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We consider the dynamics of systems undergoing parameter sweeps through bifurcation points in the presence
of noise. Of interest here are local codimension-one bifurcations that result in large excursions away from an
operating point that is transitioning from stable to unstable during the sweep, since information about these “escape
events” can be used for system identification, sensing, and other applications. The analysis is based on stochastic
normal forms for the dynamic saddle-node and subcritical pitchfork bifurcations with a time-varying bifurcation
parameter and additive noise. The results include formulation and numerical solution for the distribution of escape
events in the general case and analytical approximations for delayed bifurcations for which escape occurs well
beyond the corresponding quasistatic bifurcation points. These bifurcations result in amplitude jumps encountered
during parameter sweeps and are particularly relevant to nano- and microelectromechanical systems, for which
noise can play a significant role.
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I. INTRODUCTION

The problem of noise-activated escape out of a slowly
changing potential or quasipotential well has a long history
arising in a number of different fields. For example, in the
1970’s the statistics of escape events from the zero voltage
state in Josephson-junction circuits were examined to identify
the junction parameter or critical current [1–3]. In this context,
the escape events from the zero voltage to the running states
provided a visible handle on systems that were otherwise
difficult to measure or interrogate. In the late 1980’s the
related problem of delayed bifurcation received a great deal
of attention in the study of laser turn-on dynamics [4–10].
Laser turn-on is described by a Hopf bifurcation or, in the
rotating frame, a supercritical pitchfork bifurcation. Other
examples of noisy swept systems near bifurcation points
include nanomagnetics [11,12], in which escape dynamics
lead to the confirmation of the Néel-Brown model; neuron
dynamics [13], in which activated escape describes neuron
firing; and tribology [14–16], in which microscopic stick-
slip, or escape, events give rise to macroscopic friction.
Additional relevant investigations include escape induced by
Poisson noise [17], noise-induced bistability [18,19], and
noise-induced chaos [20–23].

More recently, the problem of escape statistics has found
relevance in applications in the Josephson bifurcation amplifier
and its use for qubit readout [24–27], climate tipping [28],
and bifurcation detection in nano- and microelectromechanical
systems (NEMS and MEMS) [29,30]. The qubit detection
application is particularly interesting, since the goal is to
seek the optimal form for the parameter sweep trajectory
that minimizes the overlap probability of escape for the two
qubit states during a finite measurement time. In the climate
tipping application, one is concerned with the estimation of
the bifurcation point without allowing escape to occur, so
that one can predict the possibility of an impending escape,
which corresponds to sudden, drastic change in the climate.
The NEMS and MEMS applications center around system
identification and parametric sensing with NEMS and MEMS

resonators. Many of these implementations mirror those of
Josephson-junction circuits [26,27,31–37]. Accordingly, the
sensing paradigms are very similar to those developed in the
1970’s for measuring the Josephson-junction critical current.
There is, however, one key difference. Many NEMS and
MEMS devices experience effective noise forces that are much
smaller than their Josephson counterparts, since they tend to
be significantly more massive devices. Accordingly, a sweep
toward a bifurcation in a NEMS and MEMS resonator may
not result in activated escape before the bifurcation point
is reached, but rather the device will experience a delayed
bifurcation [29]. Therefore, it is necessary to understand the
distribution of delayed bifurcation times in order to make
effective use of parameter sweeping as a means of interrogating
these systems. Moreover, quantifying the features which
separate activated escape and delayed bifurcation will provide
useful information to orient experimentalists working across
all of these application areas.

Despite the interest in delayed bifurcations engendered by
the study of laser turn-on dynamics, the authors have found
only a few treatments of delayed saddle-node and subcritical
pitchfork bifurcations. These bifurcations are common in
NEMS and MEMS nonlinear resonators modeled by the
Duffing and nonlinear Mathieu equations and so are of
particular interest to us. In [38] scaling laws are developed
that are directly applicable to the bifurcations considered
here. However, in the present work we provide quantitative
results about the distribution of escape events, as required
for parameter identification and bifurcation-based sensing
schemes.

For our discussion we use the term bifurcation to describe
a change in the sign of the real part of an eigenvalue of
an equilibrium point of the drift vector that results from a
change of a parameter in a stochastic differential equation.
The bifurcation point is understood as the condition in state
and parameter space where the drift vector possesses an
equilibrium point with an eigenvalue with zero real part.
When discussing the dynamics of systems with a time-varying
parameter, it is convenient to refer to the bifurcation value of

046202-11539-3755/2012/85(4)/046202(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.046202


NICHOLAS J. MILLER AND STEVEN W. SHAW PHYSICAL REVIEW E 85, 046202 (2012)

the parameter as that corresponding to the bifurcation point of
the corresponding time-invariant system.

Here we derive a method for determining the statistics of
the parameter values at which a system response will leave
the vicinity of a bifurcating equilibrium point as a parameter
is swept near the critical value in the presence of noise. This
is carried out for the saddle-node and subcritical pitchfork
bifurcations, both of which result in large excursions away
from the bifurcating operating point. New approximate results
for the escape event parameter distributions are obtained for
the limit of small noise intensity relative to the parameter
sweep rate (this limit is made precise in the subsequent for-
mulation). These results, and the previously known adiabatic
results [39,40], are compared with numerical solutions of
the Fokker-Planck (FP) equation governing the distribution
in the general case. The present analysis makes use of
one-dimensional stochastic normal forms which describe the
system dynamics local to a bifurcating fixed point in both phase
space and parameter space. While our analysis is restricted to
one-dimensional systems, higher dimensional systems with
more complicated sweep trajectories can be reduced to this
model when they exhibit separation of time scales and when
the response escapes near the bifurcation point, so that the
system dynamics are governed by a slow mode; that is,
they occur on a slow one-dimensional manifold in the phase
space [38,41,42].

As a result of escape near a bifurcation point, the system will
exhibit a large transient and move into another region in phase
space. In the case of activated escape, which occurs before
the bifurcation point, the basin of attraction has a well-defined
boundary, providing a clean definition of escape. In contrast,
for delayed bifurcations there is ambiguity about the definition
of escape, and thus also about the time at which it occurs, since
the event occurs after the basin of attraction has disappeared.
Some researchers have defined this escape problem in terms
of a first passage time across a chosen threshold [6,7,9,10].
Others impose a threshold on the variance of the distribution
[5,8], while another option is to consider the final crossing
time of some threshold [13]. In the present study, the normal
forms of interest are local models that exhibit escape to ∞ in
finite time, which requires that the system trajectories become
very steep enroute to ∞. Thus, we conclude that the time
it takes to reach a large value of the coordinate of the local
model of the slow mode is very close to the time taken to
reach ∞, and we also assume that this large value is in the
region where the one-dimensional normal form model breaks
down. Accordingly, we say that an escape event occurs in the
one-dimensional normal form when the coordinate along the
slow manifold reaches ±∞, and we define the escape time to
be the corresponding (finite) time. The attendant bifurcation
value of the swept parameter is then known from its known
time dependence. The statistics of these events is the focus of
this work.

The use of local normal forms imposes some restrictions
on the sweep rate and noise intensity. Specifically, in order
for the local approximations made for the stochastic slow
mode (center manifold) and normal form reductions to remain
valid during the escape process, the noise intensity must be
sufficiently small and the sweep rate sufficiently slow. As we
show, the key parameter in a linear parameter sweep is the ratio

FIG. 1. Noisy dynamic saddle-node bifurcation.

of the sweep rate to the noise strength. We show that delayed
bifurcation occurs without violating these assumptions. In
addition, we also show that our solution is independent of
initial conditions for a large class of initial conditions, owing
to the fact that diffusive systems forget their initial conditions
and settle into steady-state distributions [43], or quasi-steady-
state distributions in the present case, since parameters are
being varied. In this sense, the present formulation is quite
general.

It should be noted that the two problems considered here,
namely, the saddle-node and subcritical pitchfork bifurcations,
must be treated somewhat differently, since their zero-noise
dynamics are qualitatively different. Specifically, escape is
inevitable for the swept saddle node, whereas for the swept
pitchfork a disturbance is required to induce escape from
equilibrium, even when it is unstable, since the equilibrium
persists past the bifurcation point. For both problems, the
general result is formulated in terms of a FP equation.
However, for the weak noise (delayed bifurcation) asymptotic
results we use a variation of parameters approach to study the
saddle-node bifurcation and matched asymptotic expansions
for the subcritical pitchfork bifurcation. The analytically
predicted distributions are compared with numerical solutions
of the FP equation, demonstrating their accuracy and range of
validity.

II. ESCAPE NEAR A SADDLE-NODE BIFURCATION

When sweeping a parameter near a saddle-node bifurcation,
the dynamics along the slow manifold are described by a one-
dimensional Langevin equation, i.e., the normal form, given
by [38]:

ẋ = μ(t) + x2 + εξ (t), (1)

where μ(t) is the bifurcation parameter and ξ (t) is zero-mean,
delta-correlated white noise with autocorrelation 〈ξ (t)ξ (t ′)〉 =
2δ(t − t ′). The dynamics of Eq. (1) are conveniently visualized
by an overdamped particle moving in a time-varying potential,
as illustrated in Fig. 1. Our goal is to determine the distribution
of escape times T , that is, those for which x → ∞ as t → T . A
numerical solution for this problem can be obtained by solving
the FP equation associated with Eq. (1):

∂ρ

∂t
= − ∂

∂x
[(μ + x2)ρ] + ε2 ∂2ρ

∂x2
, (2)

with appropriate initial and boundary conditions, the results
of which are used to illustrate the connection between the fast
and slow sweeping limits. We will later show that these limits
are given by ε2 � μ̇ and ε2 � μ̇, respectively. For the slow
sweeping (or, equivalently, the large noise) limit, consider that
the system is initially near the local minimum of the potential
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that exists for μ < 0. If μ is increased slowly relative to the
noise level, specifically, for ε2 � μ̇, one can approximate the
rate of escape by the well-known adiabatic approximation due
to Kramer [40,44]. For the saddle node, this rate is

W (t) =
√−μ(t)

π
exp

{
− 4[−μ(t)]3/2

3ε2

}
. (3)

The probability to remain in the well diminishes according to
the product of this rate and the probability to remain in the
well. Accordingly, the probability density function (PDF) for
escape at time T in the limit of adiabatic sweeping is given
by [1,40]:

P (T ) = W (T ) exp

[
−

∫ T

−t0

W (t)dt

]
. (4)

Of interest here is the case where the noise strength is
small compared to the characteristic rate of change of the
bifurcation parameter, that is, 0 � ε2 � μ̇. In this case, the
potential well will disappear before noise activated escape
is likely to occur, and the system thus exhibits a delayed
bifurcation, escaping to x → ∞ at a finite time T , for which
μ(T ) > 0. To approximate the distribution of escape times
for Eq. (1) in this situation, we employ a direct perturbation
method. To this end it is convenient to transform the equation
using a variation of parameters approach, in which the ε = 0
solution, x0, plays the role of the homogeneous solution. The
transformation x0 = −u̇/u in Eq. (1) with ε = 0 yields

ü + μ(t)u = 0, (5)

which has linearly independent solutions u1 and u2, so that x0

can be written as

x0 = − u̇1 + cu̇2

u1 + cu2
, (6)

where c is a constant of integration. To account for the presence
of noise, we let c vary in time. Utilizing expression (6) in
Eq. (1) with c(t) gives the equation for c(t) as

ċ = −εa(u1 + cu2)2ξ, (7)

where a−1 = u1u̇2 − u̇1u2 is the Wronskian. The variable
c is a means of parametrizing the solutions of the noise-
free problem, and the system diffuses among the noise-free
trajectories according to Eq. (7).

The escape time T is given by the time at which x0 becomes
unbounded, which, according to Eq. (6), corresponds to c(t)
reaching the condition

c(t) = c∞(t) = −u1(t)

u2(t)
, T ≡ t, (8)

where T ≡ t is meant to imply that T is defined as the
time t at which this, c = c∞, condition is met. Here the first
passage time problem reduces to a simple transformation of the
stochastic variable c(t) to the times T for which c(T ) = c∞(T ),
for some initial distribution of initial conditions. To determine
the distribution of T , it is useful to consider the features of
c∞(t). The function c∞(t) has branches, separated by vertical
asymptotes at the zeros of u2(t), and c(t) evolves between
these branches. Figure 2 shows the first two branches of this
boundary for a linear sweep trajectory. The two branches are

FIG. 2. c∞ boundary for linear sweeping, μ(t) = μ0 + rt , with
μ0 < 0. The first two branches are shown along with the variance
(shaded region) of c for ε2 = 0.05.

labeled c
(1)
∞ and c

(2)
∞ . In addition, the shaded region shows the

width, ±3 standard deviations, of the distribution for c(t),
illustrating how escape to x = ∞ has become a first passage
time problem across c = c

(2)
∞ . Also, note that since

dc∞
dt

= 1

au2
2

(9)

does not change sign, c∞(t) is monotonic between branches. In
addition, by considering Eqs. (7) and (8), it is seen that ċ = 0
when c = c∞. Thus, trajectories of c(t) cross each branch
of c∞(t) at a single time. Consequently, in considering the
first passage time of c(t) across a particular branch of c∞(t),
we do not need to account for trajectories that cross c∞(t)
multiple times. We can therefore simplify our task by doing
away with the adsorbing wall boundary condition commonly
employed in first passage problems. This simplification brings
an additional feature to our solution. Without an adsorbing
wall boundary condition, a crossing corresponds to reinjection
at x = −∞. Hence, the system will again traverse the real line
and subsequently reach x = ∞ again. This corresponds to
a subsequent crossing of c∞ occurring on the immediately
subsequent branch only, and precisely at the times when
the system becomes unbounded, that is, when x → ∞.
However, by identifying the branch corresponding to the first
crossing, we may focus our solution on the escape time of
interest.

The change of coordinates from x(t) to c(t) makes the
problem amenable to direct perturbation analysis of Eq. (7). To
develop a first-order asymptotic approximation of the escape
current, we begin with the expansion

c = c0 + εc1 + . . . . (10)

Substitution of this into Eq. (7) and expansion in powers of ε

yield

ċ0 = 0, (11)

ċ1 = −a(u1 + c0u2)2ξ. (12)

Note that the first-order perturbation removes the state-
dependent diffusion, and thus Ito and Stratonovich calculus
give the same result at this order. Solving Eqs. (11) and (12)
gives a time-dependent Gaussian PDF for the noisy response
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of c, as follows:

Pc(c,t) =
[

4πa2ε2
∫ t

t0

(u1 + c0u2)4dt ′
]−1/2

× exp

[
− (c − c0)2

4a2ε2
∫ t

t0
(u1 + c0u2)4dt ′

]
. (13)

Using this result, the PDF of escape times can be expressed as

P∞(T ) = Pc(c∞,T )

∣∣∣∣dc∞(T )

dT

∣∣∣∣. (14)

Combining Eqs. (9), (13), and (14), we arrive at an expression
for the PDF of escape times:

P∞(T ) =
[

4πa4ε2u4
2(T )

∫ T

t0

(u1 + c0u2)4dt

]−1/2

× exp

{
− [u1(T ) + c0u2(T )]2

4a2ε2u2
2(T )

∫ T

t0
(u1 + c0u2)4dt

}
. (15)

Note that this result is quite general, since the form of
the parameter sweep μ(t), which dictates u1,2(t), is not yet
specified. The only constraint is that the perturbation remain
valid, and thus εc1 remains a small correction. An important
example of μ(t) is considered next.

The simplest method for sweeping the bifurcation pa-
rameter is linear in time, that is, μ = μ0 + rt , with μ0 < 0
and r > 0. The affine relationship between the bifurcation
parameter and time allows one to identify the bifurcation
parameter as a renormalized time variable. Thus, without loss
of generality, we take μ = t . With this form of sweeping,
Eq. (5) becomes Airy’s equation in backward time, that is,
ü + tu = 0, with independent solutions:

u1(t) = Ai(−t), (16)

u2(t) = Bi(−t), (17)

where Ai and Bi are the standard Airy functions, for which
the standard parameter a = −π [45]. In principle, u1 and u2

can be taken as linear combinations of Ai and Bi ; however, the
present choice is most convenient here. The first two branches
of the c∞ boundary, c(1,2)

∞ , are shown in Fig. 2. In the weak noise
case, only the second boundary can be crossed, since c

(1)
∞ is

bounded above by zero (c(1)
∞ < 0) and monotonically decreases

(ċ(1)
∞ < 0), while c0 > c

(1)
∞ must hold for initial conditions

restricted to be near the minimum of the potential well. Thus,
the only way to cross c

(1)
∞ is for c(t) to diffuse to +∞ and be

reinjected at −∞, and this cannot happen under the weak noise
assumption. Therefore, computing escape times, we consider
only those trajectories that reach c

(2)
∞ . Note that c

(2)
∞ spans the

time interval between the first and second zeros of Bi(−t),
so that our approximation of the escape distribution times is
necessarily limited to this time interval, which is given below.
In principle, this time interval can be adjusted by taking a
different linear combination of Ai and Bi for u1 and u2, since
the time interval is specified by the zeros of u2. However, as
the perturbation solution requires small noise, the probability
of escape outside this time interval is necessarily small.

Equation (15) captures the escape distribution with the
system initially situated on the noise-free trajectory specified

by c0 at time t0. Generally, the dependence on c0 and t0
becomes weak as |t0| becomes large since

c ∼ e− 2
3 |t0|3/2

, (18)

assuming the system begins the sweep near the bottom of the
potential well. This weak dependence on this class of initial
conditions is a property of the deterministic system and results
from the annihilation of the fixed point after the bifurcation.
While it is not captured in our perturbation, diffusion only
increases this effect as the system settles into a quasi-steady-
state distribution early in the sweep. Thus, when the sweep is
started well before the bifurcation point, the initial conditions
are forgotten.

With this understanding, the initial conditions for the linear
sweep are taken to be c0 = 0 and t0 = −∞. The resulting
escape distribution then applies to all initial conditions where
c0 is near zero and t0 � −1. The corresponding escape current
is computed using Eqs. (15) and (17), resulting in

P∞(T ) =
[

4π5ε2B4
i (−T )

∫ T

−∞
A4

i (−t)dt

]−1/2

× exp

[ −A2
i (−T )

4π2ε2B2
i (−T )

∫ T

−∞ A4
i (−t)dt

]
, (19)

with T restricted to the range between the first two zeros of
Bi(−t), 1.17 < t < 3.27.

Equation (19) is a primary result for the saddle-node
bifurcation with linear parameter sweep. We illustrate various
features of this result in Fig. 3. Figure 3(a) shows the mean
(black) and variance (gray) of the escape time distribution for
a wide range of noise strengths, spanning adiabatic (Kramers)
escape and delayed bifurcation. Solid lines are used to show the
solution obtained by numerically solving the FP equation over
a finite domain. The moments for the adiabatic approximation
and the approximation developed here are shown as dashed
lines over their respectively valid regions of the noise strength
parameter. Two sample distributions are shown in Figs. 3(b)
and 3(c). The distribution shown in Fig. 3(b) is for the adiabatic
case, such that escape occurs before the bifurcation point,
hence the negative values of escape times T . The distribution
shown in Fig. 3(c) is for a weak noise (or relatively fast sweep
rate), resulting in delayed bifurcation, and the distribution is
restricted to the normalized time window 1.17 < T < 3.27.
Recall that here the escape times T are the same as the attendant
bifurcation parameter values, μT .

Note that the variance is dramatically larger in the adiabatic
case, ε2 � 1, when compared to the nonadiabatic case, ε2 �
1. This is the result of the different escape mechanisms in
these two limiting cases. In the adiabatic case, escape is a
rare event in which the noise overcomes a potential barrier.
Thus, the probability of escape over a small time interval is
small, but the sweep takes a long time, so escape is virtually
inevitable. In this way, the escape events have a relatively wide
distribution. In contrast, for the nonadiabatic case, escape is
inevitable, since the potential well disappears, and the solution
closely follows the deterministic trajectory that would result
from an initial condition at the bottom of the potential well. The
escape times are randomly distributed about this trajectory due
to diffusion. These observations also indicate why the mean
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FIG. 3. (a) Mean (black) and variance (gray) of the escape current.
Numeric solution (solid lines) and approximations (dashed lines) are
shown. Two sample escape distributions are also shown, one for
adiabatic escape (b) and one for delayed bifurcation (c).

escape time is insensitive to the noise strength for small noise
intensity but highly sensitive to the noise strength for large
noise intensity, as indicated in Fig. 3(a).

III. ESCAPE NEAR A SUBCRITICAL PITCHFORK
BIFURCATION

Near a subcritical pitchfork bifurcation, the dynamics with
noise along the slow manifold are described by the normal
form [42]:

ẋ = 2μ(t)x + 4x3 + εξ (t), (20)

where μ is the bifurcation parameter, ε2 is the noise strength,
and ξ is zero-mean, delta-correlated white noise with auto-
correlation 〈ξ (t)ξ (t ′)〉 = 2δ(t − t ′). It is recognized that the
presence of noise shifts the effective bifurcation parameter
[46], so μ here includes that shift. The illustration of this
system as a particle in an evolving potential is shown in Fig. 4.
The FP equation corresponding with Eq. (20) is given by

∂ρ

∂t
= − ∂

∂x
[(2μx + 4x3)ρ] + ε2 ∂2ρ

∂x2
, (21)

where ρ = ρ(x,t) is the probability distribution for the system
state. As in the saddle-node case, we compare approximate
results for fast and slow sweeping with numerical solutions of
this FP equation.

FIG. 4. Escape near a subcritical pitchfork bifurcation.

Suppose the system is initially near the local minimum
x = 0 for μ < 0. If μ is increased relatively slowly, ε2 � μ̇,
the rate of escape can be approximated by the well-known
adiabatic Kramers result [40,44], given by

W (t) =
√

8

π
|μ(t)| exp

[
− μ2(t)

4ε2

]
. (22)

The probability to remain in the well diminishes according to
the product of this rate and the probability to remain in the
well. Accordingly, the probability density function for escape
at time T in the limit of adiabatic sweeping is given by [1,40]:

P (T ) = W (T ) exp

[
−

∫ T

−t0

W (t)dt

]
. (23)

If μ is swept quickly, that is, 0 � ε2 � μ̇, the system response
is dominated by delayed bifurcations. However, the method
employed for determining the distribution of escape events
for the saddle-node bifurcation in this case is not convenient
for the pitchfork, since here this approach does not yield
a result independent of the initial conditions. This results
from the fact that, for the pitchfork, the noise-free system
maintains an equilibrium state, albeit unstable, beyond the bi-
furcation point. For the noise-free system, the initial conditions
enter the solution multiplicatively and cannot be neglected.
Nevertheless, diffusion removes the dependence on initial
conditions when the parameter sweep is started sufficiently
far from the bifurcation point, such that the system settles
into a quasi-steady-state distribution [5,8,10]. To capture this
effect we employ an alternative method for determining the
distribution of escape times, using asymptotic expansions.

Following Suzuki [4], we separate the sweeping time into
a first interval, over which nonlinear drift is ignored, and a
second interval, over which diffusion is ignored. We show
that, under some conditions stated below, there exists a time
interval over which both approximations are valid, allowing
one to match the solutions. A change of coordinates in Eq. (21)
makes clear the two phases of response. Let

y = x

σ
where (24)

σ 2 = ε2e
4

∫ t

t0
μ dt ′

(
σ 2

0 + 2
∫ t

t0

e
−4

∫ t ′
t0

μ dt ′′
dt ′

)
. (25)

This particular σ 2 is the variance of the solution to the
linearized problem in which the nonlinear drift term is
neglected. By changing coordinates into one in which the
linearized problem has a constant solution, we explicitly
expose the role of nonlinear drift and its relationship to
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diffusion. For simplicity, in this discussion we assume μ

increases monotonically with t . In this case, the parameter
σ has the following properties: it is positive, it takes on
the value εσ0 � 0 at time t = t0, and it decreases until the
time at which 2μσ 2/ε2 = −1, which must occur before the
bifurcation point is reached because μ must be negative to
satisfy this condition. σ increases monotonically afterward.
If the initial value is sufficiently small, σ0 < ε/

√−2μ0, then
σ increases monotonically. Taking y as the new coordinate,
Eq. (21) becomes

∂ρ

∂t
− ε2

σ 2
y

∂ρ

∂y
= −2μρ − 4σ 2 ∂

∂y
[y3ρ] + ε2

σ 2

∂2ρ

∂y2
. (26)

The second term on the left-hand side of Eq. (26) arises since
y changes with time, t . The three terms on the right-hand
side correspond to, in order, linear drift, nonlinear drift,
and diffusion. In Eq. (26), the two regions of time become
apparent by comparing the coefficients of the nonlinear drift
and diffusion terms, namely, 4σ 2 and ε2/σ 2. The ratio of the
two coefficients is

4σ 4

ε2
. (27)

In the initial phase of the response, this ratio is O(ε2)
[assuming σ0 is O(1)], implying that diffusion dominates the
nonlinear drift. At later times, the ratio is O(ε−2), owing
to the exponential growth of σ , and the nonlinear drift
dominates diffusion. In the intermediate region, the ratio is
O(1), and thus σ 2 ∼ O(ε). Delayed bifurcation dominates
the system response when this overlap region occurs beyond
the bifurcation point. Now, an upper bound for σ 2 at the
bifurcation point, i.e., when μ = 0, is 2πε2/ min μ̇, assuming
μ is monotonically increasing. Thus, the condition ε2 � μ̇

ensures that the overlap region occurs after the bifurcation
point and the system will exhibit delayed bifurcation.

In the initial time region we ignore the nonlinear drift with
respect to diffusion and obtain an approximate solution ρl of
Eq. (26) by solving

∂ρl

∂t
= −2μρl + ε2

σ 2

(
y

∂ρl

∂y
+ ∂2ρl

∂y2

)
. (28)

Taking a Gaussian initial condition with zero mean and
variance σ 2

0 , ρl is given by

ρl(y,t) = 1√
2πσ 2

exp

[
−y2

2

]
. (29)

At the other end of the process, in the second time region,
which leads to escape, diffusion can be ignored with respect
to drift. An approximate solution ρnl of Eq. (26) for this case
is obtained by solving

∂ρnl

∂t
= −2μρnl − 12σ 2y2ρnl − 4σ 2y3 ∂ρnl

∂y
. (30)

This equation is solved using the method of characteristics,
which yields

ρnl(y,t) = ρ
(1)
nl (y1,t1)

(
y1

y

)3

exp

[
−2

∫ t

t1

μ dt ′
]

, (31)

y1(y,t |t1) = y

[
1 + y2

∫ t

t1

8σ 2 dt ′
]−1/2

, (32)

where ρ
(1)
nl (y1,t1) captures the constant of integration along

each characteristic. This corresponds to the initial conditions
for Eq. (30). Now, time t1 need not be the starting time of the
sweep, but can be taken to be any time before escape. To match
the linear and nonlinear solutions, we take t1 to be some time
in the common region where the quantity in Eq. (27) is O(1).
To do the matching, we choose ρ

(1)
nl such that ρnl and ρl are

identical to the leading order in the common region.
We begin by rewriting Eq. (29) as

ρl = 1√
2πσ (t1)

exp

[
−y2

2
− 2

∫ t

t1

μ dt ′−
∫ t

t1

ε2

σ 2
dt ′

]
. (33)

In the common region, the last integral is O(ε), and it can be
ignored, resulting in

ρl ≈ 1√
2πσ (t1)

exp

[
−y2

2
− 2

∫ t

t1

μ dt ′
]

. (34)

Note that this is valid because t is not too far from t1 as both
are in the common region. By the same argument, we drop the
integral in Eq. (32). Thus, y1 ≈ y and the nonlinear solution
is approximated by

ρnl ≈ ρ
(1)
nl (y,t1) exp

[
−2

∫ t

t1

μ dt ′
]

. (35)

The two distributions are matched by taking

ρ
(1)
nl (y1,t1) = 1√

2πσ (t1)
exp

[
−y2

1

2

]
. (36)

The probability to escape at time T can be understood as the
probability current at y = ∞. In this limit, the linear drift and
diffusion terms give zero since they cannot result in escape to
∞ in finite time. Thus, the escape current is computed from the
nonlinear drift. Moreover, it is equally probable to escape to ∞
as to −∞ owing to the symmetry of the problem. Accordingly,
we can express the probability of escape at time T as twice the
nonlinear probability current at y = ∞. The current is given
by P∞(T ) = limy→∞ 8σ 2y3ρ. This gives

P∞ = 8σ 2(T )√
2π

(
8
∫ T

t1

σ 2dt

)−3/2

× exp

[∫ T

t1

ε2

σ 2
dt −

(
16

∫ T

t1

σ 2dt

)−1
]

. (37)

Equation (37) depends weakly on the choice of t1, and, to
leading order, this dependence can be removed, as follows.
First, since ε2/σ 2 is small for times after t1, we drop the
first integral in the exponent. Second, since σ 2 is small for
times before t1, we extend the lower bound of integration for
the remaining integrals back to the bifurcation point, which
is a well-defined time and makes a convenient choice. The
resulting approximation is given by

P∞(T ) ≈ 8σ 2(T )√
2π

(
8
∫ T

tb

σ 2dt

)−3/2

× exp

[
−

(
16

∫ T

tb

σ 2dt

)−1
]

, (38)
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where tb is the time at which the noise-free bifurcation point
is reached.

To solve a specific example, we again consider the linear
sweep, for which μ = t . In this case,

σ 2 = ε2

√
π

2
e2t2

[√
2σ 4

0

π
e−2t2

0 + erf(
√

2t) − erf(
√

2t0)

]
.

(39)

For large |t0|, that is, starting far from the bifurcation point, σ

becomes approximately independent of σ0 and t0. Under this
assumption, we take the approximation

σ 2 ≈ ε2

√
π

2
e2t2

(1 + erf(
√

2t)). (40)

For μ = t , the bifurcation point is reached when t = tb = 0.
Thus, the integration of σ 2 gives

8
∫ T

0
σ 2dt = 2πε2

[
erfi(

√
2T) + 4T 2

π
2F2(2T 2)

]
, (41)

where erfi is the imaginary error function and 2F2 is the
hypergeometric function 2F2(1,1; 3/2,2; 2T 2) [45]. Thus, the
escape distribution for a linear sweep is approximated by

P∞(T ) ≈ 2[1 + erf(
√

2T )]√
2πε[πerfi(

√
2T ) + 4T 2

2F2(2T 2)]3/2

× exp

[
− 1

4ε2[πerfi(
√

2T ) + 4T 2
2F2(2T 2)]

]
.

(42)

Equation (42) is our primary result for the subcritical
pitchfork bifurcation subject to the linear parameter sweep.
Several aspects of this solution are illustrated in Fig. 5. The
first three moments of the escape time are shown over a wide
range of noise intensities, along with two sample distributions,
computed using various numerical and approximate solutions
of the FP equation. The mean (black) and variance (gray) are
shown in panel (a), while the skewness is shown in panel
(d). Panels (b) and (c) show sample escape distributions
for large and small noise strengths (relative to the sweep
rate), respectively, computed using the well-known adiabatic
approximation (23) and Eq. (42), respectively. Solid lines
indicate the solution obtained by numerically solving the FP
equation over a finite domain. The moments for the adiabatic
approximation (large noise) and the delayed bifurcation (small
noise) approximation developed in this paper, Eq. (42),
are shown as dashed lines. An interesting feature of the
distributions is that the skewness is positive for delayed
bifurcations and negative for activated escape, indicating that
the sign of the skewness is an indicator of the noise strength
relative to the sweep rate.

IV. DISCUSSION AND CONCLUSIONS

In this paper, a systematic approach is taken to investigating
the interplay between noise and parameter sweeps near
bifurcations. Of particular interest are the saddle-node and
subcritical pitchfork bifurcations, since these result in system
responses that leave the vicinity of the bifurcating operating
point, never to return, which we refer to as escape events. As

FIG. 5. Mean [(a), black], variance [(a), gray], and skew (d) of
the escape current. Numeric solution (solid lines) and approximations
(dashed lines) are shown. Two sample escape distributions are
also shown, one for adiabatic escape (b) and one for delayed
bifurcation (c).

described in the Introduction, these events are dramatic, easily
detected, and relevant to a number of applications. By using the
stochastic normal forms for these bifurcations, we determine
the distribution of parameter values at which escape events
occur during parameter sweeps. A general formulation is
derived, based on the FP equation, which is solved numerically.
The well-known adiabatic (Kramer) result is checked using
an asymptotic approximation of the FP equation. The main
contributions of the present investigation are approximate
solutions derived for the case of small noise (relative to sweep
rate), which result in delayed bifurcations. The results for
both the saddle-node and subcritical pitchfork bifurcations are
obtained using asymptotic expansion methods applied to the
respective local normal form models, for which escape events
are described by growth to infinity in finite time. These results
are applicable to a wide class of systems for which the normal
form describes behavior along the slow (center) manifold
associated with the bifurcation. The predicted distributions
for delayed bifurcations are valid over a range of parameters
for which (i) the noise strength is much smaller than the
bifurcation parameter sweep rate, ε2 � |μ̇|, and (ii) the normal
form remains a valid model of the local dynamics, including
the escape event. This places upper bounds on the system noise
strength and sweep rates for which the results are valid. An
additional feature of our results is that they provide a means
of determining whether a given system will experience one of
the limiting cases, namely, noise-activated escape or delayed
bifurcation, or if it is in an intermediate range where one must
deal more directly with the FP equation. These predictive
results are quite generic, since they are based on normal
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forms, and they have been successfully used for quantifying
bifurcation detection in MEMS [29]. It is expected that they
will be similarly useful for other systems that exhibit delayed
bifurcations with large jumps in response amplitudes, such
as nanomagnetic and Josephson-junction systems. Similar
escape events will occur for subcritical Hopf bifurcations,
but an investigation of this problem will require analysis of
a two-dimensional normal form [47].
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[31] T. T. Heikkilä, P. Virtanen, G. Johansson, and F. K. Wilhelm,

Phys. Rev. Lett. 93, 247005 (2004).
[32] A. Lupascu et al., Nature Physics 3, 119 (2007).
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