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Frequency discontinuity and amplitude death with time-delay asymmetry
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We consider oscillators coupled with asymmetric time delays, namely, when the speed of information transfer
is direction dependent. As the coupling parameter is varied, there is a regime of amplitude death within which
there is a phase-flip transition. At this transition the frequency changes discontinuously, but unlike the equal delay
case when the relative phase difference changes by π , here the phase difference changes by an arbitrary value that
depends on the difference in delays. We consider asymmetric delays in coupled Landau-Stuart oscillators and
Rössler oscillators. Analytical estimates of phase synchronization frequencies and phase differences are obtained
by separating the evolution equations into phase and amplitude components. Eigenvalues and eigenvectors of the
Jacobian matrix in the neighborhood of the transition also show an “avoided crossing,” as has been observed in
previous studies with symmetric delays.
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I. INTRODUCTION

A subject of continuing interest in the study of nonlinear
dynamical systems is the nature of dynamics that results
when two or more such systems are coupled. Such coupling
is typically mediated through signals that are transmitted
from one system to another, and in most natural systems,
such signals travel with a finite speed. Models of coupled
systems therefore frequently account for this feature through
time-delay coupling, and this has been extensively studied in
a wide variety of systems in physics, biology, ecology, and
sociology [1–3]. A large number of studies have examined
the consequences of different forms of coupling; these include
synchronization, phase locking, phase drift, phase flip, hys-
teresis, amplitude death, etc. [4–7].

When signals are transmitted in the presence of an external
field, there can be an additional effect of directionality: the time
delays in both directions need not be identical. If τij is the time
delay for a signal to go from system j to system i, we examine
here the situation when τij �= τji , and in particular, how this
asymmetry affects phenomena that are known to occur when
the time delay is symmetric (τij = τji). Note that if both delays
are equal to 0, this reduces to instantaneous coupling, while
if one of the τ ′s → ∞, this means that the signal does not
reach the other system in finite time and hence the coupling
effectively becomes unidirectional [8].

A phenomenon that frequently arises in time-delay coupled
systems is amplitude death (AD) [9–18]. A number of studies
have extensively investigated the origins of AD through both
numerical and analytic approaches, albeit with symmetric
delays. Associated with AD, although not restricted to it,
is a transition that occurs in coupled systems: the phase
flip [19,20], where the relative phases of the two synchronized
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subsystems undergo an abrupt change of π and the frequencies
of oscillation also exhibit a discontinuous change [20,21]. Our
concern in the present work is to study how these phenomena
are affected with time-delay asymmetry, particulary in the AD
regime where analytical study is possible.

We analyze coupled systems with varying and asymmetric
time delays and observe that there can be an abrupt change in
phase for specific values of the delays, but the difference takes
a value that is not necessarily equal to π , as happens when
the delays are identical. This phase discontinuity arises as a
result of an abrupt change in the oscillation frequencies. For
some purposes, a system with asymmetric delays can be shown
to be effectively equivalent to a system where the delays are
identical.

In Sec. II, we present results and analysis for coupled
Landau-Stuart oscillators. Estimates for frequency and phase
of the system are shown, and a comparison with the case
of symmetric delays is presented. A detailed study of the
eigenvalues and eigenvectors of the system in the vicinity of
the transition is also presented. In Sec. III, coupled Rössler
system is studied to generalize the study of asymmetric
delays for chaotic systems. The results are summarized in
Sec. IV.

II. COUPLED LANDAU-STUART OSCILLATORS

The Landau-Stuart (LS) oscillator is a well-studied periodic
system, described as

dZ

dt
= (A + ιω − |Z|2)Z. (1)

The LS oscillator shows limit cycle motion near a Hopf
bifurcation, with amplitude of oscillations being directly
proportional to

√
A. Here ω is the intrinsic frequency of the

oscillations, and Z(t) is a complex variable. The dynamical
equations for the asymmetric delay coupled oscillators can be
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written as

Ż1 = (A1 + iω1 − |Z1|2)Z1 + K(Z2(t − τ12) − Z1),
(2)

Ż2 = (A2 + iω2 − |Z2|2)Z2 + K(Z1(t − τ21) − Z2).

We consider a case where A1 = A2 = 1, and for notational
simplicity set τij ≡ τi . In Cartesian coordinates, using Zj =
xj + iyj , the equations become

ẋi = (1 − |Zi |2)xi − ω1yi + K[xj (t − τi) − xi(t)]
(3)

ẏi = (1 − |Zi |2)yi + ω2xi + K[yj (t − τi) − yi(t)],

where Zi =
√

x2
i + y2

i , the indices i,j = 1,2, and the inter-
action strength is given by K . Introducing the phase and the
amplitude variables

�i = arctan(yi/xi) Ri =
√

x2
i + y2

i

and transforming Eq. (3) into polar coordinates, we get

Ṙi = Ri

(
1 − K − R2

i

) + KRj (t − τi) cos[�j (t − τi) − �i],

�̇i = ωi + K[Rj (t − τi)/Ri] sin[�j (t − τi) − �i]. (4)

If the amplitudes are constant, namely, Ri(t − τ )/Rj (t) = ki,j ,
then the equations for the phases simplify to

�̇1 = ω1 + k1,2K sin (�2(t − τ1) − �1),
(5)

�̇2 = ω2 + k2,1K sin (�1(t − τ2) − �2).

Equation (5) effectively models phase oscillators with asym-
metry in coupling strengths (introduced by ratios ki,j ) and the
time delays. For identical or nearly identical oscillators, we
can consider ki,j = kj,i ≈ 1, which gives

�̇1 = ω1 + K sin[�2(t − τ1) − �1]
(6)

�̇2 = ω2 + K sin[�1(t − τ2) − �2].

Following Schuster and Wagner [3], we make the ansatz
�1,2(t) = �t ± ��/2 for phase-synchronized (PS) solutions,
where � is the common frequency and �� is the phase
difference between the oscillators. Substituting these in Eq. (6)
and adding up the resultant equations, we get the following
transcendental equation for the collective frequency:

� = ω̄ − K sin(�τ̄ ) cos

(
��τ

2
+ ��

)
. (7)

Similarly, the difference in Eqs. (6) gives

sin

(
��τ

2
+ ��

)
= �ω

2K cos(�τ̄ )
, (8)

where �τ = (τ1 − τ2), τ̄ = (τ1 + τ2)/2, �ω = (ω1 − ω2),
and ω̄ = (ω1 + ω2)/2 for identical oscillators (ω1 = ω2 = ω),
which gives sin( ��τ

2 + ��) = 0 ⇒ cos(��τ
2 + ��) = ±1.

Therefore, using this, the transcendental Eq. (7) reduces to

� = ω ∓ K sin(�τ̄ ). (9)

The phase synchronous solutions satisfy Eq. (9) and
consequently, the roots of equation

F∓(�) = ω − � ∓ K sin(�τ̄ ) (10)

FIG. 1. (Color online) The variation of the common frequency
� as a function of τ1 and τ2. τ2 = (n/N )τ1, where N = 1000 is the
discretization taken in the simulation.

give the PS frequencies. The phase difference, from Eq. (8), is

�� = −��τ

2
if cos �τ̄ > 0

= π − ��τ

2
otherwise. (11)

Specifically for the case when τ2 � τ1, this reduces to

�� = �|�τ |
2

if cos �τ̄ > 0

= π + �|�τ |
2

otherwise. (12)

The roots of the transcendental equation Eq. (10) give the
allowed PS frequency solutions (�).

Shown in Figs. 1 and 2 are the common frequency and
the phase difference (�� = �1 − �2), calculated numerically
[22] from Eq. (3), as a function of τ1 and τ2. A line of phase
difference discontinuity as well as the frequency jump [19]
can be seen in the diagrams. The parameter values for the
numerics are ω1 = ω2 = 9 and K = 5. The numerical results
of the original system, namely, Eq. (3), are compared with the
analytic results for the frequencies in Fig. 3(a) at a particular
value of n = 500. Equation (11) gives an analytical estimate
of the phase difference ��, which depends on the difference
between the delay times: in general, it is neither zero nor π , as
can be seen in Fig. 3(b).

The dependence of � on the arithmetic mean of the asym-
metric delays τ̄ = (τ1 + τ2)/2 has the interesting consequence

FIG. 2. (Color online) The variation of the phase difference as a
function of τ1 and τ2. n and N are the same as in Fig. 1.
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FIG. 3. (Color online) (a) Synchronized frequency � and
(b) phase difference �� for the Landau-Stuart system with τ1 = τ

and τ2 = τ/2. The solid lines are the numerical results from the model
[Eq. (3)], while the circles and triangles in (a) and (b) correspond to
analytical estimation from Eqs. (10) and (11), respectively.

that for a system with the same average delay, the frequency
response is identical [see Fig. 4(a)]. In order to understand
this consequence, we next analyze this transition in terms of
the eigenvalues and eigenvectors of the Jacobian matrix at the
fixed point [21]. For the Landau-Stuart system, the origin is
the stable fixed point in the AD regime. The Jacobian matrix
at the origin is

J =
(

A + ιω − K Ke−λτ1

Ke−λτ2 A + ιω − K

)
. (13)

The characteristic equation of the Jacobian J − λI = 0 gives

(λ − A − ιω + K)2 − K2e−λ(τ1+τ2) = 0. (14)

Looking at the characteristic equation, we can conclude that the
eigenvalues of the system in the AD regime are the functions
of the arithmetic mean of the delays τ̄ . This implies that the
Lyapunov spectrum of the system for some fixed value of τ̄ is
identical for the same fixed point (is independent of the values
of τ1 or τ2 given the arithmetic mean stays fixed). For the
Landau-Stuart system, this is shown in Fig. 4(b). Substituting
λ = α + iβ and (τ1 + τ2) = 2τ̄ for the complex eigenvalues
in Eq. (14) and separating out the real and imaginary parts, we
get

α2 − β2 + 2α(K − A) + K − A2

+ 2βω − ω2 − K2e−2ατ̄ cos(2βτ̄ ) = 0, (15)
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FIG. 4. (Color online) Variation of (a) frequency and (b) Lya-
punov exponents for the Landau-Stuart system as function of
symmetric delay τ (solid red line in the upper portion and dashed
blue line in the lower portion of the figure) and asymmetric delays,
τ1 = 0 and τ2 = 2τ (circles and triangles), so that the average delay
τ̄ is the same.

and

2α(β − ω) + 2(K − A)(β − ω) + K2e−2ατ̄ sin(2βτ̄ ) = 0.

(16)

Solving these equations simultaneously, we find complex
conjugate pairs (αi ± ιβi) as solutions and one obtains the real
parts α’s which correspond to the Lyapunov exponents and
the corresponding imaginary parts β’s in the AD regime. The
β corresponding to the largest real part corresponds to the
oscillation frequency for the system. These are shown (with
symbols) along with the numerically determined quantities
(solid and dashed lines) for the original system, namely,
Eq. (3), in Fig. 5, which match well. We also see the “avoided
crossing” [23] of the Lyapunov exponents [Fig. 5(a)]: since
Lyapunov exponents are ordered by rank, they cannot in
principle cross one other. At this avoided crossing, however,
pairs of eigenvalues interchange their imaginary part [21].
Since the imaginary part of the largest eigenvalue corresponds
to the oscillation frequency, there is a jump in the frequency
at this transition as seen in Fig. 5(b), where the system moves
from the lower frequency branch β1 to the higher β2. This
transition is similar as in the previous work with symmetric
delays [21]. Indeed, much of the analysis that can be carried
out for the symmetric delay case [21] for the Lyapunov vectors
associated with these eigenvalues carries over here. Defining
the order parameter γ as a scalar product,

γk(τ̄ ) = 〈ek(τ̄ ′)|ek(τ̄ )〉2, (17)

where k is the Lyapunov eigenvector index with k = 1
being the eigenvector corresponding to the largest Lyapunov
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FIG. 5. (Color online) (a) Lyapunov exponents (solid red line in
the upper portion and dashed blue line in the lower portion of the
figure) and real part of the eigenvalues of the Jacobian (circles and
triangles) for the coupled system in the AD region. (b) The common
frequencies (solid line) and the imaginary part of the eigenvalues
(circles and triangles) of the Jacobian [Eq. (13)].

exponent, and τ̄ ′ is fixed at a particular value of the delay prior
to the transition. The variation of γ1 is shown in Fig. 6 along
with the frequency jump. A change in the qualitative behavior
of the order parameter is clearly seen before and after the
transition point. The only difference from symmetric delays to
asymmetry delay is that the order parameter γ1 becomes zero
after the transition for the former case [21] while it remains
nonzero after the transition in the latter.

Based on the above results, we can safely conclude that
the basic mechanism of phase flip proposed previously for the
symmetric delays [21] holds in the case of asymmetric delays
as well.

III. COUPLED RÖSSLER SYSTEM

In this section, we analyze coupled chaotic Rössler oscilla-
tors [24] with unequal delays in an attempt to generalize the
results obtained in Sec. II for chaotic systems. The equations
for the coupled Rössler oscillators can be written as

ẋ1 = −ω1y1 − z1 + ε[x2(t − τ1) − x1(t)],

ẏ1 = ω1x1 + ay1, ż1 = f + z1(x1 − c),
(18)

ẋ2 = −ω2y2 − z2 + ε[x1(t − τ2) − x2(t)]

ẏ2 = ω2x2 + ay2, ż2 = f + z2(x2 − c).

For the numerics, we consider identical oscillators with the
parameters a = 0.165, f = 0.2, c = 10, and ω1 = ω2 = 0.99
such that the motion of the individual oscillators is chaotic [25].
The numerically calculated synchronized frequency � and
the phase differences (�� = �1 − �2) for different delays
[Eq. (18)] at the coupling strength ε = 1.5 are shown in Figs. 7
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FIG. 6. (Color online) (a) Order parameter γ1 showing the change
in behavior of the eigenvectors at the delay value where the transition
occurs. The blue dashed curve in the lower portion of the figure
corresponds to the case of symmetric delays in the coupling, whereas
the red solid curve (upper portion) is for the case with asymmetric
delays: τ1 = 0 and τ2 = 2τ . (b) Frequency � for the system with
asymmetric time-delay coupling with τ1 = 0 and τ2 = 2τ .

and 8, respectively. Since we consider the oscillators to be in
the phase coherent regime, the phase and the amplitude can
be defined by introducing the variables φi = arctan(yi/xi) and
Ai =

√
x2

i + y2
i [6]. Rewriting the system equations in terms of

the phase and the amplitude gives

Ȧ1,2 cos(φ1,2) − A1,2 sin(φ1,2)φ̇1,2

= −ω1,2A1,2 sin(φ1,2) − z1,2 + ε{A2(t − τ1,2)

× cos[φ2,1(t − τ1,2)] − A1,2 cos φ1,2}
Ȧ1,2 sin(φ1,2) + A1,2 cos(φ1,2)φ̇1,2

= ω1,2A1,2 cos(φ1,2) + aA1,2 sin φ1,2

ż1,2 = f + z1,2(A1,2 cos φ1,2 − c).

FIG. 7. (Color online) Variation of the common frequency � as
a function of τ1 and τ2 similar to Fig. 1. τ2 = (n/N )τ1, and the
discretization taken in the simulation N = 2000.
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FIG. 8. (Color online) Variation of the phase difference as a
function of τ1 and τ2. n and N are the same as in Fig. 7.

For each oscillator, solving the first two expressions to find
the the values of Ȧ1,2 and φ̇1,2 gives

Ȧ1 = aA1 sin2 φ1 − z1 cos φ1 + ε[A2(t − τ1) cos φ2(t − τ1)

× cos φ1 − A1 cos2 φ1],

φ̇1 = ω1 + a sin φ1 cos φ1 + z1 sin φ1/A1 − ε[A2(t − τ1)

× cos φ2(t − τ1) sin φ1/A1 − sin φ1 cos φ1],

ż1 = f − cz1 + A1z1 cos φ1,

Ȧ2 = aA2 sin2 φ2 − z2 cos φ2 + ε[A1(t − τ2) cos φ1(t − τ2)

× cos φ2 − A2 cos2 φ2],

φ̇2 = ω2 + a sin φ2 cos φ2 + z2 sin φ2/A2 − ε[A1(t − τ2),

× cos φ1(t − τ2) sin φ2/A2 − sin φ2 cos φ2],

ż2 = f − cz2 + A2z2 cos φ2.

We analyze this system by averaging over the rotations of the
phases φ1,2 [6,26]. Assuming that the amplitudes vary slowly,
new “slow” phases θ can be introduced through the substitution
φ1,2 = ω0t + θ1,2. Averaging the equations we get

ω0 + θ̇1 = ω1 + ε

(
A2(t − τ1)

2A1
sin[θ2(t − τ1) − θ1 − ω0τ1]

)
,

ω0 + θ̇2 = ω2 + ε

(
A1(t − τ2)

2A2
sin[θ1(t − τ2) − θ2 − ω0τ2]

)
.

(19)

The substitution θ1,2(t) = �1,2(t) − ω0t transforms these
equations to a corotating frame of ω0, giving

�̇1 = ω1 + ε
A2(t − τ1)

2A1
sin[�2(t − τ1) − �1],

(20)

�̇2 = ω2 + ε
A1(t − τ2)

2A2
sin[�1(t − τ2) − �2].

If the amplitudes are constant, namely, A2,1(t − τ )/A1,2(t) =
k1,2, then the equations for the phases simplify to

�̇1 = ω1 + k1
ε

2
sin[�2(t − τ1) − �1],

(21)
�̇2 = ω2 + k2

ε

2
sin[�1(t − τ2) − �2].

Equations (21) effectively model phase oscillators with asym-
metry in coupling strengths (introduced by ratios k1,2) and the
time delays. For identical or nearly identical oscillators, we
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FIG. 9. (Color online) (a) Synchronized frequency � and
(b) phase difference �� for unequal delays τ1 = τ and τ2 = τ/2. The
solid lines are numerical results, while circles and triangles in (a) and
(b) are the frequency and phase difference obtained analytically from
Eq. (10) with effective coupling K = ε/2 and Eq. (11), respectively.

can consider k1 = k2 ≈ 1, which gives

�̇1 = ω1 + K sin[�2(t − τ1) − �1],
(22)

�̇2 = ω2 + K sin[�1(t − τ2) − �2],

where K = ε
2 . Equation (22) is the equation for two cou-

pled phase oscillators with different delays and serves as
a nice model to mimic the phase dynamics of the system
in Eq. (18).

We observe that the phase dynamics of the Rössler system
is exactly identical to that of Eq. (6) with an effective coupling
K = ε/2. Following the procedure described before, we can
obtain Eq. (10) for frequencies and Eq. (11) for the phase
differences by substituting K = ε/2. These analytical values,
� and �� (with symbols), are compared with the numerical
quantities (with solid line) in Fig. 9. Note that while the
agreement is fairly good, there is a small mismatch which
can be ascribed to the approximations made in the derivation
of Eq. (22). Since the frequency and phase estimates for the
Rössler system are identical to the Landau-Stuart oscillators,
this means that the frequency response is once again just
dependent upon the average delay τ̄ . This agreement between
different delay and corresponding equivalent delay frequencies
can be observed in Fig. 10(a).

Similar to the LS case, we next analyze the phase change
transition in terms of the eigenvalues and eigenvectors of
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FIG. 10. (Color online) Variation of (a) frequency and
(b) Lyapunov exponents for Rössler system as a function of symmetric
delay τ (solid red line in the upper portion and dashed blue line in
the lower portion of the figure) and asymmetric delays, τ1 = 0 and
τ2 = 2τ (circles and triangles), so that the average delay τ̄ is the
same.

the Jacobian matrix at the fixed point [27]. For the chaotic
coupled Rössler systems, the fixed points are the roots of the
equations

−ω1y
∗
1 − z∗

1 + ε(x∗
2 − x∗

1 ) = 0,

ω1x
∗
1 + ay∗

1 = 0,

f + z∗
1(x∗

1 − c) = 0,
(23)

−ω2y
∗
2 − z∗

2 + ε(x∗
1 − x∗

2 ) = 0,

ω2x
∗
2 + ay∗

2 = 0,

f + z∗
2(x∗

2 − c) = 0.

The stable fixed point solutions in the AD regime are of
the completely synchronous form (x∗,y∗,z∗,x∗,y∗,z∗). These
fixed point can be computed by solving the above equations
and are given as

x∗
1 = x∗

2 = 1

2ω
(cω ±

√
c2ω2 − 4af ),

y∗
1 = y∗

2 = − 1

2a
(cω ±

√
c2ω2 − 4af ), (24)

z∗
1 = z∗

2 = ω

2a
(cω ±

√
c2ω2 − 4af ),

and the stable fixed point solutions are [27]

x∗
1 = x∗

2 = 1

2ω
(cω −

√
c2ω2 − 4af ),

y∗
1 = y∗

2 = − 1

2a
(cω −

√
c2ω2 − 4af ), (25)

z∗
1 = z∗

2 = ω

2a
(cω −

√
c2ω2 − 4af ).

The Jacobian matrix for the coupled Rössler system at the
fixed point can be written as

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε −ω −1 εe−λτ1 0 0

ω a 0 0 0 0

z∗ 0 (x∗ − c) 0 0 0

εe−λτ2 0 0 −ε −ω −1

0 0 0 ω a 0

0 0 0 z∗ 0 (x∗ − c)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

The characteristic equation (J − λI) = 0 is obtained as the
polynomial [28]:

[(−ε − λ)(a − λ)(x∗ − c − λ) + ω2(x∗ − c − λ)

+ z∗(a − λ)]2 − ε2(e−λ(τ1+τ2))a2(x∗ − c)2 = 0. (27)

We substitute λ = α + iβ and (τ1 + τ2) = 2τ̄ for the
eigenvalues in Eq. (27) and separate out the real and imaginary
parts of the equation. The expression for the real part is

c0 + c1α + c2(α2 − β2) + c3(α3 − 3αβ2)

+ c4(α4 + β4 − 6α2β2) + c5(α5 + 5αβ4 − 10α3β2)

+ c6(α6 − β6 + 15α2β4 − 15α4β2) + [b0 + b1α

+ b2(α2 − β2) + b3(α3 − 3αβ2) + b4(α4 + β4 − 6α2β2)]

× cos(2βτ̄ )e−2ατ̄ + [b1β + b2(2αβ) + b3(3α2β − β3)

+ b4(4α3β − 4αβ3)] sin(2βτ̄ )e−2ατ̄ = 0, (28)

where the coefficients ci’s (i = 0...6) and bj ’s (j = 0...4)
are the functions of the fixed points, system parameters,
and the coupling strength. Similarly for the imaginary part,
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FIG. 11. (Color online) (a) Lyapunov exponents (solid red line
in the upper portion and dashed blue line in the lower portion of the
figure) and real part of the eigenvalues of the Jacobian (triangles and
dots). (b) Common frequency (solid line) and the imaginary part of
the eigenvalues of the Jacobian (triangles and dots).
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FIG. 12. (Color online) (a) Order parameter γ1 showing the
change in behavior of the eigenvectors at the delay value where
transition occurs. The blue dashed curve in the lower portion of the
figure corresponds to the case of symmetric delays in the coupling,
whereas the solid red curve (upper portion) shows the behavior of the
order parameter for the asymmetric case with τ1 = 0 and τ2 = 2τ .
(b) Frequency � for the system with asymmetric time delay in the
coupling with τ1 = 0 and τ2 = 2τ .

we obtain

c1β + c2(2αβ) + c3(3α2β − β3) + c4(4α3β − 4αβ3)

+ c5(5α4β − 10α2β3 + β5) + c6(6α5β + 6αβ5 − 20α3β3)

− [b0 + b1α + b2(α2 − β2) + b3(α3 − 3αβ2)

+ b4(α4 + β4 − 6α2β2)] sin(2βτ̄ )e−2ατ̄ + [b1β + b2(2αβ)

+ b3(3α2β − β3) + b4(4α3β − 4αβ3)] cos(2βτ̄ )e−2ατ̄ = 0.

(29)

The real part α and the imaginary part β in the AD
regime are plotted with Lyapunov exponents and frequencies,
respectively (Fig. 11). In Fig. 11, we once again observe
the “avoided crossing” of the Lyapunov exponents. Pairs of
eigenvalues interchange imaginary parts at the crossing, as in
the case of limit-cycle oscillators [21], resulting in frequency

and phase jump. The variation of order parameter γ [Eq. (17)]
for the Rössler case is shown in Fig. 12.

IV. SUMMARY

Phase flip has been observed in a wide variety of systems
[20]. The universality of phase flip in systems coupled with
identical delays makes this study on the mechanism of phase
flip with asymmetric delays quite relevant.

In this work, we have analyzed the behavior of Landau-
Stuart oscillators and Rössler oscillators coupled through
asymmetric time delays. Although such systems also exhibit
behavior similar to the symmetric delay case, the transition
corresponds to a change in the relative phase that differs
from π and depends on the difference in the coupling delays.
Some characteristics of this transition are shared by an
equivalent symmetric delay case: the Lyapunov spectrum and
the frequency response of the system only depends on the
average delay within the amplitude death regime. As noted
earlier, there is an avoided crossing in the Lyapunov spectrum
at the point where the relative phases change abruptly. The
eigenvalue analysis shows that this corresponds to an exchange
in the imaginary parts of the eigenvalues as for the symmetric
case. There is sufficient evidence regarding the presence of
similar phenomena and mechanisms for other coupled systems
as well.

The simplification of a general chaotic system into its
phase and amplitude parts can facilitate the analysis of the
asymmetric delay-coupling case. However, the derivation of
the dynamical equation for the phase of a chaotic oscillator
is a nontrivial problem. In this paper we were able to exploit
the phase coherence of the Rössler system for obtaining the
estimates of the phase dynamics. The analysis of a general
chaotic system where phase is not defined [29] still remains a
challenging and open problem.
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