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Oscillation death in asymmetrically delay-coupled oscillators
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Symmetrically coupled oscillators represent a limiting case for studying the dynamics of natural systems.
Therefore, we here investigate the effect of coupling asymmetry on delay-induced oscillation death (OD) in
coupled nonlinear oscillators. It is found that the asymmetrical coupling substantially enlarges the domain of the
OD island in the parameter space. Specifically, when the intensity of asymmetry is enhanced by turning down
the value of the coupling asymmetry parameter α, the OD island gradually expands along two directions of both
the coupling delay and the coupling strength. The expansion behavior of the OD region is well characterized
by a power law scaling, R = αγ with γ ≈ −1.19. The minimum value of the intrinsic frequency, for which
OD is possible, monotonically decreases with decreasing α and saturates around a constant value in the limit of
α → 0. The generality of the conducive effect of coupling asymmetry is confirmed in a numerical study of two
delay-coupled chaotic Rössler oscillators. Our findings shed an improved light on the understanding of dynamics
in asymmetrically delay-coupled systems.
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I. INTRODUCTION

The complex dynamics of a large number of coupled
nonlinear oscillators has formed an interesting research topic
recently, which aims to efficiently describe the collective
activities emerged in nature [1–3]. Oscillation death (OD),
an intriguing phenomenon of oscillation quenching due to
mutual interactions of oscillatory systems, has attracted
growing attention among researchers in the field of nonlinear
dynamics. The OD phenomenon has been widely observed
in various real systems, such as the Belousov-Zhabotinsky
reaction [4], relativistic magnetrons [5], or synthetic genetic
networks [6–9]. Initially OD has been analytically proven to
be impossible in coupled identical oscillators [10]. In 1998,
Reddy et al. [11] showed that OD could even appear in coupled
identical limit-cycle oscillators if the coupling contained a time
delay, which was termed as “death by delay” [12]. Recently
researchers have exploited some other coupling mechanisms
which could be used to produce a stable OD state in coupled
oscillators. Moreover, a series of coupling methods have been
introduced such as dynamic coupling [13], conjugate coupling
[14,15], nonlinear coupling [16], and indirect coupling [17].

Since the works of Reddy et al. on delay-induced OD
[11,18], OD has received increasing interest in the past
decade. Considerable novel efforts on both experimental and
theoretical explorations have been made. For example, in
experimental studies, OD induced by a delay was already
observed in electronic circuits [19], lasers [20], and thermo-
optical oscillators [21]. The theoretical developments were
focused mainly on OD induced by various modified forms
of delayed coupling in coupled Hopf oscillators such as
distributed delays [22], partial time-delay coupling [23],
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gradient time-delay coupling [24], two long-time delays [25],
a time-varied delay [26], integrative time-delay coupling [27],
and phase-dependent delayed coupling [28]. In addition,
delay-induced OD in coupled chaotic oscillators also has been
systematically explored in two oscillators [29,30], a one-way
ring network [31], and complex networks [32].

Delay-induced OD has been investigated from various
aspects. It is to be noted that the majority of past studies have
been hitherto confined only to symmetrical (or homogeneous)
coupling. Such a consideration of perfectly symmetrical
interaction in coupled oscillators mainly came from the idea
that it is convenient for both theoretical investigations and
numerical calculations. However, such an ideal assumption is
generally considered to be an exception which is often not
fulfilled in real coupled-oscillator systems. Indeed, coupling
asymmetry arises naturally in various realistic systems. In an
ecosystem, the interactions between two coupled predator-prey
systems are in general asymmetrical due to their dependence
on the density differences of these two population paths
[33]. Physiological membranes that selectively diffuse ions
reasonably result in asymmetrical diffusion [34]. For a pair of
coupled pendula, the coupling asymmetry originates from the
dependence of the coupling strength on the mass ratio between
both pendula [2].

Previous studies have already indicated that in the presence
of coupling asymmetry the dynamics of coupled systems could
be in a different situation. In two coupled dynamical systems,
a host of novel dynamical effects induced by asymmetrical
coupling have been reported so far. For example, the coupling
asymmetry is shown to change bifurcation scenarios of
desynchronization [35], enhance anomalous phase synchro-
nization [36], and render chaos suppression [37]. Crucial
effects of asymmetrical coupling on the synchronization of
two interacting, spatially extended chaotic fields have been
well addressed by Bragard et al. [38–40]. In the aspect of

046206-11539-3755/2012/85(4)/046206(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.046206
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experiments, scaling behaviors of the onset of oscillations in
two asymmetrically delay-coupled lasers and optoelectronic
oscillators were generically observed [41,42].

To the best of our knowledge, however, delay-induced OD
in asymmetrically coupled oscillators has not been studied
until now. Therefore, with this simple but not trivial motivation,
our intention in this paper is to elucidate the effects of
asymmetrical coupling on delay-induced OD in coupled
oscillators. At a first glance, one may intuitively conjecture
that asymmetrical coupling will inhibit delay-induced OD as
the symmetry of the coupling is broken. Nevertheless, via an
analytical and numerical approach, our research in this paper
gives an intriguing opposite result: the asymmetrical coupling
facilitates delay-induced OD.

This paper is outlined as follows. In Sec. II, the studies
are first conducted in the context of coupled Stuart-Landau
limit-cycle oscillators. The Stuart-Landau model represents a
normal form describing dynamics near a supercritical Hopf
bifurcation [1]. For this model, both numerical studies and
analytical analyses are carried out in detail. Moreover, the
derived results are expected to be applicable at least for
ensembles of oscillators near a Hopf bifurcation. We find
that the asymmetrical coupling is beneficial to delay-induced
OD. The presence of asymmetry in delay-coupled systems
enhances the onset of the OD regime in the parameter space.
A brief numerical study of two delay-coupled chaotic Rössler
oscillators further confirms the conducive role of coupling
asymmetry in coupled chaotic systems. Finally, in Sec. III
we summarize our results and discuss implications of our
findings for applications in biological systems. Numerical
integrations in this paper are performed under random initial
conditions where the fourth-order Runge-Kutta method with
an integration step 0.001 is adopted.

II. RESULTS AND OBSERVATIONS

Let us consider the following two delay-coupled Stuart-
Landau oscillators:

ż1 = (1 + iw1 − |z1|2)z1 + αK[z2(t − τ ) − z1(t)],
(1)

ż2 = (1 + iw2 − |z2|2)z2 + K[z1(t − τ ) − z2(t)],

where z1 and z2 are complex amplitudes of the oscillators
with natural frequencies of w1 and w2, respectively, K � 0
is the coupling strength, τ is the propagation delay, and α

(0 � α � 1) accounts for asymmetry in the coupling. By
adjusting α, two extreme cases exist: one is the unidirectional
drive-response architecture for α = 0, and the other is the
bidirectional asymmetrical coupling configure for α = 1. The
coupling schemes are schematically shown in Fig. 1. It is
interesting to change the value of α and probe the dynamics
of the coupled system (1).

Without coupling (i.e., K = 0) in system (1), each uncou-
pled oscillator has an unstable focus at the origin (z1 = z2 = 0)
and a stable limit cycle at |z1| = |z2| = 1 on which it moves
with the intrinsic frequencies w1 and w2, respectively. When
OD occurs, if the coupling is switched on (i.e., K > 0), the
original limit cycles are completely lost and collapse to the
origin. To identify an OD state, the coupled system (1) is
linearized at the zero solution (z1 = z2 = 0). The linearized

FIG. 1. Schematic of the coupling configuration employed in
this paper. The asymmetry parameters α = 0 and α = 1 recover
the unidirectional drive response and the bidirectional symmetrical
coupling schemes, respectively.

system reads as follows:

δ̇z1 = (1 + iw1)δz1 + αK[δz2(t − τ ) − δz1(t)],
(2)

δ̇z2 = (1 + iw2)δz2 + K[δz1(t − τ ) − δz2(t)].

Making the ansatz δzi ∝ eλt , the following eigenvalue matrix
M of Eq. (2) is obtained:

M =
(

1 + iw1 − αK αKe−λτ

Ke−λτ 1 + iw2 − K

)
, (3)

where λ is the eigenvalue of M . The OD state is asymptotically
stable if and only if all the eigenvalues of matrix M have a
strictly negative real part. Since Re[Tr(M)]= 2 − (1 + α)K , a
necessary condition for stability is

Re[Tr(M)] � 0 ⇔ K � 2

1 + α
. (4)

All the eigenvalues of matrix M are governed by the
characteristic equation as follows:

(1 + iw1 − αK − λ)(1 + iw2 − K − λ) − αK2e−2λτ = 0,

(5)

which has infinitely many roots for τ �= 0, but only a finite
number in any given stripe on the complex plane [43]. The OD
stability depends on the sign of the real part of the rightmost
root of Eq. (5), which generally cannot be explicitly derived.

For two special cases, the characteristic roots of Eq. (5) have
simple forms: (i) For α = 0, we have two eigenvalues: 1 + iw1

and 1 + iw2 − K . Clearly the OD state is unstable for all the
values of coupling delay τ and coupling strength K . This
can be easily understood from the drive-response coupling
scheme for α = 0, where the uncoupled drive oscillator always
oscillates. (ii) If w1 = w2 = w and τ = 0, we get the two
eigenvalues: 1 + iw and 1 + iw − (1 + α)K . Obviously, the
OD state is also unstable for all the values of asymmetry
parameter α and coupling strength K , which implies that OD
is impossible in asymmetrically coupled identical oscillators
without a delay.

To quantitatively discover how asymmetrical coupling
affects delay-induced OD, we first consider the case of coupled
oscillators with identical frequencies w1 = w2 = w. This is
a more stringent case for the OD stability, as frequency
mismatch can induce OD even without any delay, whereas
identical frequencies fail to do so [10]. It is easy to verify that
λ = 0 is not a solution of Eq. (5). Thus the stability of the
origin may be switched only when the rightmost eigenvalue
λ crosses transversally the imaginary axis. The OD state is
then achieved via a Hopf bifurcation from a periodic solution.
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For the critical situation λ = iλI (λI �= 0), substituting this
into the characteristic equation (5) and separating the real and
imaginary parts yields

(λI − w)2 − (1 − K)(1 − αK) + αK2 cos(2λI τ ) = 0,
(6)

(λI − w)[2 − (1 + α)K] − αK2 sin(2λI τ ) = 0.

After some algebraic manipulations of Eq. (6), we further
arrive at the following two equations:

λI = w ±
√

−a2 − b2 +
√

(a2 − b2)2 + c2

2
≡ w ± A,

(7)

cos(λI τ ) =
√

1

2
+ (a + b)2 −

√
(a2 − b2)2 + c2

2c
≡ B,

where a = (1 − K), b = (1 − αK) and c = 2αK2. Then by
properly choosing the signs in the inversion of cosine function
with a similar strategy as in Refs. [11,18], the following two
critical curves bounding the OD region are obtained:

τ1 = cos−1 B

w − A
, τ2 = π − cos−1 B

w + A
, (8)

which reduce to the results derived by Reddy et al. [11] when
α = 1.0.

By numerically plotting the two critical curves τ1 and τ2

of Eq. (8), the stable regions of OD in the parameter plane
of (τ,K) are shown in Fig. 2(a) for α = 1.0, 0.5, 0.3, and
0.2, respectively. w = 10 is fixed. All the OD regions are
independently tested by our numerical integrations of the
coupled system (1). Interestingly, from Fig. 2(a), we find that
the OD island expands both along the τ and the K directions
as the asymmetry parameter α gradually decreases; and the
smaller α, the larger the OD island is.

To quantify the size-growing phenomenon depicted in
Fig. 2(a), we introduce a normalized size ratio R = Sα/Sα=1,
where Sα denotes the area of the OD island for α and Sα=1 for
α = 1. Obviously R = 0 for α = 0 and R = 1 for α = 1. For
0 < α < 1, by counting the number of the data within the OD

FIG. 2. (Color online) (a) The OD islands of the two coupled
identical oscillators of Eq. (1) for the asymmetry parameters α =
1.0, 0.5, 0.3, and 0.2, respectively. ω1 = ω2 = ω = 10 is fixed. The
OD island expands along both the horizontal and vertical directions.
(b) The normalized size ratio R vs the asymmetry parameter α, with
the data numerically computed from (a) (solid square points) and the
fit (red solid line), R = αγ with γ ≈ −1.19. The upper-right inset
shows the fit in the log-log plot.

region, the value of R is numerically calculated and shown in
Fig. 2(b). The squares represent the numerical results. We find
that R monotonically increases as the asymmetry parameter
α decreases from α = 1, and grows sharply as α approaches
zero. This behavior is well characterized by the power law
scaling,

R = αγ , (9)

where γ ≈ −1.19. The power law relation of Eq. (9), which
is plotted by the red line in Fig. 2(b), can be clearly seen from
a perfect log-log fit shown in the inset of Fig. 2(b). The above
observations are completely distinct from our initial intuition
that the system’s oscillatory behavior is gradually affected by
the asymmetrical coupling as α increases from zero.

The asymmetrical coupling further facilitates a delay-
induced OD through the intrinsic frequency w. Equation (8)
shows that the frequency w is involved in the OD critical
curves. Thus the size of the OD region definitely depends on
the value of w. Figure 3(a) displays several OD islands for
different values of w, where α = 0.2 is fixed. The OD region
monotonically decreases with a decreasing of w and vanishes
completely below a certain threshold wmin(α). These findings
hold for other values of α > 0 as well, and have been already
reported in the case of symmetrical coupling for α = 1. For
the asymmetrical coupling case of α = 1, the critical frequency
wmin(α = 1), numerically found by Reddy et al. [18], is 4.182,
which has been analytically defined by Song et al. [44]. Due
to the introduction of coupling asymmetry, the coupled system
(1) can experience an OD state even when w is smaller than
this value. As seen in Fig. 3(a), the OD island survives even
for w = 4 if α = 0.2, which implies the following relation:
wmin(α = 0.2) < wmin(α = 1).

Figure 3(b) further depicts the dependence of wmin(α) on
α for 0 < α � 1. It can be seen that wmin(α) monotonically
decreases as α decreases from α = 1, and saturates around 1.57
for α → 0. The black squares stand for the results, which are
numerically calculated for both curves of Eq. (8) by decreasing

FIG. 3. (Color online) (a) The OD islands of the two coupled
identical oscillators of Eq. (1) for w = 9, 6, 5, and 4, respectively.
α = 0.2 is fixed. The OD island gradually shrinks as the frequency
w decreases, and completely disappears below a certain threshold
wmin(α). (b) The smallest threshold wmin(α) of w, for which OD
is possible, monotonically decreases as the asymmetrical ratio α

decreases from α = 1, and saturates at around 1.57 for a sufficiently
small value of α. The solid square points present the numerical result,
which is well predicted by Eq. (10) (the red solid line).
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FIG. 4. Stability regions of an OD state in the two coupled
nonidentical oscillators of Eq. (1) with frequencies w1 = 10 + 	/2
and w2 = 10 − 	/2; τ = 0.05 is fixed. The OD region extends
downward to 	 = 0 from α = 1 (area enclosed by the dashed lines)
to α = 0.1 (area enclosed by the two solid lines).

w at a fixed value of α until the intersected area is extinct.
In fact, from the intersection condition of the two curves in
Eq. (8), the value of wmin(α) can be theoretically predicted as

wmin(α) = min

{
πA

π − 2 cos−1 B
,K >

2

1 + α

}
, (10)

where A and B are given in Eq. (7). For α = 1, Eq. (10)
degenerates to the same form as that in Ref. [44]. This
prediction is plotted with the red solid line in Fig. 3(b),
which shows a good agreement with the previous numerical
calculations.

The qualitatively similar situation holds even if the intrinsic
frequencies are not identical (w1 �= w2). To illustrate the
beneficial effect of asymmetrical coupling on delay-induced
OD in coupled nonidentical oscillators, Fig. 4 compares the
stable OD regions for α = 1 and α = 0.1 on the [log10(K),	]
panel, respectively. The value of 	 describes the mismatch
of the frequencies as w1 = 10 + 	/2 and w2 = 10 − 	/2.
τ = 0.05 is chosen. We find that the OD region grows and
extends toward the 	 = 0 axis for a finite range of the coupling
strength K . This demonstrates that the asymmetrically coupled
system suffers OD for a small or even zero mismatch of the
frequencies with a smaller time delay τ . The above observation
is also consistent with previous results for the case of identical
frequencies in Fig. 2(a), where the OD island is clearly shown
to expand along the τ direction. The OD regions in Fig. 4
are obtained by numerically computing the rightmost root
of Eq. (5) with a negative real part, which is independently
confirmed by the numerical integrations of the coupled
system (1).

The beneficial influence of asymmetrical coupling on delay-
induced OD is not limited to just a limit-cycle model but also
can extend to chaotic oscillators. For example, here we study
two delay-coupled chaotic Rössler oscillators:

ẋ1 = −y1 − z1,

ẏ1 = x1 + ay1 + αK[y2(t − τ ) − y1(t)],

ż1 = b + z1(x1 − c),

FIG. 5. Bifurcation diagrams obtained by plotting the local
maxima of X = x1+x2

2 for the two coupled chaotic Rössler oscillators
in Eq. (11). With increasing the coupling strength K , the coupled
system (11) experiences a reverse period-doubling bifurcation from
chaos to (a) one cycle if K > 4.2 for α = 1.0, and (b) an OD state if
K > 43.5 for α = 0.1. τ = 0.2 is fixed.

ẋ2 = −y2 − z2,

ẏ2 = x2 + ay2 + K[y1(t − τ ) − y2(t)],

ż2 = b + z2(x2 − c), (11)

where a = b = 0.1 and c = 14. With these parameters, each
uncoupled oscillator evolves chaotically and has an unstable
focus near the origin, given as P = (x∗,y∗,z∗) with x∗ =
−ay∗, y∗ = −z∗, and z∗ = c−√

c2−4ab
2a

. The occurrence of
OD in the coupled system (11) refers to the fact that the
unstable fixed point P is stabilized by the delayed interaction.
The case of a symmetrically coupled system (11) (α = 1)
has already been numerically studied by Prasad [29], who
found that the phenomenon of delay-induced OD in coupled
chaotic oscillators is quite general. To highlight the superiority
of asymmetrical coupling on delay-induced OD in coupled
chaotic oscillators, we intentionally set τ = 0.2. Note that
here OD is impossible when α = 1 [29]. Figure 5(a) plots
the bifurcation diagram of the coupled system (11) for α = 1,
which shows that with increasing the coupling strength K , the
system (11) undergoes a reverse period-doubling sequence,
leading to one cycle for K > 4.2. For the asymmetrical cou-
pling with α = 0.1, we find that after a reverse period-doubling
cascade from chaos to one cycle at K ≈ 11.8, with a further
increase in K the coupled system (11) achieves OD via a
Hopf bifurcation at K ≈ 43.5 [see Fig. 5(b)]. This observation
clearly demonstrates that the asymmetrical coupling facilitates
delay-induced OD in coupled chaotic oscillators.

It is notable that qualitatively similar results are obtained
in our numerical experiments with other system parameters,
coupling forms, and other chaotic oscillator models such as
the Lorenz oscillator and Chua’s circuit. The advantage of
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asymmetrical coupling on delay-induced OD is thus postulated
to be generic in coupled chaotic oscillators.

III. DISCUSSION AND CONCLUSION

In summary, by adjusting the coupling asymmetry parame-
ter α (0 � α � 1), we have addressed the influence of coupling
asymmetry on delay-induced OD in coupled oscillators. By
combining theoretical analyses with numerical methods, it
is found that the asymmetrical coupling is beneficial to
the occurrence of delay-induced OD. The asymmetrically
coupled system experiences OD for a larger set of parameter
values compared with the symmetrical coupling one. We
found somewhat counterintuitively that as the strength of the
coupling asymmetry is increased by decreasing the value of α

from α = 1 to α → 0, the OD island gradually expands along
two directions of both the coupling delay and the coupling
strength in the parameter space. The smaller the value of α

(α > 0), i.e., the stronger the coupling asymmetry, the larger
the OD island that forms. The expansion well obeys a power
law scaling, R = αγ with γ ≈ −1.19. The threshold of the
intrinsic frequency, beyond which OD is possible, decreases
as the asymmetry parameter α deceases, and approaches
a constant value for an infinitesimally small value of α.
The beneficial effect of asymmetrical coupling on delay-
induced OD is numerically shown to be generic in coupled
nonidentical oscillators and coupled chaotic oscillators as well.
The presented results are illustrated by consideration of a
system of only two delay-coupled nonlinear oscillators. In fact,
quite similar phenomena are also observed in our numerical
experiments of an array of asymmetrically delay-coupled
Stuart-Landau oscillators.

The phenomenon of OD suggests an effective scheme to
rapidly terminate some undesirable oscillations, and has been
shown to gain broad implications and wide applications for
biological systems. For instance, an OD state in coupled

synthetic genetic networks is responsible for a stable produc-
tion of protein concentration in interacting cellular populations
[6–9]. Therefore, it is of practical value to develop coupling
techniques which can effectively induce a stable OD state.
Our study in this paper clearly reveals that the presence
of asymmetry in the coupling may serve as an excellent
candidate for producing OD with a remarkably high efficiency.
On the contrary, in some real-life systems if an OD state
is assumed to do harm to their normal functions, such as
in the onset of cessation of rhythmic activity in neuronal
disorder associated with Parkinson disease [45], then the
coupling asymmetry should be properly avoided to maintain a
rhythmical oscillation.

Finally, the beneficial effect of asymmetrical coupling on
delay-induced OD is presumed to be easily implemented in
experiments of coupled lasers and circuits. The numerical and
theoretical findings in this paper are expected to be connected
with experimental data in the future. The studies provide a
valuable guideline for further (both experimental and theo-
retical) investigations of collective states in asymmetrically
delay-coupled systems. Since both the coupling asymmetry
and the coupling delay are ubiquitous in natural systems, the
presented results may be of relevance for various potential
applications in biology, ecology, and neuroscience.
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