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In this paper, stochastic resonance of an ensemble of coupled bistable systems driven by noise having an
a-stable distribution and nonhomogeneous coupling is investigated. The «-stable distribution considered here is
characterized by four intrinsic parameters: o € (0,2] is called the stability parameter for describing the asymptotic
behavior of stable densities; 8 € [—1,1] is a skewness parameter for measuring asymmetry; y € (0,00) is a scale
parameter for measuring the width of the distribution; and § € (—00,00) is a location parameter for representing
the mean value. It is demonstrated that the resonant behavior is optimized by an intermediate value of the diversity
in coupling strengths. We show that the stability parameter & and the scale parameter y can be well selected
to generate resonant effects in response to external signals. In addition, the interplay between the skewness
parameter B and the location parameter § on the resonance effects is also studied. We further show that the
asymmetry of a Lévy a-stable distribution resulting from the skewness parameter 8 and the location parameter
8 can enhance the resonance effects. Both theoretical analysis and simulation are presented to verify the results

of this paper.
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I. INTRODUCTION

Stochastic resonance (SR) is a noise-induced effect demon-
strating the phenomenon of signal amplification, which has
been extensively investigated in the past two decades [1-5].
The mechanism is such that an external forcing injected on a
nonlinear system can be amplified under a proper dose of noise.
Further noise-induced resonance phenomena including doubly
stochastic resonance [6], SR on bone loss [7], SR in excitable
systems [8], coherence resonance [9] and array-enhanced
coherence resonance [10] have been studied to manifest the
constructive role of noises.

While initially the studies focused on resonance of dynami-
cal systems with a simple form of Gaussian noise, more recent
works [11-14] have considered the significant role of Lévy
stable distribution noises in a single system. In [13], the effect
of the stability parameter @ € [1.5,2] on a subdiffusive bistable
system was investigated. Additionally, growing experimental
evidence also indicates that there is a stringent need to consider
a more general kind of noise than a Gaussian type of noise
[15-17]. As a more general heavy-tailed fluctuation, stable
distribution has been observed and manifested in various situ-
ations ranging from economics [15], stochastic resonance [11],
forging [16], finance market [17], and game theory [18], etc.

Recently, resonance phenomena have been extended to
complex networks composed of an array of coupled units under
Gaussian type noises and generated considerable interest [19].
For the sake of simplicity, the unit networks are usually coupled
with a global coupling strength. Similar to the stochastic
resonance phenomenon [20], it was revealed that when a
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small periodic force acts on coupled networks, the system
has a maximal linear response at a certain system size. SR
phenomena have also been found in globally coupled net-
works [21], globally coupled networks with time delays [22],
scale-free networks [23], diffusively coupled networks [24],
complex networks with time delays [25], diffusively coupled
FitzHugh-Nagumo model [26], and coupled networks with
both attractive and repulsive couplings [27]. In [21], analytical
and numerical results revealed that when bistable or excitable
systems are subjected to an external subthreshold signal, their
response achieves their maximum for an intermediate value of
diversity. In [28], a system of globally coupled active rotators
near the excitable regime was considered and it displays a
transition to a state of collective firing induced by disorder.
However, it is well known that the connections in real-world
networks are normally weighted, such as cortical networks,
biological networks, transportation networks, and communi-
cation networks [19]. Therefore it is very interesting to study
the dynamics of networks with nonhomogeneous coupling.

The above discussions show the importance of SR driven
by noise having an «-stable distribution and the related
mechanisms are now gradually uncovered. Up to now, all the
previous studies regarding stable distribution noise induced
resonance were confined to a single bistable or excitable
system [11-13] instead of complex networks. More im-
portantly, the importance of the stability parameter «, the
skewness parameter 3, the scale parameter y, and the location
parameter 6 have not been systematically investigated in these
contributions. To the best of the authors’ knowledge, the results
of SR in complex networks focus on fixed coupling strength
instead of nonhomogeneous networks, despite the importance
of nonhomogeneous coupling strengths in modeling a realistic
network.
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In this paper, we therefore explore SR of globally coupled
networks perturbed by noise having an «-stable distribution
and nonhomogeneous coupling. It is revealed that a resonance
collective behavior is observed in the presence of diversity
in coupling strengths. The effects of the stability parameter
o and the scale parameter y on the resonance behaviors are
shown. It is found that « plays a similar role as y to show
the diversity of noises and thus it can induce SR by tuning «.
The interplay impacts of the skewness parameter 8 and the
location parameter § on SR are also presented. We find that
the asymmetry of Lévy «-stable distributions resulting from
the skewness parameter § can facilitate to enhance resonance
effects when the location parameter § is not zero.

The paper is organized as follows. In Sec. II, some
preliminaries of noise having an «-stable distribution are
presented and then the main results of SR in an ensemble
of coupled bistable systems with Lévy «-stable distribution
noises and nonhomogeneous coupling are provided. Finally,
Sec. III draws the conclusion and the discussions.

II. METHOD AND RESULTS

A. Model

The following ensemble of globally coupled bistable
systems is considered:

¢ = ; Ly Assin(® 1

Xi=xi —x; + &+ szlcij(xj —x;) + Asin(®r), (1)
where x;(t),i = 1,2, ...,N, is the state of the ith unit at time
t. The system is subjected to an external periodic forcing
with amplitude A and frequency ® = ZT” ¢ij > 0 denotes
the nonhomogeneous coupling strength among the ith and
Jjth unit. Here, we assume that ¢;; takes independent values
according to anormal distribution f(a), which satisfies (c;;) =
D ((-) represents mean value) and var{c;;} = 2D(2,. In this
paper, we assume that all the coupling strengths are attractive,
i.e., ¢;j > 0, [27] and if the generated ¢;; < 0, the values of
¢;j are fixed at 0.01. The location and relative stability of the
fixed points of an isolated ith unit are disturbed by the noise
parameter &;. The noise &; follows a Lévy «-stable distribution
whose characteristic function is given as follows [17,29]:

$(t.c.p.y.8) = exp [iré - |yr|“(1 — ifsgn(r) tan ?)]
a #1, )

for

and

o(t,a,B,y,8) = exp [it(S — y|t|(l + iﬂ;sgn(t)ln|t|>],

3)

Note that any probability distribution is determined by its
characteristic function ¢(t) by

for a=1.

1 [ ;
@ =5 [ swear @)
27 J_so
o € (0,2] is a stability parameter; 8 € [—1,1] is called the
skewness parameter for measuring asymmetry; y € (0,00) is
a scale parameter and § € (—00,00) is a location parameter.
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FIG. 1. (Color online) Probability density function of stable
distribution noises. (a) Varying o« when =0,y =1,86=0;
(b) varying y whena = 1.5, 8 =0, § = 0; (c) varying 8 when o =
08,y =1,6=1;(d) varying  whenae =12,y =1, = —1.

When B = 0, the distribution is symmetric around § and is
referred to a (Lévy) symmetric o-stable distribution. The scale
parameter y is a measure of the width of the distribution and
« is the exponent or index of the distribution and specifies the
asymptotic behavior of the distribution when o < 2.

In probability theory, a random variable is said to be stable
or to have a stable distribution if it has the property that a linear
combination of two independent copies of the variable has the
same distribution, up to location and scale parameters. The
stable distribution family is also named as the Lévy «-stable
distribution. Note that the normal distribution, the Cauchy
distribution, and the Lévy distribution all have the above
properties, which follows that they are special cases of stable
distributions [17,29]. When o = 2, the distribution reduces
to a Gaussian distribution with variance o> = 2?2 and the
skewness parameter § has no effect on the distribution. In such
a case, § describes the mean value. When o = 1 and g = 0,
the distribution becomes Cauchy distribution. When o = %
and B8 = 1, the distribution turns to be a Lévy distribution.
Figure 1 depicts the typical probability density function of
a Lévy «-stable distribution. From Fig. 1, as « decreases,
three changes occur to the density: the peak turns higher,
the region flanking the peak turns lower, and the tails turn
heavier. Hence we find that the stability parameter o can also
be used to determine the diversity, which is similar to the
scale parameter y when o = 2 [21]. One can further observe
from Fig. 1, as « increases, that the peak of 8 = 1 moves
from the right to the left one. If 8 > 0, then the distribution
is skewed with the right tail of the distribution heavier than
the left. When 8 = 1, the stable distribution is totally skewed
to the right. Therefore the SR problem of bistable systems
under a stable distribution considered in this paper extends
the diversity-induced resonance [21] into a more general noise
distribution case.

In the following, in order to avoid such a case that some
random variables can be extremely large, & is generated
according to the Lévy «-stable distribution with a predefined
bound [—€,€;]. Different from recent works in studying Lévy
a-stable distribution induced noise phenomena [11-13], under
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this assumption, we can also show the effect of small «.
In addition, such a bound has also been widely adopted in
characterizing random time delays with a normal distribution
[30].

To study the response of the periodically driven system,
the spectral amplification factor R = 4A72|('® X(1))| is
quantified [31], where X(¢) = ﬁ vazlxi(t) is the average
state of the units at time ¢. The spectral amplification factor
R characterizes the amount of information in the signal trans-
mission with a particular external forcing. In the following, the
parameters are fixedas 7 = 100,A = 0.2,€; = €; = € = 500,
and N = 200.

B. Main results

In Fig. 2, the amplification factor R versus D and D,
is plotted, where D and D, are provided below (1). We
find that there exists an optimum area for the maximum of
amplification factor R. When D, is properly chosen and D
increases, there exists a peak in R. Meanwhile, when D is not
very large, it is found that, as increasing Ds, R first increases
until achieving its peak, and then it decreases. This observation
is a typical resonance behavior. Therefore a proper diversity
of the coupling strength is conducive to the enhancement
of resonance effects even when D is small. It is also found
that as D decreases, the area of varying D, for a maximum
of amplification factor R becomes narrower gradually. This
phenomenon can be understood as follows. When D is not very
large and the diversity in the coupling strength D, between the
units increases, a unit can be excited by its neighbors, although
it is unable to respond to the external forcing. When D is too
large, the system will become globally synchronized and D,
cannot induce a resonance behavior. As D decreases, more ¢;;
will reach the lower bound 0.01 and hence less units cannot be
excited by their neighboring units for response to the external
stimulus. Therefore the area of varying D, for maximum of
amplification factor R turns narrower gradually.

In Fig. 3, the amplification factor R as a function of the
coupling strength D, the stability parameter «, and the scale
parameter y is plotted. From Fig. 3(a), it is seen that there
exists a peak by varying D under a certain stability parameter
o. If o decreases, a larger D is required to excite the best
resonance effect. Hence the location of optimal value of R
in terms of D increases as « decreases. From Fig. 3(b), the

1

FIG. 2. (Color online) The spectral amplification factor R of
the coupled bistable systems is plotted as a function of D and
its variance 2D?2. & is generated from a stable distribution with
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FIG. 3. (Color online) The spectral amplification factor R of the
coupled bistable systems is plotted as a function of D, @, and y. (a) R
as a function of D and @ when 8 =0, y = %, §=0,and D, = 0;
(b) R as a functionof y andaw when 8 =0,5 =0, D = 1,and D, =
0; (¢) R as a function of y and D wheno = 1.5, 8 =0, § =0, and
D, = 0;(d) R as a function of « and y when § =0, =0, D =1,
and D, = 0.

stability parameter « plays a similar role as the scale parameter
y and the effect of y on resonant effects was also studied
in [21,22], in which only the Gaussian type of noise (o = 2)
was considered and y represents diversity. In summary, the
stability parameter « can well characterize diversity like the
scale parameter y.

In Fig. 3(c), the amplification factor R as a function
of the stability parameter v and the scale parameter y is
plotted. From Fig. 3(c), we observe that there exists a peak
by varying the scale parameter y under different «. When
the scale parameter y increases, a larger stability parameter
a is needed to achieve the best resonance behavior of the
coupled bistable systems. In addition, the peaks become
higher for larger & and y. The observed phenomenon can be
explained as follows. As o increases, the stable distribution
approaches the normal distribution. Although the stability
parameter « can induce diversity to the element, it will also
lead to several large random variables which might destroy
the resonance behavior. As shown in Fig. 1, the diversity
is maintained by properly choosing the scale parameter y
to produce resonance behaviors and enlarging the stability
parameter « could reduce the probability of generating large
random variables. Therefore there exists a tradeoff between
decreasing « to induce diversity and increasing « to avoid
extremely large noises. This phenomenon is further manifested
by Fig. 3(d), where it is seen that there exist the best coherent
states as a function of the stability parameter «. The value
of R increases to reach a peak and then decreases when the
stability parameter o further increases, which shows that an
overlarge o or a small & cannot invoke resonance effects. In
summary, decreasing « can induce diversity, which is helpful
for resonance effects and could also do harm to resonance
effect due to the existence of overlarge random variables at
the same time. Therefore a better way to induce diversity to
maximize resonance behaviors is by increasing o and properly
choosing y.
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FIG. 4. (Color online) The spectral amplification factor R of the
coupled bistable systems is plotted as a function of 8, y, and §. (a) R
asafunctionof Band y whena = 0.5, § =0, D=1, D, =0;(b) R
as a function of g and § whena = 0.5, y = 1073, D =1, D, = 0;
() R as a function of 8 and § when o = 1.5, y = 10°°, D =
1, D, =0; (d) R as a function of § and § when o« =0.5, y =
103, D=1, D, =0; () R as a function of § and 8 when o =
1.5, y=10,D=1, D, =0.

In Fig. 4, the amplification factor R as a function of
the skewness parameter B, the scale parameter y, and the
location parameter é is plotted. The amplification factor R
as a function of the skewness parameter 8 and the scale
parameter y is shown in Fig. 4(a). One observes that there
exists a peak by varying the skewness parameter 8 under a
certain y with the location parameter 6 = 0, which indicates
that the resonance effect is maximum if the distribution of the
stable distribution noises is symmetric (8 = 0) when § = 0.
From Figs. 4(b) and 4(c), it is observed that the location
parameter § can help to enhance resonance effects when
o = 0.5 and o = 1.5. Figures 4(d) and 4(e) show that tuning
the asymmetry of stable distribution noises, i.e., adjusting
the skewness parameter B, will be conducive to enhancing
resonance effects. From Figs. 4(b) and 4(c), there exists a best
resonance effect as a function of the location §. From Fig. 4(b),
we find that increasing the skewness parameter 8 makes the
locations of the peaks move from right to left when the stability
parameter o < 1. That is, a smaller location parameter y
is required for the best resonance behavior of the coupled
systems. For example, in Fig. 4(b), when § ~ —0.6, « = 0.5,
and B8 = 1 maximizes R and when é ~ —0.4, @ = 0.5, and
B =0.6 is necessary. Conversely, from Fig. 4(c), if the
stability parameter o > 1 and the skewness parameter S
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FIG. 5. (Color online) The spectral amplification factor R of the
coupled bistable systems is plotted as a function of the bound € and
the stability parameter «. & is generated from a stable distribution
with =0,y =*2,6=0,D=1, D, =0.

increases, a larger location parameter y is needed for the
best resonance effect of the coupled systems. Moreover, we
find from Figs. 4(b)—4(e) that when « decreases, tuning B is
becoming more effective to produce resonance behaviors. For
instance, in Figs. 4(b) and 4(d), when « = 0.5, tuning 8 can
enable the systems to response to the external forcing when
8 € (—0.6,0.6). Nevertheless, when a = 1.5, the area reduces
around § € (—0.4,0.4) which could produce resonance effects
by tuning B. This is due to the fact that as « decreases, the
effect of 8 becomes more pronounced [29]. In summary, we
find that the interplay between the skewness parameter S and
the location parameter § play constructive roles in enhancing
resonance effects.

The dependence of the predefined bound € on R is shown
in Fig. 5. Large value of € indicates that the random variables
generated by a stable distribution under boundary restriction
reflects the real stable distribution better. From Fig. 5, it
is observed that the difference between ¢ = 100 and € =
400 is obvious, but the discrepancy for larger values of €
(e =400, 700, and 1000) is almost negligible. Therefore the
boundary assumption € = 500 adopted here is reasonable to
reflect a stable distribution in a wide area.

C. Analytical analysis

In order to quantify the response of the coupled bistable
systems to the external stimulus, the approximate theory [21]
is employed to conduct an analytical analysis. Since the model
considered in this paper is rather complicated, we reduce the
model into a simpler one with D, = 0, > 1.

Denote X(t) = % Z,N= 1 Xi(t) as the average state of the
units. In the globally coupled case studied here, (1) can be
rewritten in the following macroscopic way:

X = DX+ (1 —D)x; —x; + & + Asin(®r).  (5)
By averaging (5), we get
1 =
X_X_Nigl:xi_{-;gl—{—Asm(@t). (6)

Then, one can introduce 6; such that x; = X + 6;. Denote
% SN, 62 =V(1) > 0. Under the assumption of 6; being
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FIG. 6. (Color online) The approximate theory for the spectral
amplification factor R. (a) R as a function of y when o = 1.5, 8 =
0,6=0,D=1, D, =0; (b) R as a function of y when o =
1.5,6=06,8=05 D=1, D, =0.

evenly distributed, we yield from (6)

N
X =X[1-3VO] - X*+ ) &+ Asin(®r).  (7)
i=1

For simplicity, let ZlN:l & =0, as in [21], and one gets the
following.
Method 1:

X = X[1=3V()] — X> + Asin(dr). (8)

If the mean value of &; is not neglected due to the asymmetry
of the noise distribution and « > 1, the expectation E(Z) of
the random variables Z generated from a stable distribution
is § according to [29]. Then, (7) can also be written as the
following.

Method 2:

X = X[1 =3V(#)] — X> + 8 + Asin(®r). 9)

By employing (8) and (9), we can perform approximating
results. Two cases are taken into account: the first case is
systems driven by a symmetrical distribution noise and the
other one is systems driven by an asymmetrical distribution
noise. From Fig. 6(a), for the symmetrical distribution noise,
both methods are in good agreement with the results obtained
from a direct numerical simulation of the complete system (1).
However, for the asymmetrical distribution noise, method 1 is
too poor to well approximate the real value of R. Method 2
can well predict the optimal value y for R much better due
to the introduction of the term of §. The predicted amplitude
is lower than the real R. Compared with method 1, method 2
attains much closer to the real R.

III. CONCLUSION AND DISCUSSIONS

In conclusion, systems disturbed by Lévy «-stable distri-
bution noises display richer dynamical behaviors than systems
perturbed by only white Gaussian noises, since the Lévy
«-stable distribution includes many well-known distributions
such as the normal distribution and the Cauchy distribution as
special cases. We have shown that a Lévy «-stable distribution,
in the For of quenched noise, can result in and enhance a
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resonance behavior for the response of an ensemble of coupled
bistable systems to an external periodic stimulus. In addition,
the SR in coupled bistable systems with nonhomogeneous
coupling is also studied. It is shown that the resonance effect
can also be induced by properly choosing the diversity in the
coupling strength. An approximating theory is employed and
extended to analyze globally coupled bistable systems under
Lévy a-stable distribution noises.

In [21], it is shown that y represents diversity to induce
SR when « = 2. Here, our results show that the stability
parameter o plays a similar role as the scale parameter y
to induce diversity to the coupled systems and thus result in a
resonance effect in response to external forcing. One difference
is that decreasing « will not only induce diversity to enhance
the resonance behavior but also lead to overlarge random
variables to reduce the resonance behavior. Hence a better
way to induce diversity to enhance resonance behaviors is to
increase « and properly choosing y . In addition, an appropriate
skewness parameter 8, which represents the symmetry of noise
distribution, is able to facilitate the resonance phenomenon.
Similarly, an appropriate amount of the location parameter §
is helpful to make the systems optimally respond to external
signal. It is found that for increasing 8 with o < 1, a smaller
8 is required for the best resonance effect. The situation is
contrary when o > 1.

We expect that all the results presented in this paper are
of great significance for the investigation of SR in various
coupled systems with nonhomogeneous coupling and different
sources of noise, and can establish a valuable guideline
for broader theoretical and experimental researches. Since
nonhomogeneous coupling and various noises are omnipresent
in natural systems, the presented results in this paper may
be beneficial to the development of potential applications
in areas of system biology, ecology, signal processing, and
neuroscience [32-34]. One direction for future research is to
study stochastic resonance of coupled systems with nonho-
mogeneous coupling, where both repulsive and attractive cou-
plings are considered [27]. Another future research direction
is to utilize Lévy a-stable distribution noises to investigate
noise-induced synchronization and noise-induced coherence
in coupled systems [10,35,36].
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