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We consider the class of short rate interest rate models for which the short rate is proportional to the exponential
of a Gaussian Markov process x(t) in the terminal measure r(t) = a(t) exp[x(t)]. These models include the
Black-Derman-Toy and Black-Karasinski models in the terminal measure. We show that such interest rate
models are equivalent to lattice gases with attractive two-body interaction, V (t1,t2) = −Cov [x(t1),x(t2)]. We
consider in some detail the Black-Karasinski model with x(t) as an Ornstein-Uhlenbeck process, and show that it
is similar to a lattice gas model considered by Kac and Helfand, with attractive long-range two-body interactions,
V (x,y) = −α(e−γ |x−y| − e−γ (x+y)). An explicit solution for the model is given as a sum over the states of the
lattice gas, which is used to show that the model has a phase transition similar to that found previously in the
Black-Derman-Toy model in the terminal measure.
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I. INTRODUCTION

We consider in this paper the class of one-factor interest
rate models with a log-normally distributed short rate in the
terminal measure. In these models, the short rate is driven
by one Gaussian Markov process x(t). Such a process is
defined by two conditions: (i) for any set of times t1 < t2 <

· · · < tk , the values [x(t1),x(t2), . . . ,x(tk)] have a joint normal
distribution, and (ii) the evolution of x(s) for all s > t depends
only on x(t). It can be shown that the most general process of
this type is a time-changed Brownian motion, and includes the
Ornstein-Uhlenbeck process as a particular case [1].

This class of models includes the Black-Derman-Toy
(BDT) [2] model and the Black-Karasinski (BK) [3] model,
formulated in the terminal measure. The terminal measure is
sometimes used in practice for these models [4], as opposed
to the spot measure in which the models were originally
formulated, due to the ease of calibration and simulation.
Such models have been also proposed as approximations to
the Libor market model [5,6], and as particular parametric
realizations of Markov functional models [4,7]. A choice
of measure amounts to a distributional assumption for the
dynamical variables of the model. See Baxter and Rennie [8]
for a readable introduction to the related concepts of
martingales and measure for stochastic processes, and their
relation to arbitrage pricing theory.

In this paper, we show that these interest rate models are
equivalent to lattice gases with attractive two-body interaction,
V (t1,t2) = −Cov[x(t1),x(t2)], placed in an external potential.
The solution of the models can be expressed explicitly as an
expression for the one-step zero coupon bond given by a sum
over occupation numbers in the lattice gas. The expectation
values required for the simulation of the model correspond to
thermodynamical potentials in the lattice gas model.

We discuss in some detail the Black-Karasinski model
with constant mean reversion γ , which is equivalent to a
lattice gas with attractive two-body interaction, V (x,y) =
−α(e−γ |x−y| − e−γ (x+y)). This is similar to a lattice gas model
considered by Kac [9], Kac et al. [10], and Kac and Helfand
[11,12]. This model generalizes the BDT model in the terminal
measure, which corresponds to γ = 0, and is equivalent to a
Coulomb lattice gas with attractive two-body interactions. The

latter model was studied in Ref. [13], where it was shown that it
displays discontinuous behavior in volatility, which is similar
to a phase transition in condensed-matter physics [14,15].

The equivalence with the lattice gas models suggests alter-
native simulation methods for these interest rate models, which
express expectation values as sums over the states of the lattice
gas. For small lattices, this can be done by explicit summation
over the lattice gas states, while for bigger lattices, efficient
numerical methods are available from statistical mechanics,
such as Gibbs sampling and the Metropolis algorithm. We
illustrate this approach by a numerical study of the BK model,
which shows that the volatility phase transition observed in the
BDT model in Ref. [13] persists also for this model.

II. THE INTEREST RATE MODEL

We consider a short rate interest rate model in discrete time.
The model is defined on a finite set of dates,

0 = t0 < t1 < · · · < tn. (1)

For simplicity, we will assume that ti are equally spaced, and
denote τ = ti+1 − ti with i = 0,1, . . . ,n − 1.

The fundamental dynamical quantities of the model are
the zero coupon bonds Pi,j ≡ Pti ,tj . They are defined as the
price at time ti of a payment of 1 made at time tj . They are
stochastic quantities, and can be expressed as functions of a
one-dimensional Markov process x(t). For definiteness, we
consider in the following that x(t) is an Ornstein-Uhlenbeck
process with zero mean-reversion level,

dx(t) = −γ x(t)dt + σdW (t). (2)

The mean and variance of x(t) conditional on x(0) = 0 are

E[x(t)|x(0) = 0] = 0, (3)

E[x2(t)|x(0) = 0] = σ 2

2γ
(1 − e−2γ t ) ≡ G(t). (4)

The arguments of this paper can be easily extended to the
more general case of x(t) as an arbitrary Gaussian Markov
process. By the Doob’s representation, the most general Gaus-
sian Markov process can be represented as a time-modified
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Brownian motion [1],

x(t) = f (t)
∫ t

0
g(s)dW (s), (5)

with f (t), g(t) as deterministic functions of time, and W (t) as
a Brownian motion.

We define the Libor rate (or simply Libor) for the (ti ,ti+1)
period as

Li = τ−1

(
1

Pi,i+1
− 1

)
. (6)

The model is defined by specifying the functional dependence
of the Libor rate Li on the Markov driver x(ti),

Li = L̃i exp
[
x(ti) − 1

2G(ti)
]
, (7)

where L̃i are constants to be chosen such that the initial yield
curve P0,t is correctly reproduced. This implies that the Libors
Li are log-normally distributed in the terminal measure.

This model is similar to the Black-Karasinski model [2,3],
except that the latter is usually formulated in the risk-neutral
measure, while in the model considered here, the short rate Li

is expressed in terms of x(t) defined in the terminal measure.
In the limit when the time step is taken to zero, τ → 0,

this model becomes a continuous time short rate model, and
the short rate r(t) = limτ→0 Lt/τ (t) satisfies the stochastic
differential equation

dr(t)

r(t)
= [a(t) − γ ln r(t)]dt + σdW (t), (8)

with a(t) a function depending on L̃i and σ . We recognize this
as the short rate evolution in the Black-Karasinski model [3].

A. Explicit solution of the model

According to the fundamental theorem of arbitrage pricing
theory [8], the price of a financial asset V (t) expressed in units
of a simpler asset N (t) (called numeraire) is a martingale. The
mathematical statement of this result is expressed as

V (t)/N (t) = E[V (T )/N(T )|Ft ], (9)

for any t < T . This holds under fairly general assumptions,
among which market completeness is the most important
one. Generally speaking, this means that the model contains
sufficiently many tradeable instruments which allows any
possible payout to be reproduced as a combination thereof.

The choice of the numeraire N (t) is not unique, and any
particular choice defines a measure for the stochastic process
followed by the discounted asset prices V (t)/N (t). Two
particular choices are most common in the context discussed
here. The spot measure, or the risk-neutral measure, takes

N (t) to be the money market account at time t , while the
terminal measure (or tn-forward measure) takes N (t) = Pt,n

to be the zero coupon bond maturing at time tn. Once the
condition (7) is imposed, different measure choices produce
different observable distributional properties of the dynamical
quantities of the model (rates and bonds), and thus effectively
correspond to different models.

We will work in the terminal measure in the following. It is
convenient to introduce the zero coupon bond prices divided by
the numeraire Pt,n, which will be denoted as P̂i,j = Pi,j /Pi,n.
They are martingales in the terminal measure, and thus satisfy
the condition (9), which reads explicitly

P̂i,j = E

[
Pk,j

Pk,n

|Fi

]
(10)

for all i < k < j � n. The one-step discounted zero bond
P̂i,i+1(xi) will play an important role in writing the analytical
solution of this model. It satisfies a few conditions, following
from the martingale condition (10). First, its expectation value
is known in terms of the initial yield curve,

E[P̂i,i+1(xi)] = P̂0,i+1. (11)

It also satisfies the two conditions

P̂i,i+1(xi) = E{P̂i+1,i+2(xi+1)[1 + Li+1(xi+1)τ ]|Fi}, (12)

P̂0,i = E{P̂i,i+1(xi)[1 + Li(xi)τ ]}. (13)

The first condition (12) determines recursively the functional
form of P̂i,i+1(xi), starting with P̂n−1,n = 1 and proceeding
backwards in time. This is given explicitly as a conditional
expectation value,

P̂i,i+1(xi) = E

[
n−1∏

k=i+1

(
1 + L̃kτexk− 1

2 Gk
)|Fi

]
. (14)

The second condition (13) can be used to determine L̃i

also recursively, once P̂i,i+1(xi) has been determined, using
the relation

L̃i = P̂0,i − P̂0,i+1

E
[
P̂i,i+1 exp

(
xi − 1

2Gi

)]
τ

. (15)

For simplicity, we denote the value of the Markov driver at
time ti as xi ≡ x(ti), and its variance as G(ti) = Gi .

We will state in the following the closed form of the solution
of this model. The solution expresses the discounted one-step
zero coupon bonds P̂i,i+1(xi) as a sum of terms containing
0,1,2, . . . ,n − i − 1 L̃j factors. Writing the first few terms
explicitly, this is given by

P̂i,i+1(xi) = 1 +
n−1∑

j=i+1

L̃j τ exp

(
wj−ixi − 1

2
w2(j−i)Gi

)

+
n−1∑

j>k=i+1

L̃j L̃kτ
2 exp

[
(wj−i + wk−i)xi − 1

2
(wj−i + wk−i)2Gi + Xjk

]
+ · · ·

+
∑

k�n−i−1

∑
Sk∈Ti

L̃j1L̃j2 · · · L̃jk
τ k exp

⎡
⎣ k∑

a=1

wja−ixi − 1

2

(
k∑

a=1

wja−i

)2

Gi +
∑

1<a<b<k

Xja,jb

⎤
⎦ . (16)
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We denoted here the weight w = exp(−γ τ ), and the autoco-
variance of the Markov process x(t) as

Xjk = Cov[x(tj ),x(tk)] = σ 2

2γ
(e−γ |tj −tk | − e−γ (tj +tk )). (17)

The general term in Eq. (16) containing k � n − i − 1 factors
of L̃j is given by a sum over all subsets Sk = {j1,j2, . . . ,jk} of
k indices chosen from the n − i − 1 indices Ti ≡ {i + 1,i +
2, . . . ,n − 1}.

In the limit of zero mean reversion γ → 0, we have w = 1
and G(t) = σ 2t , and the expression (16) simplifies drastically.
In this limit, all terms with the same number of L̃j factors
have the same functional dependence of xi , and we recover the
simple form obtained in Ref. [13],

P̂i,i+1(x) =
n−1∑
j=0

c
(i)
j ejxi− 1

2 j 2Gi , (18)

where the coefficients c
(i)
j are given by

c
(i)
k =

∑
Sk

L̃j1L̃j2 · · · L̃jk
τ k exp

( ∑
1<a<b<k

Xja,jb

)
, (19)

where Xj,k = σ 2min(tj ,tk). In Ref. [13], these coefficients
were determined recursively from a recursion relation; see
Eq. (12) in Ref. [13]. Equation (19) gives an explicit solution
of this recursion relation.

An important role is played in this model by the expectation
values of the form

Ni(φ) = E
[
P̂i,i+1e

φxi− 1
2 φ2Gi

]
= 1 +

n−1∑
j=i+1

L̃j τ exp(φwj−iGi) + · · ·

+
∑

k�n−i−1

∑
Sk

L̃j1L̃j2 · · · L̃jk
τ k

× exp

(
φGi

k∑
a=1

wja−i +
∑

1<a<b<k

Xja,jb

)
. (20)

We enumerate in the following the applications of these
expectation values with φ = 0,1, . . ..

The expectation value of P̂i,i+1 (corresponding to φ = 0) is
constrained by the requirement that the initial yield curve P0,i

is correctly reproduced; see (11).

E[P̂i,i+1] = P̂0,i+1

= 1 +
n−1∑

j=i+1

L̃j τ + · · ·+
∑
Sk

L̃j1L̃j2 · · · L̃jk
τ k

× exp

( ∑
1<a<b<k

Xja,jb

)
+ · · · . (21)

The sum on the right-hand side is linear in L̃i+1 and thus can
be used to solve explicitly for this constant, provided that all
L̃j with j = i + 2, . . . ,n − 1 are already known. This is given
in Eq. (15) in a form more convenient for practical calculation.

The φ = 1 expectation value appears in the calculation of
the convexity-adjusted Libors L̃i given by Eq. (15), which can

be written equivalently as

L̃i = P̂0,i+1L
fwd
i

1

Ni(1)
. (22)

Finally, Ni(j ) with j ∈ Z+,j > 1 determines the j th moment
of the Libor distribution in its natural (forward) measure
according to the relation [16]

Ei+1[(Li)
j ] = 1

P̂0,i+1
(L̃i)

jEn

[
P̂i,i+1e

jxi− 1
2 jGi

]
= 1

P̂0,i+1
(L̃i)

j e− 1
2 (j−j 2)Gi Ni(j ). (23)

In the limit of zero mean reversion γ → 0, the above
expectation values are given by the simple expressions [13]

Ni(φ) = E
[
P̂i,i+1e

φxi− 1
2 φ2Gi

] =
n−i−1∑
j=0

c
(i)
j ejφ2σ 2ti . (24)

For sufficiently small volatility σ , the expectation values
Ni(φ) given in Eq. (20) can be computed in an expansion
of the small parameter L̃iτ � 1, and keeping only the terms
linear in this parameter is sufficient for most applications. In
this approximation, we have

Ni(φ) = 1 +
n−1∑

j=i+1

Lfwd
j τeφwj−iGi + O

[(
Lfwd

k τ
)2]

. (25)

The distribution of the Libors in their natural measure is
approximately log normal and the at the money caplet
volatility is

σ 2
LN = G(ti)

ti
. (26)

In the model with zero mean reversion γ = 0, it was noted
in Ref. [13] that for volatility σ above some critical value, the
higher order terms in the expansion (20) become comparable
to the linear terms of O(L̃iτ ). The actual expansion parameter
becomes L̃iτ exp(σ 2ti) and terms of all orders in Lfwd

i τ become
important. This leads to a sharp increase of the expectation
value Ni(φ) above a critical volatility σcr, which is similar to
a phase transition in condensed-matter physics [14,15].

In the next section, we express the expectation values
(20) as averages over the grand canonical ensemble in an
equivalent lattice gas model. This is used to show the existence
of a phase transition also in this model, using a numerical
simulation.

B. Proof

The result (16) can be proven using the following basic
identity. For any numbers nk = 0,1 associated with the ordered
sequence of times t ≡ t0 � t1 � t2 · · · < tN , the following
expectation value with x(t), which is the Ornstein-Uhlenbeck
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process (2), is given by

E

{
exp

[
N∑

k=1

nk

(
xk − 1

2
Gk

)]
|Ft

}

= exp

⎡
⎣xt

N∑
k=1

nke
−γ tk − 1

2
Gt

(
N∑

k=1

nke
−γ tk

)2

+ 1

2

N∑
j,k=1,j �=k

Xj,knjnk

⎤
⎦ , (27)

where Xj,k is the covariance of the process x(t) given above
in Eq. (17). This is a slight generalization of an identity used
in Refs. [9,11] to compute the partition function of a lattice
gas with exponential interaction. It can be easily generalized
to the case of a general Gaussian Markov process x(t).

The discounted one-step bond P̂i,i+1(xi) is given by the
conditional expectation (14). Expanding out the product yields
terms with 0,1,2, . . . factors of L̃kτ , up to n − i − 1 factors.
There are

(
n−i−1

N

)
terms containing N such factors, and they

are given by a sum over all subsets {nk} = {nk1,nk2 , . . . ,nkN
}

of N indices out of the total of n − i − 1 indices. A generic
term has the form

∑
{nk}

�N
j=1(L̃kj

τ )E

⎡
⎣exp

⎡
⎣ N∑

j=1

nkj

(
xkj

− 1

2
Gkj

)⎤
⎦ ∣∣∣∣Fi

⎤
⎦

=
∑
{nk}

�N
j=1

(
L̃kj

τ
)

× exp

⎡
⎣xi

N∑
k=1

e
−γ tkj nkj

− 1

2
Gi

(
N∑

k=1

nkj
e
−γ tkj

)2

+
∑
kj <kl

Xkj ,kl
nkj

nkl

⎤
⎦ , (28)

where the expectation value was computed using the identity
(27). This reproduces the terms containing N factors of L̃kτ

in Eq. (16). This completes the proof of (16).

III. THE LATTICE GAS MODEL

The interest rate model considered in the previous section
is equivalent to a one-dimensional lattice gas with attractive
long-range potential,

V (x,y) = −α(e−γ |x−y| − e−γ (x+y)). (29)

The particles of the lattice gas are constrained to sit at positions
xi = τ i, with i = 1,2, . . . ,n − 1. The n sites of the lattice gas
are labeled as j = 0,1, . . . ,n − 1. The sites j are in one-to-one
correspondence with the discrete set of simulation times {tj }
of the interest rate model. At each site, at most one particle
can be present. We define nj as the occupation number of the
site j . It can take values 0 or 1, depending on whether the site
j is vacant or occupied.

The Hamiltonian of the lattice gas model is

H =
n−1∑
j=1

εjnj +
n−1∑

j>k=1

εjknjnk. (30)

The two-body interaction energy is

εjk = −α(e−γ τ |j−k| − e−γ τ (j+k)) (31)

and the single-site energies are

εj = −β−1 ln(L̃j τ ). (32)

For the application to the interest rate model, we are
interested not only in the entire lattice system, but also
in the subsystem Ti of the lattice consisting of the sites
Ti : {i + 1, . . . ,n − 1}, in a total of nf = n − i − 1 sites.

Assume that the subsystem Ti of the lattice gas is placed in
a position-dependent chemical potential

μ(i)(t) = μGie
−γ (t−ti ). (33)

The grand partition function of the subsystem Ti of the
lattice gas with the Hamiltonian (30) and placed in the
chemical potential (33) is given by

Zi(μ,T ) =
n−i−1∑
N=0

∑
SN

exp

[
− βH + β

∑
j∈SN

μ(i)(tj )

]
. (34)

The sum over the number of particles N runs from 0 to n −
i − 1, which is the number of lattice sites in the subsystem
Ti . For each N , the sum runs over all configurations SN of N

occupied sites, which are subsets of N sites of the n − i − 1
sites in the system Ti .

The correspondence of this lattice gas model with the
interest rate model is realized through the following relation
between the grand partition function Zi(μ,T ) and the expec-
tation value (20):

Ni(φ) = Zi(μ,T ), (35)

provided that the parameters of the lattice gas are related to
those of the interest rate model as

αβ = σ 2

2γ
, φ = βμ. (36)

This system is similar to the one-dimensional gas consid-
ered by Kac [9] and by Kac et al. [10]. A lattice version of the
gas model, very similar to that considered here, was examined
by Kac and Helfand in Refs. [11,12]. More precisely, the latter
papers consider a lattice gas where the particles occupy a lattice
with N nodes and lattice spacing 1, and interact by two-body
attractive potentials, V (|x − y|) = −αγ e−γ |x−y|. This model
has a phase transition in the so-called van der Waals limit,
which is obtained by first going to the thermodynamical limit
of large N , followed by the infinite range limit γ → 0. In the
van der Waals limit, the lattice gas model has a liquid-gas phase
transition with critical temperature βcα = 1

2 , and the equation
of state is given by the van der Waals equation supplemented
by the equal area rule [10].

At this point, it may be useful to recall a few well-known
facts about phase transitions in one-dimensional systems [17].
Although a phase transition does not exist in a one-dimensional
system with short-range interactions [18], it is possible for such
a system to have a phase transition provided that the interaction
is sufficiently long range. Sufficient conditions which have to
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be satisfied by the interaction in order for a phase transition
to exist in a one-dimensional system were given in [19]. The
papers [10] provided an instance of phase transition in a one-
dimensional system, and showed explicitly that this can occur
in a system with long-range interactions. The results of [10]
have been extended to more general interactions and higher
dimensional systems in Ref. [20].

The zero mean-reversion limit of the interest rate model
γ = 0 is the Black-Derman-Toy model in the terminal measure
[13], and is equivalent to a lattice gas model with attractive
Coulomb two-body interactions placed into an external poten-
tial. This can be seen by writing the covariance of the Markov
driver for this case as

V (t1,t2) = −Cov[x(t1),x(t2)] = −σ 2min(t1,t2)

= 1
2σ 2[|t1 − t2| − (t1 + t2)]. (37)

The first term describes an attractive linear interaction between
the pair of particles at sites t1,t2, while the second term can
be represented as their interactions with the repulsive external
field of a static charge placed at the site i = 0.

The one-dimensional gas with Coulomb interaction be-
tween several types of charges was studied, using methods very
similar to those employed here, by Edwards and Lenard [21].
Our Coulomb lattice gas is different from a usual Coulomb gas
in that all particles attract each other. The thermodynamics of
a one-dimensional system with linear attractive potentials was
considered in Ref. [22], although periodic boundary conditions
were imposed such that the resulting form of the interaction
is different from that considered here. A connection between
stochastic processes and the (two-dimensional) Coulomb gas
was realized in a different context in Ref. [23].

The lattice gas with nonzero mean reversion considered
here differs from that studied by Kac and Helfand [11,12] in
several respects, due to the peculiarities of the interest rate
model.

(1) The presence of the L̃j factors requires the introduction
of single-site energies εj associated with the lattice sites. These
energies are different and thus the space homogeneity of the
system is lost. This space homogeneity was crucial for the
analytical solution of the model in the thermodynamical limit
[9–11]. A similar approach is unlikely in this case for this
reason.

The single-site energies εj are constrained by the condi-
tion (22) such that the initial yield curve P0,i is correctly
reproduced. According to this relation, εj depends on the
properties of the subsystem Tj−1 of the lattice gas, and must be
determined by a recursive procedure starting with the smallest
subsystem Tn−2 and adding one lattice site at a time.

(2) The two-body interaction in the lattice gas (29) contains
a second exponential term, exp[−γ (ti + tj )], which is not
present in Refs. [11,12]. This is due to the fact that the
expectation values (27) are conditional on x(0) = 0, while
[11,12] integrate over x(0). While the new term does not
have the typical form of a two-body interaction, its inclusion
does not present any problem of principle. Also, this term
becomes vanishingly small if the subsystem Ti is chosen such
that γ ti � 1, and the simple exponential Kac interaction is
recovered in this limit.

The equivalence of these interest rate models with lattice
gases suggests an alternative way of calibrating and simulating
such models. The expectation values Ni(φ) are usually [4,7]
computed by evaluating the nested integrations over the values
of the Markov driver x(t) at the simulation times, using
numerical approaches such as finite difference or Monte Carlo
methods. The results (16) and (20) suggest that the expectation
values Ni(φ) can be also computed as averages over the grand
canonical ensemble in the lattice gas. For small lattices, this
can be done by explicit summation over all possible occupation
numbers (2n configurations for a lattice with n sites), while
for larger lattices alternative methods familiar from statistical
mechanics can be used, such as Gibbs sampling and the
Metropolis-Hastings algorithm [24,25].

As an illustration of this approach, we show in Fig. 1
the results of a simulation of the BK model in the terminal
measure performed by summing over the occupation numbers
of the lattice gas. These plots show the multiplicative convexity
adjustment ln Ni(1) for i = 30 as a function of σ for several
values of the mean-reversion parameter γ . The simulation
assumed n = 40 quarterly time steps τ = 0.25, for a total
simulation time of tn = 10 years. The forward yield curve
is flat with Lfwd

i = 5%. The γ = 0 curve is obtained using
the recurrence method of [13], and the remaining curves were
obtained by computing Ni(1) using (20) by explicit summation
over the 2n−i−1 = 512 states of the subsystemT30 of the lattice
gas.

These results show that the transition observed in Ref. [13]
persists also in the model considered here. The mean reversion
γ allows one to control the range of the two-body interaction
in the lattice gas. In the γ → 0 limit, the lattice model particles
attract each other with Coulomb potentials, while for γ �= 0
the potential becomes exponential and is given in Eq. (29).
In the γ → 0 limit, the results of [13] are recovered: the
convexity adjustment factor increases suddenly above the
critical volatility σcr � 32%. As the mean reversion γ is
increased from zero, the transition persists, and the critical

0.1 0.2 0.3 0.4 0.5

1

2

3

4

5   ln N

σ

30

0.0

FIG. 1. (Color online) Plots of ln Ni(1) vs σ for several values
of the mean-reversion parameter γ , with i = 30 in a simulation with
n = 40 quarterly time steps τ = 0.25. The black curve (leftmost)
corresponds to γ = 0 and is obtained using the method used in
Ref. [13]. The other curves (from left to right) are obtained by explicit
summation over the occupation numbers of the lattice gas as explained
in the text: γ = 0.1% (blue), 1% (red), 2% (green), and 5% (orange).
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volatility increases from its γ = 0 value. The γ → 0 limit is
well-behaved, as expected for a finite-size lattice.

The study of the γ = 0 limit of this model presented in
Ref. [13] showed that the phase transition is not visible under
usual simulation methods used in practice for such interest
rates models, such as finite difference or Monte Carlo methods.
This is due to the fact that these methods effectively truncate
the range of values of the Markovian driver x(t) to a few (∼5)
multiples of σ

√
t . Such a truncation omits the contributions

to the expectation values Ni(φ), which are responsible for the
phase transition. The alternative method proposed here offers
a possible way to study the properties of these models, free of
these limitations.

IV. CONCLUSIONS

We presented in this paper the exact solution of a class of
interest rates models with log-normally distributed short rates
in the terminal measure. The solution is formulated naturally in
terms of a lattice gas with sites corresponding to the simulation
times of the model ti . At each site, only one particle can
be present, and the particles interact by attractive two-body
potentials Vij , which are determined by the stochastic process
followed by the short rate.

The analogy with the lattice gas models simplifies very
much the simulation of these models, as many of the important
expectation values in the interest rate model can be written in
closed form as averages over the grand canonical ensemble
in the corresponding lattice gas. The numerical evaluation of
these averages is straightforward for small lattices (few simu-
lation times in the interest rate model), while for larger lattices
the number of configurations (2n for a lattice with n sites)
becomes too large for direct evaluation, and approximation
methods familiar from statistical mechanics may have to be
used [24,25].

We used the exact lattice gas solution to study numerically
the Black-Karasinski model in the terminal measure with
constant mean reversion and volatility. This showed the
appearance of a phase transition in the convexity adjustments
of single-period interest rates, similar to that noted in the
Black-Derman-Toy model in the terminal measure in Ref. [13].
This adds further support to the suggestion made in Ref. [13]
that the presence of such a transition is generic for all interest
rate models with log-normally distributed rates in the terminal
measure. Although the present numerical study considered
only the version of the model with constant parameters, the
method can be extended without any major difficulty also to
the more general case of time-dependent model parameters.
This is in contrast to the method of the recursion relations
used in Ref. [13] to solve the γ = 0 limit of the model with
uniform volatility, which does not appear to be easily extended
beyond this case due to the unmanageable complexity of the
resulting expressions.

The equivalence of the interest rates models considered
with interacting lattice gases shows that the former have a rich
dynamics which has not been fully explored. Physical intuition
about the lattice gas equivalent should give further insight into
the dynamics of the interest rate models. In particular, one
natural question is whether a phase transition similar to that
studied in Ref. [10] is present also in the lattice gas considered
here, and if it is observed also for a finite-size lattice. The
analog of the van der Waals limit for this case corresponds to
simultaneously scaling the volatility as σ = σ0γ as the mean
reversion is taken to zero, γ → 0. It would be interesting to
see if the behavior of the system in this limit has implications
also for the practically relevant case of nonzero volatility.

Finally, it would be interesting to investigate whether
the exact solution presented here can be extended also to
other interest rate models, with more general distributional
properties. Hopefully the lattice gas analogy will remain useful
also for more general interest rate models.
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