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Quantifying spatiotemporal chaos in Rayleigh-Bénard convection
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Using large-scale parallel numerical simulations we explore spatiotemporal chaos in Rayleigh-Bénard
convection in a cylindrical domain with experimentally relevant boundary conditions. We use the variation
of the spectrum of Lyapunov exponents and the leading-order Lyapunov vector with system parameters to
quantify states of high-dimensional chaos in fluid convection. We explore the relationship between the time
dynamics of the spectrum of Lyapunov exponents and the pattern dynamics. For chaotic dynamics we find that all
of the Lyapunov exponents are positively correlated with the leading-order Lyapunov exponent, and we quantify
the details of their response to the dynamics of defects. The leading-order Lyapunov vector is used to identify
topological features of the fluid patterns that contribute significantly to the chaotic dynamics. Our results show
a transition from boundary-dominated dynamics to bulk-dominated dynamics as the system size is increased.
The spectrum of Lyapunov exponents is used to compute the variation of the fractal dimension with system
parameters to quantify how the underlying high-dimensional strange attractor accommodates a range of different
chaotic dynamics.
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I. INTRODUCTION

At the core of many problems of scientific interest is a
spatially extended system that is driven far from equilibrium to
yield spatiotemporal chaos (aperiodic dynamics in both space
and time) [1]. Examples include the dynamics of the weather
and climate [2], fluid turbulence [3], the intricate patterns that
occur for reacting, diffusing, and advecting chemicals [4], and
the transition to chaos in excitable media such as cardiac tissue
[5]. It is expected for systems such as these that the dimension
describing the attractor of the dynamics will be very large. As
a result, the powerful ideas of chaotic time series analysis [6],
as well as geometrical-based approaches for estimating the
dimension [7], are difficult to apply and are often ineffective.

However, with the advance and availability of sophisticated
parallel algorithms and supercomputing resources these high-
dimensional systems are accessible to Lyapunov exponent
and Lyapunov vector-based diagnostics. Using the standard
approach [8] of simultaneously evolving the tangent space
equations with frequent Gram-Schmidt reorthonormalizations
allows one to compute the spectrum of Lyapunov exponents.
With knowledge of the Lyapunov exponents the fractal di-
mension can be estimated using the well-known Kaplan-Yorke
equation [9].

A powerful aspect of this approach is that very large
dimensions are now accessible with an algorithm that scales
readily to parallel computing resources. Using this approach
we discuss results for Rayleigh-Bénard convection, which
is the buoyancy-driven fluid convection that occurs in a
shallow fluid layer that is heated uniformly from below.
Rayleigh-Bénard convection is a canonical system for the
study of pattern formation in systems that are driven far from
equilibrium [1,10]. The study of Rayleigh-Bénard convection
continues to play an important role in building our physical
understanding of the complex dynamics that occur in driven
spatially extended systems.

The desire for a quantitative understanding of high-
dimensional spatiotemporal chaos for experimentally accessi-
ble systems is an important challenge. In this paper we discuss
results for experimentally accessible conditions with fractal
dimensions as large as 50. To the best of our knowledge this
represents the highest-dimension dynamics that have been
explored using Lyapunov-based diagnostics for laboratory
conditions. Knowledge of the fractal dimension can be used
to provide fundamental insights into the underlying chaotic
dynamics. The numerical value of the fractal dimension
provides an estimate for the number of chaotic degrees of
freedom that are active in the system [7]. Given the number
of chaotic degrees of freedom that describe the dynamics one
can construct estimates for the length scales of these degrees
of freedom on average. In addition, the variation of the fractal
dimension with changing system parameters allows one to
probe quantitatively how the attractor accommodates different
dynamics.

In the literature there are a number of new insights provided
by the study of fluid convection using information gained
from computing Lyapunov-based diagnostics. Egolf et al.
[11] demonstrated that Rayleigh-Bénard convection exhibited
extensive chaos for large periodic domains with aspect ratios
48 � � � 64 where � = L/d, L is the side length of the
domain, and d is the depth of the fluid layer. In this study the
system parameters were chosen to yield the spiral defect chaos
state [12]. The spatiotemporal dynamics of the leading-order
Lyapunov vector was studied and was found to be largest
in regions where roll pinch-off events were occurring. It
was suggested that the dynamics of these local defects were
contributing significantly to the disorder as opposed to the
visually striking spiral structures.

Scheel and Cross [13] used the leading-order Lyapunov
exponent and Lyapunov vector to perform a careful study of
the time-periodic and chaotic dynamics that occur in a small
cylindrical convection layer with � = 5 (where � = r0/d and
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r0 is the radius of the convection domain). They conclude
that repeating local defect dynamics involving roll pinch-off
events contribute significantly to the short-time Lyapunov
exponent without affecting the long-time Lyapunov exponent.
Interestingly, they find that the nonrepeating roll pinch-off
events are what contribute significantly to the long-time
Lyapunov exponent. This raises several interesting questions.
How does the leading-order Lyapunov exponent discern
between repeating and nonrepeating events? How do the other
Lyapunov exponents in the Lyapunov spectrum respond to
these events? In this paper we will shed some further insight
upon these questions.

Paul et al. [14] computed the spectrum of Lyapunov
exponents for chaotic convection in cylindrical domains
for aspect ratios 4.72 � � � 15. It was determined that
Rayleigh-Bénard convection was extensively chaotic for � �
7. Jayaraman et al. [15] explored the leading-order Lyapunov
exponent and Lyapunov vector for the domain chaos state that
occurs for Rayleigh-Bénard convection in a rotating domain.
An interesting feature of domain chaos is the presence of
propagating fronts as well as localized defect structures. A
careful study revealed that not all defect structures contributed
equally to the leading-order Lyapunov exponent, a result that
is in agreement with the findings of Scheel and Cross [13] for
the spiral defect chaos state.

In this paper we present a detailed study of chaotic
Rayleigh-Bénard convection using diagnostics based on the
spectrum of Lyapunov exponents and Lyapunov vectors for
a range of experimentally relevant conditions. In Sec. II
we describe the numerical approach used to compute the
flow fields, Lyapunov exponents, and Lyapunov vectors. In
Sec. III we discuss the dynamics of the Lyapunov exponents,
the spatiotemporal features of the leading-order Lyapunov
vector, and the variation of the fractal dimension with system
parameters. Lastly, in Sec. IV we present our concluding
remarks.

II. APPROACH

A. Rayleigh-Bénard convection

Rayleigh-Bénard convection is the buoyancy-driven motion
that results when a thin layer of fluid is heated uniformly
from below. The fluid motion is described by the Boussinesq
equations:

σ−1(∂t + u · ∇)u = −∇p + ∇2u + RT ẑ, (1)

(∂t + u · ∇)T = ∇2T , (2)

∇ · u = 0, (3)

where ẑ is a unit vector in the z direction that opposes gravity,
σ is the Prandtl number, R is the Rayleigh number, u is the
fluid velocity, p is the pressure, and T is the temperature. The
equations are nondimensionalized using the layer depth d for
the length scale, the vertical diffusion time for heat d2/α where
α is the thermal diffusivity for the time scale, and the constant
temperature difference between the bottom and top plates �T

as the temperature scale.

The no-slip boundary condition is applied to all material
surfaces

u = 0, (4)

and the lateral side walls of the cylindrical domain are assumed
to be perfectly conducting:

T (z) = 1 − z. (5)

The Rayleigh number,

R = gβ�T d3

να
, (6)

is the control parameter that is most often varied in ex-
periment. Small values of R correspond to simple, often
time-independent flows; intermediate values of R correspond
to complex chaotic flows as studied here; and large values
of R correspond to strongly driven turbulent flows [16].
It will be convenient to use the reduced Rayleigh number
ε = (R − Rc)/Rc where Rc = 1707.76 is the critical Rayleigh
number for an infinite layer of fluid.

The Prandtl number,

σ = ν

α
, (7)

is the ratio of momentum and thermal diffusivities. The
magnitude of the Prandtl number is inversely related to the
strength of the mean flow [17]. The mean flow is a weak but
long-range flow field that originates from the Reynolds stress
term and is driven by roll curvature, roll compression, and
gradients in the convection amplitude [18]. The mean flow
is very difficult to measure experimentally [19,20] and has
a dramatic effect upon the linear stability of the convection
rolls [21,22]. Its importance is not due to its strength, but
because it is a nonlocal effect acting over large distances (many
roll widths) and advects the pattern [23].

The aspect ratio of the domain � is a measure of the spatial
extent of the system. The dynamics of the flow field depends
strongly upon the aspect ratio of the fluid layer [24]. For small
domains the sidewalls tend to frustrate the dynamics due to the
tendency of the convection rolls to approach a sidewall with the
roll axis perpendicular to the boundary. In cylindrical domains
this leads to the presence of wall foci which can penetrate
several roll wavelengths into the domain. As the aspect ratio
increases the influence of the sidewalls diminishes.

B. Computing the Lyapunov exponents and Lyapunov vectors

We compute the spectrum of Lyapunov exponents λk using
the standard procedure described in detail in Ref. [8]. For each
exponent a set of equations linearized about Eqs. (1)–(3) are
evolved simultaneously to yield the dynamics of perturbations
arbitrarily close to the full nonlinear system. These tangent
space equations are

σ−1(∂tδu(k) + u · ∇δu(k) + δu(k) · ∇u)

= −∇δp(k) + ∇2δu(k) + RδT (k)ẑ, (8)

∂t δT
(k) + u · ∇δT (k) + δu(k) · ∇T = ∇2δT (k), (9)

∇ · δu(k) = 0. (10)

046201-2



QUANTIFYING SPATIOTEMPORAL CHAOS IN RAYLEIGH- . . . PHYSICAL REVIEW E 85, 046201 (2012)

which can be written as

dδH(k)

dt
= J[H(t)]δH(k), (11)

where H(t) = [u,T ] and δH(k)(t) = [δu(k)(t),δT (k)(t)]. For
incompressible fluid flow the pressure is implicitly determined
by the requirement of the conservation of mass. As a result, the
vectors H(t) and δH(k)(t) do not include p and δp, respectively.
In our notation, J = dF/dH where J is the Jacobian of the flow
that results when rewriting Eqs. (1)–(3) as dH(t)/dt = F(H).
The boundary conditions for the perturbation equations are
δu(k) = 0 and δT(k) = 0 at all material walls.

The perturbations are reorthonormalized using a Gram-
Schmidt procedure after a time tN to yield the magnitude of
their growth ‖δH(k)(tN )‖ where the normalization is defined
over the interior volume V as

‖δH(k)(t)‖ =
√

1

V

∫
V

[δu(k)(t)2 + δT (k)(t)2]dV . (12)

Each reorthonormalization yields a value of the instantaneous
Lyapunov exponent,

λ̃k = 1

tN
ln ‖δH(k)(tN )‖. (13)

This is repeated, and the average value of λ̃k yields the finite-
time Lyapunov exponent,

λk = 1

Nt

Nt∑
i=1

λ̃k, (14)

where Nt is the number of reorthonormalizations performed.
The limit Nt → ∞ yields the infinite-time Lyapunov expo-
nent.

The leading-order exponent λ1 describes the growth of
the line separating two trajectories in phase space, λ1 + λ2

describes the growth of a two-dimensional area of initial
conditions, and

∑N
i=1 λi describes the growth of an N -

dimensional ball of initial conditions. The exact number of
exponents required for the sum to vanish corresponds to the
dimension of the ball of initial conditions that will neither grow
nor shrink under the dynamics and is referred to as Lyapunov
or fractal dimension Dλ. Given only the Lyapunov exponents,
Dλ can be determined from the Kaplan-Yorke formula,

Dλ = K + SK

|λK+1| , (15)

where K is the largest n for which Sn = ∑n
i=1 λi > 0 [1,9].

The value of Dλ is the minimum number of active degrees of
freedom that contribute to the chaotic dynamics [7].

To solve the system of equations given by Eqs. (1)–(3)
and Eqs. (8)–(10) we used a highly efficient, parallel spectral
element code developed to solve the Boussinesq equations.
This code has been used in a number of numerical explorations
of Rayleigh-Bénard convection that have been discussed in
the literature (cf. Refs. [13–15,17,25–27]). The underlying
numerical approach is discussed in Refs. [28,29], and a
discussion of its application to Rayleigh-Bénard convection
can be found in Ref. [26].

In our numerical simulations, we begin from a small
random perturbation on the order of 10−3 to the linear

conduction temperature profile with zero velocity field. The
initial conditions for the tangent space equations are zero
perturbation velocity and a random temperature perturbation
with a magnitude on the order of 10−5. A typical value of the
numerical time step is �t = 10−3, and we perform a Gram-
Schmidt reorthonormalization every 10 time steps. Within
each spectral element we have used 11th-order polynomials
to represent the field variables.

Over the course of this work we have performed numerous
tests by varying the numerical parameters used in the code
to ensure the validity of our numerical results. In particular,
we have performed simulations for varying time steps and
spatial discretizations to ensure that our results for the
Lyapunov-based diagnostics are accurate and reproducible.
For a typical numerical simulation we integrate the equations
for approximately 15 horizontal diffusion times to allow for
initial transients to decay. We then use the numerical data
from the latter half of the simulation to compute the Lyapunov
diagnostics that we report here. Where possible we have
included error bars in our results to reflect the variation in
the quantities presented based upon our numerical results.

III. DISCUSSION

A typical chaotic flow-field pattern from our numerical
simulations is shown in Fig. 1. The contours of the temperature
field are shown at mid-depth where light regions are hot
rising fluid and dark regions are cool falling fluid. The fractal
dimension Dλ of this flow field is approximately 50. The
convergence of Dλ in time is shown in Fig. 2 for a range
of reduced Rayleigh numbers. To emphasize the slow and
noisy convergence the time axis has been normalized by
the nondimensional horizontal diffusion time τH = �2, which
represents the time required for heat to diffuse from the center
of the domain to the sidewall. Time scales on the order of
the horizontal diffusion time for heat and longer have been
shown to describe the duration required for large aspect ratio

FIG. 1. A spatiotemporally chaotic flow field for ε = 4.27, σ =
1, and � = 10. Contours are shown of the temperature field at a
midplane slice where z = 1/2. Light regions are hot rising fluid, and
dark regions are cool falling fluid. This flow-field image is at time
t = 610.5.
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FIG. 2. The convergence of the fractal dimension Dλ in time.
Results are shown for four different values of the reduced Rayleigh
number ε where � = 10 and σ = 1. The time scale has been
normalized by the horizontal diffusion time for heat, τH = �2. The
convergence is quite slow and remains noisy over the entire range
shown.

convecting systems to reach dynamics that are independent of
initial transients [23].

A. The dynamics of the Lyapunov exponents

We are interested in understanding how the time dynamics
of the Lyapunov exponents relate to the dynamics of the flow
field. Only the leading-order Lyapunov vector is pointing
in a physically relevant direction due to the Gram-Schmidt
reorthonormalizations that are used in their computation. The
magnitude of the Lyapunov exponents are not affected by this,
and the variation of their magnitude in time provides insight
into the underlying dynamics. For example, it would be useful
to know if the different exponents exhibit different dynamics
that could be related to features of the pattern dynamics such as
roll pinch-off events, pattern rotation, and the effects of weak
long-range contributions such as the mean flow.

As either R or � increase, the patterns become very
complex, making it difficult to disentangle distinct features
in the pattern dynamics that correspond to the variation in
the magnitude of the Lyapunov exponents. In light of this,
we first explore a small cylindrical domain that exhibits
periodic dynamics in time. The specific parameters used are
� = 5, σ = 1, and ε = 1.93. Flow-field images are shown in
Figs. 3(a) and 3(b), and the variation of the Nusselt number N

is shown in Fig. 3(c).
Although N is a global measure of the heat transport

through the convection layer its variation with time directly
corresponds with the topological features of the pattern
dynamics (cf. Ref. [25]). Figure 3(c) shows one period of the
dynamics which occurs over a time of t ≈ 27 time units. The
vertical dashed lines of Fig. 3(c) indicate the times at which
the flow fields in Fig. 3(a) and 3(b) are shown. The dips in
N (t) occur during roll pinch-off events and the positive spikes
occur during dislocation annihilation events. Physically, this
reflects that the heat transport through the convection layer

565 570 575 580 585 590
1.84

1.86

1.88

1.9

t

N

t1 t2
(c)

(a) (b)

FIG. 3. The flow field and the variation of the Nusselt number
N with time for periodic dynamics. The simulation parameters are
� = 5, σ = 1, and ε = 1.93. (a) The flow field at t = 579. (b) The
flow field at t = 581. (c) The variation N (t) for one period of
the dynamics. The vertical lines represent the instances of time of
the two flow-field images.

is less efficient in the presence of the defects. The remaining
smooth features of N (t) correspond to climbing and gliding
dynamics.

The time variation of the three largest Lyapunov exponents
is shown in Fig. 4. The exponents have been normalized by
the maximum value of λ1 over this time window in order to
compare them on a single plot. The normalized exponents
are denoted by λ̃. As expected, the leading-order Lyapunov
exponent exhibits significant variations at the roll pinch-off
and annihilation events. The dynamics of the second and third
exponents tend to follow with interesting variations.

For example, a closer inspection of the time dynamics near
t ≈ 579 reveals that the dynamics of λ1 correspond precisely
with the dynamical events of the pattern. However, the first

578 579 580 581 582
−1

−0.5

0

0.5

1

t

λ̃

 

 

FIG. 4. The time variation of the first three instantaneous Lya-
punov exponents λ̃ for time-periodic dynamics. The simulation
parameters are � = 5, σ = 1, and ε = 1.93. The Lyapunov exponents
have been normalized by the maximum value of λ1 for ease of
comparison. The values for λ̃1, λ̃2, and λ̃3 are given by the solid,
dashed, and dash-dot lines, respectively.
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peak of λ2 is before the occurrence of the roll annihilation and
anticipates this feature. In addition, the roll pinch-off event
that occurs at t ≈ 581 results in a peak in λ2 while both λ1 and
λ3 exhibit dips. The dynamics of λ3 is much more sensitive
to the event that occurs near t ≈ 581 than the event near
t ≈ 579.

In order to explore this further for chaotic dynamics we
performed a number of simulations for a larger cylindrical
domain with increased values of the Rayleigh number. The
specific parameters we used were � = 10, σ = 1, and 2.51 �
ε � 4.27. An example flow field is shown in Fig. 1 for ε =
4.27. The dynamics of these patterns are quite complex making
it very difficult to relate features of the flow-field dynamics
with the variation in the Lyapunov exponents. In this regime
there are typically multiple roll pinch-off events occurring
simultaneously.

In Fig. 5(a) we plot the spectrum of Lyapunov exponents
λk for a convection domain where � = 10,σ = 1,ε = 2.51.
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FIG. 5. (a) The spectrum of Lyapunov exponents λk . Also shown
are the error bars that are computed from the standard deviation
of λk about its mean value at long times. (b) The instantaneous
cross-correlation between the leading order Lyapunov exponent
and the remaining exponents in the spectra λj for j = 2, . . . ,30.
The simulation parameters for both panels are σ = 1, � = 10, and
ε = 2.51.

The dynamics is chaotic (λ1 > 0), and the error bars represent
the standard deviation of λk about its mean value at long times.

Figure 5(b) shows the zero-time cross-correlation between
λ̃1 and λ̃j where j = 2, . . . ,Nλ, we have first subtracted off
the mean value of each of the Lyapunov exponents, and Nλ

is the number of Lyapunov exponents computed for that
value of ε. We find a positive cross-correlation for all of
the exponents λ̃j . The first several exponents have the largest
cross-correlation with λ̃1, which is then followed by a rather
uniform falloff with increasing j . These results suggest that
all of the exponents tend to exhibit variations together. In
these patterns the dynamics are dominated by roll pinch-off
events, suggesting that all of the exponents are sensitive to
these events.

B. The dynamics of the leading-order
Lyapunov vector

The spatial and temporal dynamics of the leading-order
Lyapunov vector provides insight into regions of the flow field
experiencing the largest growth in the perturbation equations.
This has been used to identify nonrepeating roll pinch-off
events as significant contributors to the overall disorder in a
chaotic convection flow field [13]. It has also been shown
that Rayleigh-Bénard convection exhibits extensive chaos for
finite cylindrical geometries using systems parameters that
yield spiral defect chaos. For the parameters used by Paul
et al., ε = 2.51 and σ = 1, the onset of extensivity occurred for
a system size of � ≈ 7 [14]. It is expected that extensive chaos
occurs for convection layers that have reached a large-system
limit where the influence of the lateral sidewalls have become
reduced.

In order to explore this further we have performed very
long-time numerical simulations for cylindrical geometries
over a range of aspect ratios 5 � � � 30 where ε = 2.51 and
σ = 1. In these simulations we have computed the leading-
order Lyapunov exponent and Lyapunov vector. Figure 6
shows grayscale contours of the leading-order Lyapunov
vector overlaid with solid black lines indicating the convective
roll pattern. The Lyapunov vector is plotted using the value
of the thermal perturbation field at the horizontal midplane.
In this figure light regions indicate large positive values,
dark regions indicate large negative values, and gray regions
represent regions of small growth. The images of Fig. 6 suggest
that the smaller domains are dominated by large values of
the perturbation at the lateral boundaries. This transitions to
dynamics with large perturbations in the bulk of the domain
away from the sidewalls for the larger aspect ratio systems. The
location of occurrence of the largest perturbations also shows a
transition. In small domains, mostly bending rolls cause large
perturbations; but in large domains, they are associated with
the dislocation defects initiated by roll pinch-off events.

In order to investigate this further we have computed the
time average of the magnitude of the leading order Lyapunov
vector given by

〈δT (x,y)〉t = 1

Ns

Ns∑
i=1

|δT (1)(x,y,z = 0.5,ti)|, (16)

where ti is the time of the corresponding perturbation field,
Ns ≈ 103 is the total number of perturbation fields, and
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(a)

(b)

(c)

(d)

FIG. 6. Overlay of a grayscale contours of the midplane tem-
perature perturbation field with solid black lines representing the
convection roll boundaries for different aspect ratios: (a) � = 5,
(b) � = 10, (c) � = 15, and (d) � = 30. For � = 30 the image is
plotted at half scale to be able to fit on this figure. The parameters are
ε = 2.51 and σ = 1.

the notation 〈·〉t is used to indicate the time average. The
spatial distribution of the time-averaged perturbation fields
are shown in Fig. 7. In Fig. 7 red indicates regions of large
values of the magnitude (located primarily near the boundary
for small domains and at the bulk of the domain for large
domains), and blue represents regions of small values of the
magnitude (located mainly at the bulk of the domain for
small domains and near the boundary for large domains).
The asymmetry in the azimuthal direction of the averaged
perturbation fields is most likely a result of the finite time
of the simulations and the particular choice of random initial
conditions. These simulations are quite computationally ex-
pensive, and we have not explored this aspect further. In order
to explore the variation with the radial coordinate we have
computed the azimuthal average of the time-averaged pertur-
bation fields using

〈δT (r̄)〉t,θ = 1

Nθ

Nθ∑
i=1

〈δT (r̄ ,θ )〉t , (17)

(a)

(b)

(c)

(d)

FIG. 7. (Color online) The spatial variation of the time-averaged
magnitude of the thermal perturbation field 〈δT (x,y)〉t evaluated at
the horizontal midplane. (a) � = 5, (b) � = 10, (c) � = 15, and
(d) � = 30. The simulation parameters are ε = 2.51 and σ = 1. The
image for � = 30 is plotted at half scale to fit on this figure. In the
color contour, red regions (located primarily near the boundary for
small � and at the bulk of the domain for large �) correspond to the
large magnitude of the perturbation, and blue regions (located mainly
at the bulk of the domain for small � and near the boundary for large
�) are associated with the small magnitude of the perturbation.

where the notation 〈·〉t,θ indicates time and azimuthal averag-
ing, r̄ = r/� is the normalized radial coordinate whose origin
is in the center of the domain, and Nθ = 400 is the number
of points used in computing the azimuthal average. The radial
variation of 〈δT (r̄)〉t,θ is plotted in Fig. 8. The transition from
dynamics with significant perturbations at the boundaries to
dynamics with significant perturbations away from the walls
is evident.

C. The variation of the fractal dimension with
system parameters

The variation of the fractal dimension with system parame-
ters can provide insights into the nature and composition of the
underlying high-dimensional attractor describing the chaotic
dynamics. For Rayleigh-Bénard convection Dλ = Dλ(ε,σ,�).
Our approach is to compute the variation of Dλ with one of the
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FIG. 8. The radial variation of the azimuthal and time-
averaged thermal perturbation field 〈δT (r̄)〉t,θ . The aspect ratios are
5 � � � 30.

parameters while the remaining two are held constant. This has
allowed us to quantitatively probe the underlying attractor for
three different limiting cases. By increasing the system size
while holding ε and σ constant we are able to quantify the
increase in the fractal dimension in the spatiotemporal chaos
limit [1]. When the driving ε is increased while holding �

and σ constant we are able to quantify the increase in the
fractal dimension with the addition of new degrees of freedom
as the system approaches the strong driving limit. Lastly, the
magnitude of the Prandtl number σ is inversely related to the
magnitude of the mean flow. By varying σ while holding � and
ε constant we quantify the variation of the fractal dimension as
the system transitions from nonpotential to potential dynamics.

The variation of the fractal dimension with system size is
expected to be extensive where

Dλ ∝ �ds (18)

in the large system limit and ds is the number of spatially
extended directions [30]. For Rayleigh-Bénard convection
in large shallow layers ds = 2. Extensive chaos has been
demonstrated in large periodic convection layers [11] and
in finite cylindrical convection layers [14]. Deviations from
extensive chaos for small changes in system size has been
proposed as a means to identify a length scale associated
with the fundamental structures composing spatiotemporal
chaos [31]. Deviations from extensivity have been found using
the complex Ginzburg-Landau equation [31], the Lorenz-96
equations [32], and systems of coupled map lattices [33].
However, microextensivity has been found for the Kuramoto-
Sivashinsky equation [34]. For Rayleigh-Bénard convection
we have found that the slow and noisy convergence of Dλ

(see Fig. 2) precludes such an investigation using currently
available algorithms and computing resources.

The variation of Dλ with ε and σ is shown in Fig. 9.
Figure 9(a) illustrates the variation of Dλ with ε where σ = 1
and � = 10. A typical flow-field pattern for the largest value
of the forcing ε = 4.27 is shown in Fig. 1. The error bars
represent the standard deviation of Dλ about its mean value in
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FIG. 9. (a) The variation of the fractal dimension with Rayleigh
number for � = 10 and σ = 1. The circles are data points from the
simulations, and the solid line is the curve fit Dλ = 0.095ε4 + 19.4.
(b) The variation of the fractal dimension with Prandtl number for � =
10 and ε = 2.51. The circles are data points from the simulations,
and the solid line is a curve fit as Dλ = 44.95σ−1.06 − 20.91 for
1 � σ < 2 and Dλ = 0 for σ � 2.

the large-time limit. The solid line through the data is a curve
fit given by

Dλ = αε4 + β, (19)

where α = 0.095 and β = 19.4. This relationship is useful
only for ε � 2.5. For smaller values of ε there must be a
transition not captured in our data that would yield a vanishing
value of the fractal dimension at some positive and finite value
of ε. It is possible that our curve fit remains valid for Rayleigh
numbers larger than what is shown, however, without further
evidence this remains speculative. It is interesting to note that
Sirovich and Deane [35] found that the fractal dimension
increases linearly with Rayleigh number from numerical
simulations of turbulent Rayleigh-Bénard convection (ε ≈ 70)
in a small periodic box with free-slip boundaries.
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FIG. 10. The variation of the natural chaotic length scale (ξδ), the
wavelength of the pattern (ξL), and the ratio of ξL/ξδ with ε for � = 10
and σ = 1. The open squares show ξδ , the open circles show ξL, the
open triangles demonstrate ξL/ξδ , and the solid lines illustrate curve
fits for ξδ and ξL as ξδ = 2.32 − 0.03ε2.4 and ξL = 5.07 − 4.75ε−0.99

and the linear fit for the ratio as ξL/ξδ = 0.73ε − 0.36.

The fractal dimension can be used to provide an estimate
for a natural chaotic length scale [1],

ξδ ≡
(

Dλ

�ds

)−1/ds

, (20)

where a volume of size ξ
ds

δ contains a single chaotic degree
of freedom on average. The variation of ξδ with ε is shown in
Fig. 10, where it decreases from approximately 2 to 1.5 over
the range of ε explored. In order to compare this with features
of the spatial patterns we have computed the time-averaged
value of the pattern wavelength ξL from the structure factor [1].
The pattern wavelength increases from approximately 3 to 4
over the range explored. The ratio ξL/ξδ provides an estimate
for the number of chaotic degrees of freedom per wavelength
of the flow-field pattern and is also shown on Fig. 10. This
indicates that the number of chaotic degrees of freedom per
wavelength of the pattern is increasing with increasing ε. This
is reflected by the occurrence of smaller-scale features in the
pattern images.

The variation of the fractal dimension with Prandtl number
is shown in Fig. 9(b). The corresponding images of the
flow-field patterns are shown in Fig. 11. As the Prandtl
number increases the magnitude of the mean flow decreases,
and eventually the spiral defect chaos state vanishes and is
replaced with a stationary pattern [17]. We find that the fractal
dimension decreases rapidly with increasing σ as shown by
the solid line in Fig. 9(b). For the range 1 � σ � 2 the solid
line is a curve fit given by

Dλ = ασ−β − γ, (21)

where α = 44.95, β = 1.06, and γ = 20.91. This curve fit was
determined using numerical results in the range 1 � σ � 1.8,
and it predicts the zero of the fractal dimension to occur at
σ = 2.06. From our numerical results the fractal dimension
vanishes to within the accuracy of our calculations for σ � 2
and is represented by the horizontal solid line. For σ � 2 the
fluid patterns slowly evolve to a time-independent stationary

FIG. 11. The flow-field patterns for different Prandtl numbers.
In each case ε = 2.51 and � = 10. Panel (a) σ = 1, (b) σ = 3,
(c) σ = 5, (d) σ = 7.

pattern as shown in Figs. 11(b)–11(d). Our results suggest that
the fractal dimension is inversely proportional to the Prandtl
number. It is interesting to point out that this is similar to the
variation of the mean flow magnitude with the Prandtl number
as discussed by Chiam et al. [17].

IV. CONCLUSIONS

A fundamental understanding of high-dimensional chaotic
dynamics in spatially extended systems remains a vast and
important challenge. In this paper we have used large-scale
numerics to provide a quantitative link between powerful
ideas of dynamical systems theory and a fluid system that
can be explored in the laboratory. We have gone to con-
siderable computational effort to perform simulations for
the geometries, boundary conditions, and system parameters
that are of experimental relevance. Our computation of the
Lyapunov based diagnostics provide results that are currently
not possible to obtain analytically or experimentally, and we
have used these to provide new physical insights. Although
the Lyapunov-based diagnostics we have quantified are not
directly accessible to experimental measurement, at least not
in any straightforward way that we can suggest, the values we
present are an important benchmark for comparison as further
experimental and theoretical work is conducted. For example,
it may be possible to connect our results with experimental
measurements using ideas based upon Lagrangian coherent
structures [36,37] or computational homology [38]. From a
theoretical point of view, our work suggests that it would
be interesting to explore the dynamics of the spectrum of
Lyapunov vectors using the more recently suggested approach
of characteristic Lyapunov vectors that satisfy Oseledec
splitting [39,40]. Overall we anticipate that our results will
be useful to those interested in controlling, predicting, and
modeling high-dimensional chaotic systems.
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