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Amplitude death in complex networks induced by environment
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We present a mechanism for amplitude death in coupled nonlinear dynamical systems on a complex network
having interactions with a common environment like external system. We develop a general stability analysis
that is valid for any network topology and obtain the threshold values of coupling constants for the onset of
amplitude death. An important outcome of our study is a universal relation between the critical coupling strength
and the largest nonzero eigenvalue of the coupling matrix. Our results are fully supported by the detailed numerical

analysis for different network topologies.
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I. INTRODUCTION

The dynamics of most real world systems is very complex
and can be analyzed by considering them as many subsystems
or units interacting with each other. Such systems then can be
modeled by complex networks of diverse topologies chosen
to suit their collective behavior. It is now well established that
the interaction among the subsystems can lead to emergent
phenomena like synchronization and amplitude or oscillator
death [1-3]. In such cases, the global dynamics depends
on the interplay between the network structure and nodal
dynamics. However, the interactions of complex networks
with environment, such as an external agency or medium, and
the consequent emergent dynamics are not studied yet. In the
case of quantum systems, the role of environment in causing
decoherence, relaxation, and dissipation is well studied [4-7].
In the context of biological systems, the environment can play
aconstructive role as the mechanism for triggering or signaling
coordinated rhythms [8—10]. Hence it is important and relevant
to study the effect of environment on the dynamics of coupled
systems.

Among the emergent phenomena in coupled systems,
the suppression of dynamics or amplitude death is often a
useful control mechanism for stabilizing systems to steady
states. It is an important self-organized behavior that can play
crucial roles in regulating, switching, and controlling physical
[11,12], chemical [13—16], and biological systems [17-20]. In
this context, amplitude death (AD) refers to the phenomenon
where the coupled or interacting subsystems settle to a steady
state in which dynamics is quenched.

In the context of regularly coupled systems, it has been
shown that amplitude death can be induced by differ-
ent mechanisms, such as parameter mismatch [15,21,22],
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time-delay coupling [23-27], conjugate coupling [28,29], at-
tractive and repulsive couplings [30], and dynamical coupling
[31]. In addition to the study of amplitude death in regularly
coupled systems, there has been a few recent studies on
amplitude death in complex networks. In the specific context
of networks, amplitude death has been studied for parameter
mismatch or detuning of frequencies in an ensemble of limit
cycle oscillators with mean field coupling [32], array of limit
cycle oscillators [33-35], small-world networks [36], and
scale-free networks [37]. So also, time-delay in coupling is
found to induce amplitude death in networks of limit-cycle
oscillators [26,38—40] and chaotic systems [41,42]. Recently,
it was shown that it is possible to target amplitude death
in a network of nonlinear oscillators by a proper choice of
nonlinear coupling [43].

In this paper, we present an interesting phenomenon in
which the collective dynamics of coupled systems is quenched
due to an interaction with an environment or external agency.
For this, we model the average effect of the environment by
an over-damped oscillator which is kept alive with feedback
from the subunits. We find that while the coupling among the
units can give rise to a synchronizing tendency, the coupling
through the environment has a tendency to drive the systems to
a state where the sum of the variables is small. The combined
effect of these two tendencies is to lead the coupled systems
to the state of amplitude death. Our method has the advantage
that it involves a single damped dynamical system coupled to
all nodes equally and hence the design procedure is simple
and easy to implement. It is found to be effective in complex
networks of different topologies.

We have found this mechanism to be quite general and
effective in inducing amplitude death in two systems coupled
by different types of coupling and of different intrinsic
dynamics [44]. The present study generalizes the previous
results in two directions. First, we consider a complex network
of N systems and develop the stability analysis following
the approach given in Ref. [45]. The stability conditions
are obtained for the general case. Second, we consider
different network structures. Our results are supplemented
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by detailed numerical analysis where indices of amplitude
death are computed directly from simulations. For numerical
simulations, we use Rossler as a standard system in its chaotic
region. However, we have tried this method for Landau-Stuart
oscillators and the Hindmarsh-Rose model of neurons and
found it to be effective in causing amplitude death. An
important finding from our study is that, the critical strength of
coupling needed for amplitude death has a universal relation
with the largest nonzero eigenvalue of the coupling matrix
which is tested for many symmetric networks like chain, ring,
tree, lattice, all-to-all, star, and random topologies.

II. AMPLITUDE DEATH VIA DIRECT AND
INDIRECT COUPLING

We consider the dynamics of N systems x;,i = 1,2,...,N,
in a network, coupled with two types of couplings, namely, a
direct diffusive coupling and an indirect coupling through an
environment as an extension of the model given in Ref. [44]
which gave a general model for amplitude death in two coupled
systems. The dynamics of such a model is given by

4 = f(x)+ Y BGijeax; + €y w,

J

. € T

W= —KW— — X, 1
N7 E,- (D

where i,j = 1,2,...,N. Here, x; represents m-dimensional
nonlinear oscillators whose intrinsic dynamics is given by
f(xi). G is the coupling matrix of dimension N x N. We
choose the elements of G such that the row-sum 3, G;; =0
for every j. This ensures that the largest eigenvalue of the
coupling matrix pu; is zero. B is a matrix (m x m) with
elements 0 and 1 and defines the components of x; which take
part in the coupling. For simplicity, we take § to be diagonal,
B = diag(B1,82, - ..,Bm), and in numerical simulations, only
one component, 1, is assumed to be nonzero. The environment
is considered to be a one-dimensional over-damped oscillator
w, with damping parameter « . It is clear that without feedback
from the systems, the environment can not remain dynamic
and will rapidly settle to a steady state. However, the feedback
from all the systems keeps it active. All the systems, in turn, get
feedback from the environment. y is a column matrix (m x 1),
with elements O or 1, and it decides the components of x; that
get feedback from the environment. y7 is the transpose of y
and decides the components of x; which gives feedback to the
environment. The strength of this feedback coupling between
the systems and the environment is given by €.

We illustrate our scheme using a network of coupled chaotic
Rossler systems represented by the following equations:

Xi1 = —Xi2 — X3+ € E Gijxj1 +€.w,
J

Xip = Xi1 +axp, X3 =b+ xi3(x;1 — ¢,

€

W= —KWw— — Xi1. 2

v Z | )

Here, we choose G to be an all-to-all connected network of 10
nodes, that is, G;; = 1, if j # i, and G;; = —9. We find that

amplitude death is possible for suitable values of coupling
strengths. The time series for the amplitude death state is
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FIG. 1. Time series of the first variables x;; of 10 coupled Rossler
systems in an all-to-all coupled network [Eq. (2)] showing amplitude
death for (¢,4,€,) = (0.05,0.8). Here, the Rossler parameters are a =

b = 0.1,c = 18. The damping parameter of the environment is taken
tobex = 1.

shown in Fig. 1. We note that this state corresponds to the
stable fixed point of Eq. (2), given by

xh=[c— \/cz — dabk/(k — €2a)] /2,
X3 = —b/(xj} —¢),
w' = —€x]| /k. 3)

ok
X = —X;/a,

As noted from Eq. (2), our model has two types of coupling.
The first is direct diffusive coupling which tends to synchro-
nize the systems x; = x, = x3 = ... = xy. We find that the
coupling via environment has a tendency to decrease the sum
>_; xi. When both these tendencies work together the systems
converge to a fixed point. This is explicitly seen in the context
of two systems coupled through the environment [44], where
the environmental coupling reduces the sum to a small value,
corresponding to antiphase synchronization.

III. LINEAR STABILITY ANALYSIS

The stability of the steady state of the network of coupled
systems given in Eq. (1) can be analyzed by writing the
variational equations formed by linearizing Eq. (1) as

&= f'(x&+ ) _ BGijek; + ey,
J

t=—kz— 2T Y, @

where &; and z are small deviations from the respective values
of x; and y, and f’ is the m x m Jacobian matrix.
Let us introduce the m x N state function [45]

E=(6.6,....6n). Q)
Then, Eq. (4) for the synchronized state (x; = x, = ... = xy)
can be written as
E = f'E+BesBG” + el (©)
. € 7T
t=—kz— ") & @)

i
where G7 is the transpose of the coupling matrix, and I is an
m x N matrix, ' = (y,y,...,Y).

Let ¢; be an eigenvector of G such that

G er = ey, (8)
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where p is an eigenvalue of G” . Right-multiplying both sides
of Eq. (6) with ¢, we get

Bex = f'Bex + uPesBex + €.2ley. 9)
Let
®, =

o]

ex. (10)
Then, Eq. (9) can be written as
&p = [0 + juBea®i + €2lex. (11)

We note that e; = (1,1, ...,1)7 is the synchronization mani-
fold and ®| = Ee| = Zi &;. Since one could write I" as the
product I' = yelT, Egs. (11) and (7) can be written as

D = f' O + pBea®r + €zye] e, (12)
iz k= 2yTd (13)
= NV 1-

First, we consider the case where G is taken to be a
symmetric matrix. In this case, the remaining eigenvectors
span an (N — 1)-dimensional subspace orthogonal to the
eigenvector e;. Consequently, this subspace is orthogonal to
the synchronization manifold. For k = 1, Eq. (12) becomes

) = f'd; +e€zNy. (14)

Since e; are orthogonal, I'e; = yel e, = 0 for k # 1. There-
fore, for k # 1, Eq. (12) reduces to

by = [y + prBeaPy. (15)

We note that Eqs. (14) and (13) are coupled while Eq. (15) is
independent of the other two. Moreover, Eq. (15) is equivalent
to the master stability equation introduced by Pecora and
Carrol in Ref. [46]. Therefore, the stability function for any
given system will be obtained as a function of €, in the same
way. This therefore ensures the stability of the synchronized
state x; =x, =x3 =...=xy. As noted in the previous
section, for the amplitude death state to be stable, we need
one more condition to be satisfied. That is, the synchronized
state should be a fixed point. For this, the eigenvalues of
the Jacobian corresponding to the coupled system given in
Egs. (14) and (13) should be negative.

So far, we have discussed the case where the coupling
matrix G is symmetric. The same analysis can be extended
to the asymmetric case as well. In this case, the eigenvectors
of G are, in general, not orthogonal to the synchronization
manifold.

Let e, for k # 1, be split to two components, one parallel
and the other perpendicular to e;. That is,

e = e +qpen, (16)

where e is orthogonal to e;. Substituting ¢; from Eq. (16)
in Eq. (11), we find that the dynamics of ®; and z will again
be the same as given in Egs. (14) and (13). The dynamics of
®,k > 1, are given by

by = f' O + wiPea®i + €zNyqy, (17)

since I'ej> = ye[ ¢j- = 0. In principle, the coupled equations,
Egs. (14), (17), and (13) can be considered as the master
stability equation in this case also. However, in this case it
is not practically useful since the master stability function
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will be a function of four parameters €4, a, b, and €., with
ni =a—+1ib.

To continue the analysis of the stability of the amplitude
death states from Egs. (14), (13), and (15), we assume that
the time average values of f’ are approximately the same
and can be replaced by an effective constant value «. In this
approximation we treat &;’s to be scalars. This approximation
simplifies the problem such that only the relevant features
remain and is expected to give features near the transition.
This type of approximation was used in Refs. [44,47,48], and
it is found to describe overall features of the phase diagram
reasonably well.

Thus, Eq. (15) becomes

P = a P + piBeaPr, (18)
and the corresponding Lyapunov exponent is given by

Al = o+ (26, (19)

where u, is the largest u; for k # 1.
The Jacobian corresponding to the coupled Egs. (14)

and (13) is
o €N
I = (—ee/N —K ) ’

and the eigenvalues are

oo/ g,

A3 =

For the stability of the amplitude death state, the real parts
of the eigenvalues should be negative. Thus Eq. (19) gives the
condition

a+ preq <0, 21

while from Eq. (20) we get the following conditions:
(1) If (k — a)* < 4(e2 — ak), rp3 are complex and the
condition of stability is

K > . (22)

(2) If (k — €4 — @)* > 4(€2 — ak), A3 are real and the
stability condition becomes

k> () and € > (aK). (23)

Thus, if Egs. (21) and (22) or (23) are simultaneously satisfied,
the oscillations can not occur and the systems stabilize to a
steady state of amplitude death.

For a given «, o, and 1, the transition to amplitude death
occurs at critical coupling strengths €4, and €., independent of
each other. That is

€40 = const 24)
and
€,c = coOnst. (25)

For different network configurations w, is different and the
transition occurs at the critical coupling strength
—o
€dce = —. (26)
2
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In the case where G is asymmetric, using the approximation
f'~a as explained above, we can write the Jacobian
corresponding to Egs. (14), (17), and (13) as

a+ uafes €zNyq €Nyq
J = 0 o+ o€y €N )
0 —€./N —K

and the eigenvalues are the same as given in Eq. (20). Thus, we
get the same stability relations as in Egs. (21), (22), and (23).

IV. NUMERICAL ANALYSIS

In this section, we apply our scheme to different network
topologies. First, we apply the scheme of coupling introduced
in Eq. (1) to the case of regular networks of coupled chaotic
Rossler systems. Here, we take the coupling to be of the
diffusive type [Eq. (2)]. The occurrence of amplitude death
in the case of a regular all-to-all coupled network is illustrated
in Fig. 1.

To characterize the state of amplitude death, we use an
index A introduced in the earlier paper [44]. It is defined as the
difference between the global maximum and global minimum
values of the time series of the system over a sufficiently
long interval. The case where A = 0 represents the state of
amplitude death, while A # 0 indicates oscillatory dynamics.
The parameter value at which A becomes ~ 0 is thus identified
as the threshold for onset of stability of amplitude death states.

For a given network topology, the threshold value of
coupling strengths for the onset of amplitude death is given by
Egs. (24) and (25). This is verified for the case of an all-to-all
coupled network of Rossler systems by direct numerical
simulations. Using the index A the region of amplitude
death states are identified in the parameter plane of coupling
strengths, €,-€,, and is shown in Fig. 2. The transition curves

0.03 T
I I
S 0015 | 1
0 1
0.3 0.5 0.7
66

FIG. 2. Transition from the region of oscillations (I) to the region
of amplitude death (II) is shown in the parameter plane €,-¢, for
the coupled Rossler systems. Numerical simulations are done on a
symmetric, all-to-all coupled network of 10 nodes. The points mark
the parameter values (¢,.,€,4.) at which the transition to the amplitude
death occurs. Solid triangles show the transition to amplitude death
as €, is increased for a constant €,. The horizontal line formed by
these triangles confirms the stability condition of Eq. (24). Similarly,
circles correspond to the transition to the amplitude death state as €,
is increased for a constant €, and confirm the stability condition of
Eq. (25).
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FIG. 3. Transition from the region of oscillations (I) to the region
of amplitude death (II) is shown in the parameter plane €,-€, for 10
coupled Landau systems on a symmetric, all-to-all coupled network
[Eq. (27)]. The points mark the parameter values (€,.,€4.) at which the
transition to the amplitude death occurs. Here, the intrinsic parameter
of the systems and the damping parameter of the environment are
chosen to be w = 2 and k = 1, respectively. We use the same set of
initial conditions for any pair of (e,,€,) values.

from the stability analysis given in Eqs. (24) and (25) are also
plotted. We see that the agreement is good.

However, we note that exact agreement with stability theory
as shown in Fig. 2 is seen only for Rossler type nodal dynamics.
For a network of Landau-Stuart oscillators, given by the
following equations,

. 2 2

Xi1 = (1 — Xj; —xiz)xil —wxjy + €4 E Gijxj1 + €.w,
J

. 2 2

Xip = (1 — X — xiz)x,-g + wx;1,

. Ee
W —Kw—ﬁXi:xil, (27)

similar analysis shows some deviations between theoretical
and numerical transition curves (Fig. 3). The reason for this
is the following. Towards the end of the stability analysis, we
have used an approximation of constant Jacobian f’, which
masks the system-specific details of the transition, but gives
the overall features of the phase diagram. Hence the conditions
(24) and (25) are approximate, and one must investigate in a
specific case to see any departures from them.

For both Rossler and Landau-Stuart in the amplitude death
state, the Jacobian f’ depends on €., but not on €,. Hence, the
condition (24), i.e., €, = const, obtained from Eq. (23) which
is derived from Eqgs. (13) and (14), is independent of ¢, for
both Rossler and Landau-Stuart as can be seen from Figs. 2
and 3.

The other condition (25), i.e., €;. = const, is obtained from
Eq. (21) whichis derived from Eq. (15). Since Eq. (15) depends
both on ¢; and indirectly on €, through the Jacobian f’, €,
will now depend on €, for both Rossler and Landau-Stuart.
In the case of the Rossler network, the Jacobian has a simple
structure and the dependence of €. on €, is weak giving almost
a straight line as in Fig. 2. In the case of the Landau-Stuart
network, the dependence of €,4. on €, is a polynomial relation
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FIG. 4. Transition from the region of oscillations (I) to the region
of amplitude death (II) is shown in the parameter plane x-€2 for the
coupled Rossler systems given in Eq. (2). Here, an all-to-all coupled
network of 10 nodes is used. The points mark the square of the
coupling strength at which the transition to the amplitude death state
occurs for each value of k. The solid curve is a linear fit corresponding
to the stability condition of Eq. (23). The deviation from straight line
behavior for small values of « is discussed in the text.

explaining the curve obtained for numerical simulations
(Fig. 3).

In the context of Landau-Stuart oscillators, there is an
additional complexity due to bistability with oscillations
and amplitude death coexisting with different basins. This
bistability has been reported earlier in the case of amplitude
death in Landau-Stuart oscillators [28,44]. Such a bistability
does not exist for Rossler systems. In Fig. 3, we have used
the same set of initial conditions for any pair of (¢,,€,) values.
For a different set of initial conditions, the critical coupling
curve in Fig. 3 can shift slightly though the general features
will remain the same.

We also verify numerically the criteria for transition
to amplitude death given in Eq. (23). In Fig. 4, the line
corresponds to the stability conditions of Eq. (23) and the
points are square of the critical coupling strength €., as « is
varied. As we can see from Fig. 4, the agreement is good for
larger values of x. However, for small values of «, the points
deviate from straight line behavior. The reason is clear from
Eq. (22) which gives the lower limit on «.

The nature of the transitions to the state of amplitude death
is further characterized by fixing one of the parameters €, or
€4 and increasing the other. To characterize the transition, we
use the oscillatory part of incoherent energy, E, defined in
Ref. [33]. Since the fixed point obtained in this case is not the
origin, the oscillatory part of incoherent energy is defined after
shifting the origin to the fixed point as

<27=1 [(j1 =) + (2 = 23)% + (x5 — x§)2]>

(S0 [0 = xp + @l — 292+ (% — 2]}
(28)

where (x9), x%,, x%) represent the variables (x;1, X2, X;3)
in the uncoupled case (e, = ¢4 = 0), (x}, x5, x) represent
the fixed point of the coupled system [Eq. (3)], and < . >
denotes average over time. In Fig. 5(a), we plot E of the
coupled system given in Eq. (2) for increasing €, for a chosen
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FIG. 5. (a) The oscillatory part of incoherent energy, E, as a
function of ¢, for a fixed value of €¢; = 0.4 for an all-to-all coupled
network of 10 Rossler systems. (b) The index < A > as a function
of €, for a fixed value of €; = 0.4 for an all-to-all coupled network
of 10 Rossler systems. As €, is increased, we observe a continuous
transition to the state of amplitude death.

value of €;. Here, the transition from the oscillatory state
to the amplitude death state is continuous such that, as the
coupling strength is increased, E gradually decreases to zero.
However, the calculation of E, using Eq. (28), is useful only
when the fixed points of the coupled system can be calculated
analytically. Alternatively, we can use the index < A >, used
to identify states of amplitude death in Figs. 2, 3, and 4, which
does not require the knowledge of the fixed point. This is shown
in Fig. 5(b). Numerically, we also observe that at each node
the subsystems undergo a reverse period-doubling bifurcation
to a limit cycle before undergoing a transition to the amplitude
death state, similar to the case of two coupled Rossler systems
reported earlier [44]. A similar transition is observed for the
case where €, is kept fixed and ¢, is increased.

So far, we have presented the results from numerical
simulations of Eq. (2) in an all-to-all coupled network. Similar
results are observed for other network configurations, such as

1.6 T
® symmetric, all cases
a asymmetric, all cases
y
Q
< 0.8 1
w
a
0
-10 -5 0

K2

FIG. 6. Critical strength of direct coupling, €,., for amplitude
death as a function of the largest nonzero eigenvalue of the coupling
matrix, u,. Here points correspond to values obtained from numerical
simulations, while the line corresponds to the stability condition in
Eq. (26). Open circles represent symmetric networks of different
topologies, such as chain, ring, all-to-all-coupled, tree, lattice, star,
and random. Similarly, filled triangles represent asymmetric networks
of different topologies, such as chain, ring, tree, star, and random. For
the asymmetric networks, u, is, in general, complex. Hence, the real
part of u, is plotted here. The parameters of the Rossler system are
the same as those used in Fig. 1. The parameters in the coupling terms
are €, = 0.8 and x = 1.
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FIG. 7. Critical strength of direct coupling, €,., for amplitude
death as a function of the largest nonzero eigenvalue of the coupling
matrix, p,, for Landau-Stuart oscillators. Here points correspond
to values obtained from numerical simulations, while the line
corresponds to the stability condition in Eq. (26). Open circles
represent symmetric all-to-all coupled networks of different sizes,
and filled squares represent symmetric networks of chain topology
of different sizes. The parameters in the coupling terms are €, = 4.0
andk = 1.

chain, ring, tree, lattice, star, and random topologies. From
numerical simulations of Rossler systems coupled in different
network topologies, we see that the critical strength of coupling
via environment €., is independent of the network topology.
On the other hand, the critical strength of direct coupling for
amplitude death, €., varies with the largest nonzero eigenvalue
of the coupling matrix G, as given in Eq. (26). To verify this,
we consider symmetric and asymmetric matrices of different
topologies and sizes. With each network considered, the largest
nonzero eigenvalue w, of the corresponding coupling matrix
G is calculated. The critical value of coupling, € ., is obtained
from numerical simulations of Eq. (2) and is plotted against
the corresponding ., in Fig. 6. A universal relation between
the critical coupling strength and largest nonzero eigenvalue
of the coupling matrix, as given by Eq. (26), is clearly seen. A
similar behavior is seen in the case of a coupled Landau-Stuart
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systems on many networks as shown in Fig. 7. A similar
insensitivity of the transition to amplitude death to the network
structure is reported in the case of time-delay coupled Rossler
systems in Ref. [42] where the smallest eigenvalue of the
adjacency matrix of the network is found to determine the size
of the death island.

V. DISCUSSION

We report the amplitude death in a complex network of
nonlinear oscillators caused by interactions with a common
environment. Our method involves a damped environment
modeled by a single variable coupled to all nodes equally. We
develop a stability analysis to obtain the criteria for the onset
of amplitude death. The transition curves obtained from the
stability analysis matches well with those obtained from direct
numerical simulations. Moreover, the method introduced here
is found to work for different network topologies. In the context
of the two specific nodal dynamics, Rossler and Landau-Stuart,
studied here, we find that there exists a universal relation
which is independent of network topology, between the largest
eigenvalue of the coupling matrix and the critical value of
coupling. All the points corresponding to the transition to the
amplitude death state for different network topologies fall on
the same curve. This is as expected from the stability analysis
developed.

The dynamical mechanism that induces amplitude death
itself is very interesting, where the environment modulates the
dynamics in a self-organized way. Since amplitude death is
brought about by a common variable coupled equally to all
nodes, the design procedure is simple and easy to implement
in cases where targeting of complex systems to steady state
behavior is desirable.
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