quantum
well and bulk lasers including a greatly increased tolerance to
external optical feedback [26] and mutual coupling [24] and
similarities with Class A devices when optically injected [2].
The rate equation model for quantum dot lasers should in
principle be different to that used for quantum well based
devices. However, our intention is to explain the observations
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FIG. 4. (Color online) Experimental phasors for the transition
from locked to unlocked behavior for a quantum dot device through a
Hopf bifurcation. The device was operated at approximately 1.2 times
the threshold current. The ratio of the intensity of the master laser
reaching the slave to the intensity of the slave when free running
was approximately 0.7. (a) Phase-locked behavior at a detuning
of approximately −3 GHz; (b) unlocked behavior with a bounded
phase limit cycle at a detuning of approximately 1.8 GHz; and
(c) unlocked behavior with an unbounded phase limit cycle at a
detuning of approximately 6 GHz.

physically, and so we make use of the noted similarity between
optically injected (InAs/InGaAs) quantum dot devices and
optically injected Class A devices and content ourselves with
qualitative comparisons of the numerical simulations and the
experimental measurements.

Figure 4 shows the evolution of the phasor of a quantum dot
laser over a transition from (a) phase locked to (b) unlocked
with a bounded phase and finally to (c) unlocked with an un-
bounded phase, the same regimes as in the Class A numerical
simulations in Fig. 3. The injection level is quite high here;
the intensity of the light from the master laser reaching the
slave was approximately 0.7 times the free-running intensity of
the slave. In particular, this is much higher than the values
where the locking boundaries are given by saddle-node
bifurcations for both signs of the detuning; the locking for
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FIG. 5. (Color online) Experimental phases corresponding to the
phasors in Fig. 4.

positive detuning was via Hopf for injection strengths of
approximately 0.07 and greater. The bounded limit cycle is
clear in Fig. 4(b). In contrast to the weak injection case
the transition from bounded phase to unbounded phase does
not involve any intermediate regime or any corresponding
bifurcation, as already mentioned. Rather, the cycle of Fig. 4(b)
simply migrates and grows in size continuously to become that
of Fig. 4(c). Figure 5 shows the corresponding plots of the
time series of the phase of the slave laser displaying excellent
qualitative agreement with the numerical evolutions shown in
Fig. 3.

Comparisons of the Hopf frequency and the detuning at
various injection strengths show a good qualitative agreement
with Eq. (9). The frequency of the cycle born in the Hopf
bifurcation at an injection strength of 0.7 was approximately
2.8 GHz and occurred at a detuning of approximately 1.8 GHz.
While these are different, they are sufficiently close that
the detuning must provide a significant contribution to the
Hopf frequency. At the lowest injection strength where the
(positive detuning) locking boundary was of Hopf form—
approximately 0.07—the frequency of the cycle created was
1.8 GHz while the detuning was approximately 0.7 GHz.
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Again, these are sufficiently close that the detuning is a
significant contribution. By moving to high injection levels
the two can become almost equal. When the intensity of the
master laser reaching the slave was approximately 2.2 times
the free-running intensity of the slave, the frequency of the
cycle created in the Hopf bifurcation was 6.7 GHz while
the detuning was approximately 6.6 GHz, in extremely close
correspondence. Thus the detuning is always a significant
factor in the Hopf frequency and increasingly so as the
injection strength increases, in excellent qualitative agreement
with Eq. (9) and in great contrast to the Class B case where
it is sometimes merely a small perturbation. This is yet
another feature of the optically injected quantum dot system
qualitatively similar to the Class A system [2].

VI. CONCLUSIONS

We have shown that the presence of an unlocked solution
of bounded phase exists generically in optically injected
lasers. The phenomenon is a direct result of the Hopf
bifurcation locking mechanism and need not result from any
intrinsic frequency in the laser. Theoretical considerations
and simulations of rate equation models of both Class B
and Class A lasers show two particular cases. For a weakly
damped laser there can be a bounded cycle resulting from

an excitation of the RO resonance in the system, while for a
highly damped or Class A device there is no such excitation,
yet a cycle of bounded phase must still arise. We derived
an expression for the frequency of the Hopf bifurcation
in optically injected Class A lasers and showed that the
detuning must always play a significant role in the value of
this frequency in contrast to the corresponding expression
for Class B lasers. An experimental technique to directly
resolve the phase of the slave laser in the frame of the master
confirmed the existence of the phenomenon for both weakly
damped devices and highly damped devices and were in
excellent agreement with simulations. The phasor in a chaotic
regime for the weakly damped laser displayed a combination
of bounded and unbounded features allowing for a distinctive
view of the regime suggesting that this type of measurement
may be useful in further studies of chaos in the system.
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