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Recurrence networks are a powerful nonlinear tool for time series analysis of complex dynamical systems.
While there are already many successful applications ranging from medicine to paleoclimatology, a solid
theoretical foundation of the method has still been missing so far. Here, we interpret an ε-recurrence network
as a discrete subnetwork of a “continuous” graph with uncountably many vertices and edges corresponding to
the system’s attractor. This step allows us to show that various statistical measures commonly used in complex
network analysis can be seen as discrete estimators of newly defined continuous measures of certain complex
geometric properties of the attractor on the scale given by ε. In particular, we introduce local measures such
as the ε-clustering coefficient, mesoscopic measures such as ε-motif density, path-based measures such as
ε-betweennesses, and global measures such as ε-efficiency. This new analytical basis for the so far heuristically
motivated network measures also provides an objective criterion for the choice of ε via a percolation threshold,
and it shows that estimation can be improved by so-called node splitting invariant versions of the measures. We
finally illustrate the framework for a number of archetypical chaotic attractors such as those of the Bernoulli
and logistic maps, periodic and two-dimensional quasiperiodic motions, and for hyperballs and hypercubes by
deriving analytical expressions for the novel measures and comparing them with data from numerical experiments.
More generally, the theoretical framework put forward in this work describes random geometric graphs and other
networks with spatial constraints, which appear frequently in disciplines ranging from biology to climate science.
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I. INTRODUCTION

Analogies are a fundamental motor of innovation in physics
and other disciplines since they allow the transfer of theoretical
insights, results, and techniques from one field to the other. In
the last years, complex network theory has been particularly
successful in providing unifying concepts and methods for
understanding the structure and dynamics of complex systems
in many areas of science, ranging from power grids over social
networks to neuronal networks [1–4]. Similarly, nonlinear time
series analysis aims to gain insights on a wide variety of
natural, technological, and experimental dynamical systems
drawing on a generic body of theory and methods [5].

By exploiting analogies in the structure and description
of complex networks and dynamical systems, a number
of new network-based techniques for nonlinear time series
analysis have been proposed recently [6]. The first class
of these methods makes use of graph representations of
certain similarity relationships between state vectors or groups
of state vectors (e.g., cycles) in phase space. It includes
transition networks based on a coarse graining of phase
space [7], cycle networks [8], correlation networks [9], k-
nearest-neighbor [10] and adaptive nearest-neighbor networks
[11,12], as well as ε-recurrence networks [13,14]. The latter
three techniques harness the fundamental analogy between
the Poincaré recurrence structure [15] of a time series in phase
space, which is commonly represented by a binary recurrence
matrix and allows us to recover basic dynamical invariants
of the underlying system [16], and the binary adjacency
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matrix describing a complex network. Other methods such
as visibility graphs [17] work in the time domain and focus
on studying stochastic properties of time series. Aside from
these network-based approaches for investigating (possibly
multivariate) time series from isolated dynamical systems,
efforts have been spent for developing techniques for studying
fields of time series such as functional brain networks [18–20]
in the neurosciences or climate networks [21–24] in clima-
tology. In summary, all methods mentioned above propose a
mapping from the time series to the network domain and then
proceed to interpret the statistical properties of the resulting
(usually complex) network in terms of the underlying system’s
dynamical properties.

While these interpretations are mostly based on empiri-
cal findings for paradigmatic model systems and heuristic
arguments, only a few rigorous results are available. So
far, Lacasa et al. have pointed out a relationship between
the scaling exponent of the degree distribution P (k) ∝ k−γ

in visibility graphs constructed from fractional Brownian
motion and the Hurst exponent [25]. Furthermore, close
relationships between the transitivity properties (network
transitivity and local clustering coefficients) [26] as well as
the degree distribution’s power-law scaling exponent γ [27]
of ε-recurrence networks and the (fractal) global and local
dimensionality of the attracting set underlying the time series
have been found. Constituting random geometric graphs [28],
ε-recurrence networks represent the geometry induced by
the time series in phase space in a simple and well-defined
way. This enabled Donner et al. [14,26] to define continuous
transitivity properties depending solely on the geometry of the
(attracting) set S and the probability density function p(x).
These can in turn be calculated analytically for paradigmatic

046105-11539-3755/2012/85(4)/046105(16) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.046105


DONGES, HEITZIG, DONNER, AND KURTHS PHYSICAL REVIEW E 85, 046105 (2012)

model systems with smooth and self-similar geometry and
are approximated by the corresponding discrete ε-recurrence
network measures. Notably, most kinds of time series networks
proposed so far are spatial networks [29] since vertices are
embedded either in phase space or on the time axis, implying
that some general results obtained for this class of networks
are applicable to time series networks as well.

Recently, ε-recurrence networks have been demonstrated
to be a particularly useful tool in diverse applications of
nonlinear time series analysis ranging from model systems [6,
13,14,26,30–36] via experimental data [37–40] to recent and
paleo-climate records [6,13,41–43] as well as financial time
series [31]. They allow us to uncover complex bifurcation sce-
narios [13,41] and to reliably distinguish between chaotic and
nonchaotic dynamics [33]. Furthermore, the local and global
transitivity characteristics of ε-recurrence networks have been
shown to enable us to trace unstable periodic orbits [14] and to
define alternative notions of fractal dimension [26] indepen-
dently of earlier approaches. An important advantage of non-
linear ε-recurrence-network-based time series analysis is that
it performs well with significantly shorter time series (O[102]
data points [13,33,41]) than required by classical techniques
such as estimating the maximum Lyapunov exponent from data
[5,44]. This renders ε-recurrence networks readily applicable
to the analysis of nonstationary real-world data. The method
has also been applied successfully to time series with irregular
sampling and/or uncertain timing of observations that are
commonly found in the geosciences or in astrophysics [41,42].

An ε-recurrence network is completely defined by its
adjacency matrix Aij (ε), which is obtained from a (multi-
dimensional) time series x(ti), i = 1, . . . ,N , by

Aij (ε) = �[ε − ‖x(ti) − x(tj )‖] − δij , (1)

where �[· · ·] is the Heaviside function, ε a threshold used for
defining the neighborhood of a state vector x(ti), ‖ · · · ‖ some
norm, and δij denotes Kronecker’s delta introduced to avoid
self-loops in the network. Given univariate observational or ex-
perimental time series, it is usually necessary to reconstruct the
corresponding system’s trajectory in some higher-dimensional
phase space to recover its recurrence structure reliably (e.g.,
by time-delay embedding [45,46]).

Within the recurrence network, vertices represent observa-
tions or state vectors in phase space, while edges indicate
a close proximity between two state vectors. Recurrence
networks and their statistical properties are related, but
complementary to the established concepts of recurrence plots
[the recurrence matrix is given by Rij (ε) = Aij (ε) + δij ] and
recurrence quantification analysis (RQA) [16]. In contrast
to RQA, which considers temporal dependencies between
observations in the form of diagonal and vertical line structures
in the recurrence plot, recurrence network analysis discards all
temporal information and solely quantifies the geometry of the
underlying set S (e.g., an attractor) [14,41].

Given the diverse and successful applications of ε-
recurrence network analysis reported in the literature, it is im-
portant to establish a firm theoretical foundation for advancing
the understanding of the method. Building on earlier work [26],
we propose here an analytical framework for ε-recurrence
network analysis of time series encompassing neighborhood-
based transitivity measures, mesoscopic measures relying on

network motifs [47], path-based network characteristics, as
well as spectral and random-walk-based measures. Specif-
ically, our theory describes all graph-theoretical recurrence
network quantifiers that have been used in the literature
so far [14]. Beyond forming a solid theoretical basis for
this modern nonlinear approach to time series analysis and
fostering its detailed understanding in a way comparable to
that of standard linear time series analysis [48], our analytical
framework opens several avenues for practically improving
the method when dealing with finite (real-world) time series:
(i) We are able to obtain closed-form analytical results for
paradigmatic model systems with stochastic (uniform and
Gaussian noise) and deterministic (periodic, quasiperiodic,
and chaotic) dynamics. These can in turn be harnessed as a
benchmark for the discrete standard estimators from complex
network theory which have been employed so far [14], e.g., for
assessing the estimators’ bias and variance. (ii) This bottom-up
approach allows us to design improved, weighted statistical
estimators [49], which may be more appropriate in specific
situations. (iii) Moreover, our framework enables us to derive
rigorous bounds for feasible values of the recurrence threshold
ε, the most important parameter of the method, the choice of
which is critical when analyzing finite (experimental) time
series [30]. We will argue in Sec. V that the concepts and
measures developed in this paper can be readily generalized
to describe the structure of a wider class of spatial networks,
e.g., random networks with an arbitrary prescribed edge length
distribution P (l).

This paper is organized as follows: We introduce a continu-
ous framework for recurrence network analysis in Sec. II. After
reviewing the corresponding discrete estimators (Sec. III), we
present examples ranging from periodic and quasiperiodic
dynamics and higher-dimensional symmetric sets over chaotic
maps to stochastic processes and compare some of the results
to discrete estimates (Sec. IV). We conclude with a discussion
of these achievements (Sec. V).

II. CONTINUOUS FRAMEWORK

A. General setting

Let us consider a path-connected Lebesgue-measurable
subset S ⊂ X of an m-dimensional compact smooth mani-
fold X with a nonvanishing continuous probability density
function p : S → (0,∞) with

∫
S
dmx p(x) = 1. We will use

the abbreviation
∫

dμ(x) = ∫
S
dmx p(x) throughout the paper,

where μ is a probability measure on S (Fig. 1). Then, we
can define “continuous” equivalents of all relevant graph-
theoretical measures for ε-recurrence networks, which may be

S

x

yg(x,y)

FIG. 1. Illustration of a set S (gray), where g(x,y) denotes the
geodesic distance between x,y ∈ S.
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TABLE I. A summary of the continuous geometric properties of the set S and its associated probability density p defined in Sec. II. See
main text for formal probabilistic interpretations.

Class Name Heuristic interpretation

Neighborhood based
Local Continuous ε-degree density [Eq. (3)] Local density

Continuous local ε-clustering [Eq. (4)] Local dimension [26]
Continuous ε-matching index [Eq. (5)] Local density gradient

Global Continuous ε-edge density [Eq. (6)] Average local density
Continuous ε-transitivity [Eq. (7)] Global dimension [26]
Continuous global ε-clustering [Eq. (8)] Average local dimension
Continuous ε-assortativity [Eq. (9)] Average local density gradient

Mesoscopic Continuous ε-motif density [Eq. (10)] Higher-order density structure/
Density anisotropy

Path based
Local Continuous ε-closeness [Eq. (12)]

Geometric-centrality
Continuous ε-efficiency [Eq. (13)]
Continuous ε-shortest path betweenness [Eq. (14)]

Geometric-bottleneckishness
Continuous ε-shortest path edge betweenness [Eq. (18)]

Global Continuous ε-average path length [Eq. (25)]
Average separation

Continuous global ε-efficiency [Eq. (27)]
ε-diameter [Eq. (32)] Geometric-diameter
ε-radius [Eq. (33)] Geometric-radius

approximated by calculating their discrete counterparts in the
limit ε → 0, N → ∞ (Sec. III). Here, ε is the threshold used
for network construction Eq. (1) and N denotes the number of
data points (samples, phase space vectors, . . .) considered.
These measures capture the properties of a “continuous”
network with uncountably many vertices and edges which may
be defined by a continuous analog of the adjacency matrix, the
adjacency function

A(x,y) = �(ε − ‖x − y‖) − δxy (2)

for all x,y ∈ S. It is important to realize that the framework
introduced in this paper is not restricted to ε-recurrence
networks alone, but may be more generally applied to describe
random geometric graphs (i.e., spatial networks) [28,50,51]
and other types of networks with spatial constraints [29,52,53].

In the following, we will formally define the proposed
continuous recurrence network measures and discuss their
properties, interrelationships, and interpretations (see Table I
for an overview). Statements made for the limits ε → 0 and
x → y for x,y ∈ S should be understood to hold for smooth
S and p. We do not consider them for fractal geometries
explicitly.

B. Neighborhood-based measures

Among other interesting properties, it has been shown
recently that the local and global transitivity properties
of ε-recurrence networks measured by the local clustering
coefficient Ci and the global transitivity T , respectively, are
closely related to a certain notion of the fractal dimension
of an underlying set S and its associated probability density
p(x) with x ∈ S [26]. To capture this theoretically, continuous

versions of both measures denoted C(x; ε) and T (ε) have been
defined together with a continuous degree density ρ(x; ε).

1. Local measures

Definition 1. The continuous ε-degree density

ρ(x; ε) =
∫

Bε(x)
dμ(y) (3)

measures the probability that a point y randomly drawn
according to p lies in an ε-neighborhood Bε(x) = {y ∈ S :
‖x − y‖ � ε} of x.

Definition 2. In turn, the continuous local ε-clustering
coefficient of any point x ∈ S,

C(x; ε) =
∫∫

Bε(x) dμ(y) dμ(z)�(ε − ‖y − z‖)

ρ(x; ε)2
, (4)

is the probability that two points y and z randomly drawn
according to p are closer than ε given they are both closer than
ε to x.

Definition 3. The continuous ε-matching index M(x,y,ε)
measures the overlap of the neighborhoods of x,y ∈ S:

M(x,y; ε) =
∫
Bε(x)∩Bε(y) dμ(z)∫
Bε(x)∪Bε(y) dμ(z)

. (5)

It gives the probability that a point z drawn randomly from
Bε(x) according to p is also contained in Bε(y) and vice versa.

For x → y, M(x,y; ε) → 1. Furthermore, M(x,y; ε) = 0
if ‖x − y‖ > 2ε.
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2. Global measures

Definition 4. The continuous ε-edge density

ρ(ε) =
∫

S

dμ(x)ρ(x; ε) =
∫

S

dμ(x)
∫

Bε(x)
dμ(y) (6)

is the expectation value of the continuous ε-degree density
ρ(x; ε).

Definition 5. As a global measure of geometric transitivity,
we define the continuous ε-transitivity of S as

T (ε) =
[ ∫∫∫

S

dμ(x) dμ(y) dμ(z)�(ε − ‖x − y‖)

×�(ε − ‖y − z‖)�(ε − ‖z − x‖)

]/
[ ∫∫∫

S

dμ(x) dμ(y) dμ(z)�(ε − ‖x − y‖)

×�(ε − ‖z − x‖)

]
, (7)

which is the probability that among three points x,y,z drawn
randomly according to p, y and z are closer than ε given they
are both closer than ε to x.

Definition 6. Similarly, the continuous global ε-clustering
coefficient

C(ε) =
∫

S

dμ(x)C(x; ε) (8)

is the expectation value of the continuous local ε-clustering
coefficient C(x; ε) [Eq. (4)].

Note that the above defined measures of transitivity have
been mainly considered for the supremum norm L∞ in [26].

Definition 7. Continuous ε-assortativity

A(ε) = r(ρ(x; ε),ρ(y; ε) | ‖x − y‖ < ε) (9)

gives the Pearson product-moment correlation coefficient [48]
of the degree densities ρ(x; ε) and ρ(y; ε) of all points x,y that
are closer than ε to each other.

A(ε) can be considered as a measure of the smoothness of
the set S and the probability density p [14]. In the limit ε → 0,
we have A(ε) → 1.

C. Mesoscopic measures

Motifs of order α are small connected subgraphs of α

vertices that are embedded within the topology of a complex
network [47]. For combinatorial reasons, usually α < 5 is
considered. Measuring motif densities is a useful approach
for quantifying higher-order neighborhood relationships in
complex geometries [11] and may be seen as a generalization
of the transitivity concepts introduced above.

Definition 8. The continuous ε-motif density

Mα
β =

(
α∏

i=1

∫
S

dμ(xi)

) ∏
(j,k)∈Eα

β

�(ε − ‖xj − xk‖) (10)

quantifies the frequency of occurrence of a certain recurrence
motif of order α described by the corresponding edge set
Eα

β , where β = 1, . . . ,n(α) and n(α) is the total number of
distinct motifs of order α. Mα

β is the probability that α points

drawn randomly according to p are arranged according to the
recurrence motif described by Eα

β .
For example, the density M4


 of the recurrence motif 
 of
order 4 is measured by

M4

 =

(
4∏

i=1

∫
S

dμ(xi)

)
�(ε − ‖x1 − x2‖)

×�(ε − ‖x2 − x3‖) �(ε − ‖x3 − x4‖).

In contrast to the study of motifs for other general complex
networks [47], it is neither meaningful nor necessary to
normalize motif densities by their expectation values for
randomized networks here. The reason is that the Mα

β already
have a natural probability interpretation. To render the results
for different α more comparable, one may consider to use
relative motif densities normalized by

∑n(α)
β=1 Mα

β .
We conjecture that motif densities as generalizations of

the continuous ε-transitivity are like the latter related to
certain notions of the dimensionality of the set S and its
associated probability density p [26]. This would allow us
to define and study a new class of motif-based measures
of dimensionality analogously to the sequence of Rényi
dimensions from dynamical systems theory [54].

D. Path-based measures

While the neighborhood-based properties defined above
describe the small-scale geometry of the set S and probability
density p, path-based measures quantify their global geometry
in terms of global geodesics (see Fig. 2 for examples). Most
of the path-based concepts defined below do not conceptually
depend on the threshold ε. Nevertheless, we introduce the
appropriate scaling with ε into the definitions for consistency
with the corresponding discrete estimators from complex
network theory (Sec. III) and the recurrence network literature.

As in standard topological terminology, a path in S is a
continuous function f : [0,1] → S, and its path length l(f ) ∈
[0,∞] is the supremum of

∑n
i=1 d[f (ti−1),f (ti)] over all n > 0

and all tuples 0 = t0 � · · · � tn = 1, where d(. . . , . . .) is some
metric. Note that l(f ) can be infinite in which case the path
is called nonrectifiable. For points x,y, the geodesic distance
g(x,y) ∈ [0,∞] is the infimum of l(f ) over all paths in S from
x to y [i.e., with f (0) = x and f (1) = y].1 A corresponding
path of this length is called a global geodesic or shortest curve
[55]. Depending on the geometry of S, there may be none, one,
or multiple distinct global geodesics connecting x and y, but in

1Note that when defined in this way, g(x,y) may change discontin-
uously under continuous changes of the probability density p. This
is because we require the geodesics to stay within S, which consists
of all points x where p(x) �= 0. When p(x) is continuously changed
to zero, the length of geodesics running through x for p(x) > 0 may
change abruptly once p(x) = 0 is reached, e.g., when x constitutes
some kind of geometric bottleneck. If this behavior is undesirable,
one may consider generalized p-weighted notions of the geodesic
distance. These could be motivated by an analogy to the optical path
length in heterogeneous and nonisotropic media in physics, where
the probability density p would play the role of the spatially varying
refractive index.
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a sufficiently well-behaved set S, there will usually be a unique
global geodesic for almost every pair x,y (Fig. 1) and almost
every metric (in particular, for the Euclidean metric), where
by “almost every” we mean as usual that the set of exceptions
has zero measure. Note that, however, for some pathological
metrics, global geodesics are rarely unique, including the L1

and L∞ metrics.
To understand the reasoning behind the following defini-

tions, one has to note that discrete shortest paths of the ε-
recurrence network approximate global geodesics connecting
two points x,y ∈ S for small ε and large N . Then, the shortest
path length lij (ε) (the minimum number of edges that have to
be traversed to reach vertex i from vertex j [1]) approximates
g[x(ti),x(tj )], i.e.,

εlij (ε) ≈ g[x(ti),x(tj )] (11)

(Fig. 1), where x = x(ti) and y = x(tj ). In the limit ε → 0,
and if N → ∞ sufficiently fast, we argue in Appendix A
that indeed εlij (ε) → g[x(ti),x(tj )], independently of which
metric is used for constructing the ε-recurrence network.

1. Local measures

Definition 9. Given that a point y is drawn randomly
according to p, continuous ε-closeness

c(x; ε) =
(∫

S

dμ(y)
g(x,y)

ε

)−1

= ε

(∫
S

dμ(y)g(x,y)

)−1

(12)

is the inverse expected geodesic distance of y to another chosen
point x in units of ε.

Definition 10. Similarly, continuous local ε-efficiency

e(x; ε) =
∫

S

dμ(y)

(
g(x,y)

ε

)−1

= ε

∫
S

dμ(y)g(x,y)−1

(13)

gives the expected inverse geodesic distance of y to x measured
in units of ε.

Both c(x; ε) and e(x; ε) quantify the geometric closeness of
x to any other point in S given a probability density p. Hence,
points in the center of S will carry larger values of c(x; ε) and
e(x; ε) than those on its boundaries (see Fig. 2 and below).

Definition 11. Continuous ε-shortest path betweenness

b(x; ε) =
∫∫

S

dμ(y) dμ(z)
σ (y,z; x; ε)

σ (y,z)
(14)

is the probability that a point x lies on a randomly chosen
global geodesic connecting two points y,z drawn randomly
from S according to p. Here, σ (y,z; x; ε) denotes the number
of times x ∈ S lies on a global geodesic between y,z ∈ S and
σ (y,z) is the total number of global geodesics between y,z

(Fig. 3).
In pathological situations, e.g., for certain open sets S,

σ (y,z) may be zero even when the geodesic distance g(y,z) is
well defined and finite. We ignore these cases for now.

There are several ways to formally define σ (y,z; x; ε).
Using a parametrization fκ (t) of the family of global geodesics
connecting y and z, with t ∈ [0,1] and fκ (0) = y, fκ (1) = z,

c(x;ε ) e(x;ε ) b1(x) b2(x;ε )

FIG. 2. Local path-based measures continuous ε-closeness c(x; ε), -efficiency e(x; ε), and -shortest path betweenness b1(x) [based on
Eq. (15)], b2(x; ε) [based on Eq. (16)] in three example sets S with a uniform density p, two convex sets (circle and square), and a nonconvex
set. Grayscale indicates the value of the measures (white: small; black: large) obtained by Monte Carlo numerical integration using the Euclidean
norm for small ε to avoid boundary effects. Note the more complex structure of the betweenness field, displaying particularly large values
(dark) at the inward corners where many shortest paths must pass. In contrast to the path-based measures shown here, continuous ε-degree
ρ(x; ε) and local ε-clustering coefficient C(x; ε) are constant in the interior of S due to the uniform p. Variations of these measures due to
boundary effects occur only closer than ε to the boundary of S [26].
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y
z

(a) (b)

x

y

z

x

FIG. 3. Illustration of the definition of continuous ε-shortest
path betweenness (the set S is indicated by gray shading). (a)
There are σ (y,z) = 2 global geodesics connecting y,z ∈ S, but only
σ (y,z; x; ε) = 1 includes x ∈ S. (b) In this example, x lies on all four
global geodesics between x and y, i.e., σ (y,z) = σ (y,z; x; ε) = 4.

we may write

σ1(y,z; x; ε) = σ1(y,z; x) =
σ (y,z)∑
κ=1

∫ 1

0
dt δ[fκ (t) − x],

(15)

where δ[. . .] is Dirac’s multidimensional delta function.
Alternatively, we can include the finite ε-effect by counting
all shortest paths that pass through the ε-neighborhood of x by
setting

σ2(y,z; x; ε) =
σ (y,z)∑
κ=1

∫ 1

0
dt �[ε − ‖fκ (t) − x‖]. (16)

Both variants of σ (y,z; x; ε) yield different, yet qualitatively
similar results for b(x; ε) as is illustrated in Fig. 2.

Given convex domains S, σ (y,z) = 1 always holds, i.e.,
there is only one straight line connecting y and z, parametrized
by f (t) = y + t(z − y). For one-dimensional convex sets S

and using σ1(y,z; x), continuous ε-shortest path betweenness
simplifies to

b(x) = 2
∫∫

S

dμ(y) dμ(z)�(x − y)�(z − x). (17)

Definition 12. Continuous ε-shortest path edge betweenness

b(x,y; ε) =
∫∫

S

dμ(z) dμ(w)
σ (z,w; x,y; ε)

σ (z,w)
(18)

is the probability that two points x,y both lie on a randomly
chosen global geodesic connecting two points z,w drawn
randomly according to p. σ (z,w; x,y; ε) counts the number
of global geodesics between z,w which contain x,y.

Analogously to continuous ε-shortest path betweenness
b(x; ε), we can define this quantity as

σ1(z,w; x,y; ε) = σ1(z,w; x,y)

=
σ (z,w)∑
κ=1

(∫ 1

0
dt δ[fκ (t) − x]

)

×
(∫ 1

0
dt δ[fκ (t) − y]

)
. (19)

Further generalizations for including the finite ε-effect may
be deduced as shown above for continuous ε-shortest path
betweenness.

For one-dimensional convex sets S and using σ1(z,w;
x,y; ε), Eq. (18) reduces to

b(x,y) = 2
∫∫

S

dμ(z) dμ(w)�(x − z)�(y − z)

×�(w − x)�(w − y). (20)

In the limit x → y, we always have b(x,y; ε) → b(x; ε). We
note that b(x,y; ε) does not require the condition �(ε − ‖x −
y‖) as is the case for the corresponding discrete estimator
(Table II). Related generalized concepts of co- and group
betweenness have been described for discrete complex net-
works [56].

For general nonpathological S, we almost surely have
σ (z,w) = 1, i.e., the probability that there are more than one
global geodesics connecting z and w drawn randomly from
S according to p is zero. For example, in both Figs. 3(a) and
3(b), the set of pairs z,w with σ (z,w) = 2 and σ (z,w) = 4,
respectively, is of measure zero. In these cases, b(x; ε) and
b(x,y; ε) reduce to

b(x; ε) =
∫∫

S

dμ(y) dμ(z)σ (y,z; x; ε) (21)

and

b(x,y; ε) =
∫∫

S

dμ(z) dμ(w)σ (z,w; x,y; ε). (22)

It should be noted that for general S and p, the center of
mass

X =
∫

S

dμ(x)x (23)

does not necessarily extremize c(x; ε), e(x; ε), or b(x). How-
ever, for convex S, the generalized continuous ε-closeness

cη(x; ε) =
(∫

S

dμ(y)

(
g(x,y)

ε

)η)−1

= εη

(∫
S

dμ(y)g(x,y)η
)−1

(24)

can be shown to assume a global maximum at x = X for
the special case η = 2. In turn, the standard continuous
ε-closeness c(x; ε) (η = 1) is maximized at the geometric
median or Fermat-Weber point [57].

2. Global measures

Definition 13. The continuous ε-average path length

L(ε) =
∫∫

S

dμ(x) dμ(y)
g(x,y)

ε

= ε−1
∫∫

S

dμ(x) dμ(y)g(x,y) (25)

measures the expected geodesic distance in units of ε between
two points x and y drawn randomly according to p.

From Eq. (25), the equivalence of this formulation of con-
tinuous average path length to the intensively studied problem
in probabilistic geometry [58] of finding the expectation value
of the distance between two randomly drawn points x,y ∈ S
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according to the probability density p becomes evident. Our
definitions imply the relationship

L(ε) =
∫

S

dμ(x)c(x; ε)−1. (26)

Definition 14. Similarly, the continuous global ε-efficiency

E(ε) =
(∫∫

S

dμ(x) dμ(y)

(
g(x,y)

ε

)−1
)−1

= ε−1

(∫∫
S

dμ(x) dμ(y)g(x,y)−1

)−1

(27)

is the inverse of the expected inverse geodesic distance
between two points x,y drawn randomly according to p

measured in units of ε.
Here, we have

E(ε) =
(∫

S

dμ(x)e(x; ε)

)−1

. (28)

More generally, let �S,p(η) be the expectation value of a power
η of the geodesic distance g(x,y) between two points x,y ∈ S

randomly drawn according to p:

�S,p(η) =
∫∫

S

dμ(x) dμ(y)g(x,y)η. (29)

Then, continuous ε-average path length and global ε-efficiency
may be expressed as

L(ε) = ε−1�S,p(1) (30)

and

E(ε) = ε−1[�S,p(−1)]−1. (31)

Definition 15. The ε-diameter

D(ε) = ε−1 sup
x,y∈S

g(x,y) (32)

and the ε-radius

R(ε) = ε−1 inf
x∈S

sup
y∈S

g(x,y) (33)

are global geometric characteristics of the set S that are
independent of p [55].

E. Further measures

To illustrate that the proposed framework can be extended
in several directions, we shortly discuss spectral and random-
walk-based measures in the context of continuous recurrence
networks. Motivated by the study of eigenvector centrality in
complex networks [1], we can consider spectral properties of
the set S and probability density p.

Definition 16. The linear Laplace operator

(Lεf )(x) =
∫

S

dμ(y)[�(ε − ‖x − y‖)

− δ(x − y)ρ(y; ε)]f (y) (34)

is a continuous equivalent of the discrete Laplacian matrix
in network theory [1]. We are interested in its eigenfunctions

f (x) and eigenvalues λ satisfying

(Lεf )(x) = λf (x) (35)

for all x ∈ S.
For example, considering an arbitrary S with uniform

p, one obtains an eigenfunction f (x) = C for some C ∈ R
associated to the eigenvalue λ = 0. This is analogous to the
eigenvector (1,1, . . . ,1) with eigenvalue 0, which is always
present for the discrete Laplacian matrix of general networks
[1]. We can expect more interesting results for nonuniform
p. For example, one may define a continuous analog of
the eigenvector centrality of complex network theory [59]
by considering the eigenfunction f̃ (x) corresponding to the
largest eigenvalue λ̃.

For discrete networks, there are several measures of
betweenness based on random walks rather than shortest
paths [60,61]. Continuous versions of these measures would
be based on continuous analogs of random walks on S that
start and end at points y and z randomly chosen from p.
Since in a discrete network the limit distribution of a random
walk without a sink is proportional to the degree distribution,
a natural choice for a continuous analog is an Itō diffusion
process, the limit distribution of which is proportional to
ρ(x; ε), with a source at y and a sink at z [62]. Such
a process can most easily be defined as a gradient flow
dXt = −∇�(Xt ) dt + √

2T dBt that combines a Brownian
motion B with a local drift coefficient −∇�(Xt ), which comes
from a potential �(x) that is the product of a temperature
T > 0 and the information corresponding to ρ(x; ε), which is
− ln ρ(x; ε). The resulting process

dXt = T
∇ρ(Xt ; ε)

ρ(Xt ; ε)
dt +

√
2T dBt (36)

can then be interpreted as a diffusion that drifts in the
direction of increasing density. The continuous version of
Arenas’ random-walk betweenness [60] would then be the
expected density of the process at x when the source and
sink are drawn from p. Similarly, the continuous version
of Newman’s random-walk betweenness [61] would be the
expected absolute value of the resulting flux density at x for a
random source and sink.

F. Behavior under affine transformations

All continuous measures defined above are based on
neighborhood relationships in S and geodesic distances
between points therein. They are therefore invariant with
respect to the subclass of affine transformations, which leaves
these properties unchanged, i.e., x → Dx + s for x ∈ S with
D being a combination of rotation and isotropic scaling
operations and s a translation. This is to be understood in
the sense that for a measure M, M(Dx + s; aε) = M(x; ε)
holds, where a is the scaling factor. The measures considered
here are generally not invariant under nonisotropic scaling and
shear operations.

III. DISCRETE ESTIMATORS

Given the continuous framework defined above, we
are able to treat the commonly used recurrence network
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quantifiers [6,14] taken from standard complex network
theory [1,2] as the most straightforward discrete estimators of
the continuous quantities for a finite number of observations N

and finite ε. The discrete estimators will be denoted using hats,
e.g., the discrete estimator of continuous average path length
L(ε) is L̂(ε,N ) (we will in the following omit the estimators’
dependency on ε and N to simplify the notation). Their
numerical properties have been elaborated in detail in earlier
works [6,13,14,26,30,33]. The characteristics of these standard
measures for discrete and finite complex networks have also
been studied for random geometric graphs and more general
network models with strong spatial contraints [50,52,53], e.g.,
the degree distribution [50], network motifs [53], as well as
clustering coefficient and degree correlations [52].

Here, we briefly review the estimator’s definitions
(Table II). For some specific examples, the estimators will
be compared to the results theoretically derived from their
continuous counterparts in Sec. IV. This will also allow us
to gain certain insights into their bias and variance for finite
data sets.

A. Weighted network statistics and node splitting
invariant measures

We may now ask how the estimation of the above defined
continuous geometric properties from a finite data set can be

improved with respect to the measures from complex network
theory that have been used so far for this purpose. One way
to go in line with standard estimation theory is node-weighted
network statistics, as proposed by Heitzig et al. [49]. For a full
application of that theory, weights wi for all vertices i have
to be chosen in a suitable way, which we leave as a subject
of future research. But, even with constant weights wi ≡ 1,
the axiomatic theory developed in [49] allows us to improve
estimation by using so-called node splitting invariant (n.s.i.)
versions of network measures to reduce the estimation bias
that results from excluding self-loops from the network. Let
us illustrate this for the case of continuous ε-degree density
ρ(x; ε) = ∫

Bε(x) dμ(y). If x is a vertex, p is approximately

constant in Bε(x), and the latter contains k̂i additional vertices
(see Table II), then ρ(x; ε) ≈ p(x)Vol[Bε(x)] ≈ (k̂i + 1)/N
since Bε(x) contains k̂∗

i = k̂i + 1 out of N vertices. In other
words, k̂∗

i /N is a better estimator for ρ(x; ε) than k̂i/N since
the latter has a bias of ∼ O(1/N). Likewise, the transitivity
measure T̂ (see Table II) can be improved by using instead the
n.s.i. transitivity T̂ ∗ = ∑N

i,j,k=1 A+
ijA

+
jkA

+
ki/

∑N
i,j,k=1 A+

kiA
+
kj ,

where A+
ij = Aij + δij = Rij , showing that this approach is

also more in line with recurrence plot analysis. This would also
reduce the bias in the estimation of the transitivity dimension
that was observed in [26, Fig. 10(a)]. The measures k̂∗

i and T̂ ∗

TABLE II. A summary of standard unweighted network estimators for the continuous geometric properties defined in Sec. II. For a detailed
discussion, see [1,2,14,63]. SP abbreviates “shortest path.”

Class Name Definition Comments

Neighborhood based
Local Degree k̂i = ∑N

j=1 Aij

Degree density ρ̂i = 1
N−1 k̂i

Local clustering coeff. Ĉi =
∑N

j,k=1 Aij AjkAki

k̂i (k̂i−1)
Ĉi = 0 iff ki < 2

Matching index μ̂ij =
∑N

l=1 AilAjl

k̂i+k̂j −∑N
l=1 AilAjl

Global Edge density ρ̂ = 1
N(N−1)

∑N

i,j=1 Aij

Transitivity T̂ =
∑N

i,j,k=1 Aij AjkAki∑N
i,j,k=1 AkiAkj

Global clustering coeff. Ĉ = 1
N

∑
i Ĉi

Assortativity Â =
1
L

∑
j>i k̂i k̂j Aij −〈 1

2 (k̂i+k̂j )〉2
i,j

1
L

∑
j>i

1
2 (k̂2

i
+k̂2

j
)Aij −〈 1

2 (k̂i+k̂j )〉2
i,j

L = ∑
j>i Aij is the number of edges,

〈 1
2 (k̂i + k̂j )〉i,j = 1

L

∑
j>i

1
2 (k̂i + k̂j )Aij [41]

Path based
Local Closeness ĉi = N−1∑N

j=1 lij
Set lij = N − 1 iff � path between i,j [64]

Local efficiency êi = 1
N−1

∑N

j=1 l−1
ij

SP betweenness b̂i = (
N−1

2

)−1 ∑N

j,k �=i

σ̂jk (i)
σ̂jk

σ̂jk shortest paths connect vertices j,k,

σ̂jk(i) of those include i [64],

SP edge betweenness b̂ij = (
N−1

2

)−1 ∑N

k,l �=i,j
σ̂kl (i,j )

σ̂kl
and σ̂jk(i,j ) include i,j

Global Average path length L̂ = 〈lij 〉i,j Set lij = N − 1 iff � path between i,j [1]
Global efficiency Ê = (〈l−1

ij 〉i,j )−1

Diameter D̂ = maxi,j (lij )

Radius R̂ = mini maxj (lij )
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are examples of n.s.i. measures with unit weights, which can
basically be interpreted as variants of the classical measures in
which vertices are considered to be linked to themselves [49].

B. Choice of the recurrence threshold ε

A careful choice of the recurrence threshold ε is critical
for faithfully estimating the continuous recurrence network
properties defined above [30]. For too large ε, i.e., on the order
of the diameter of S, boundary effects dominate, the discrete
recurrence network used for estimation becomes too dense
and is unable to capture the geometry induced by S and p (see
Sec. IVA4). In contrast, the network’s giant component breaks
down for too small ε with a phase transition at the critical value
εc. This obstructs our ability to properly estimate mesoscopic
and path-based measures for ε < εc. Therefore, we expect a
good performance of the discrete estimators for thresholds
just above the critical εc, where much of the geometric fine
structure is still resolved [26].

The problem of selecting ε therefore reduces to deriving the
percolation threshold εc, which is directly related to the critical
edge density ρc = ρ(εc) of the theory of random geometric
graphs [51] via Eq. (6). ρc is linked to the commonly studied
critical mean degree zc by

ρc = zc

N − 1
. (37)

The Erdős-Rényi graph is the simplest random network
model [1]. Since any pair of vertices is linked with the
same probability ρ independent of their distance, it neglects
the effects of spatial embedding. Therefore, the Erdős-Rényi
model is inadequate for describing d-dimensional random
geometric graphs, and the corresponding critical mean degree
zc = 1 [1] turns out to be too low except for the limiting
case d → ∞ [28] (see Sec. IV A4 for an example). Taking
into account the effects of clustering of vertices induced by
the spatial embedding [65] yields improved analytical bounds
on the true zc obtained from numerical simulations [66]. Exact
analytical results for arbitrary d are not available so far, but Dall
and Christensen [28] have empirically found the scaling law

zc(d) = zc(∞) + Ad−γ (38)

from extensive numerical simulations, where zc(∞) = 1,
γ = 1.74(2), and A = 11.78(5). Inverting ρc = ρ(εc) [which
is possible as dρ(ε)/dε > 0 in nonpathological situations]
yields the associated critical threshold

εc(d) = ρ−1

(
zc(d)

N − 1

)
. (39)

To our best knowledge, this is the most useful result available
so far for our aim of choosing the recurrence threshold ε.
However, one should be aware that the results of [28] were
obtained for the box S = [0,1]d with uniform probability
density p, which is the most commonly studied setting in
random geometric graph theory. When considering general
S and p, they may be appropriate as a first educated guess
for properly selecting ε in line with the guidelines discussed

in [26,30]. Deriving analytical bounds on zc for such
geometries remains an open problem.

IV. EXAMPLES

We illustrate the above defined continuous geometric quan-
tities and their estimators for paradigmatic examples by giving
closed-form analytical results and relating them to numerical
evidence from ε-recurrence networks constructed from time
series. Complex network measures have been calculated using
the software package IGRAPH [67]. The focus will be on
examples where all quantities of interest can be calculated
either analytically or semianalytically (relying on numerical
evaluation of some integrals), i.e., possessing smooth sets S

and density functions p(x). This implies that when considering
the Euclidean norm (which we will use for all examples below)
and neglecting boundary effects [14,26], we obtain

C(x; ε) = 1 − d�(d/2)

2
√

π�[(d + 1)/2]

[
2F1

(
1

2
,
1 − d

2
;

3

2
;

1

4

)

− 1

d + 1
2F1

(
1 − d

2
,
d + 1

2
;
d + 3

2
;

1

4

) ]
= C(ε) = T (ε) (40)

for all transitivity-based measures, where 2F1(. . .) is the
hypergeometric function and d the manifold dimension of
S. A simpler exponential scaling with d can be found for
the supremum metric. Nontrivial transitivity-based properties
for fractal sets S and densities p(x) allowing for noninteger
d, where an analytical calculation of path-based measures is
problematic, have been treated exhaustively in [26].

The results given here hold in the limit ε → 0. For
simplicity, we ignore boundary effects which have been
treated in [14,26]. In all examples, we use the parametrization
σ1(y,z; x) to compute continuous ε-shortest path betweenness.

A. One-dimensional chaotic maps and stochastic processes

All examples considered in this section are defined on
convex sets S embedded on the real axis. Therefore, the
geodesic distance of x,y ∈ R reduces to g(x,y) = |x − y|.
Since for one-dimensional S the integral

∫
S

dy p(y) |x − y|−1

diverges for all p and all x ∈ S, we get E(ε) = 0 and
e(x; ε) = ∞ ∀x in all examples of this section. In contrast,
the corresponding integral always converges for nonfractal S

with d � 2 and general p.

1. Bernoulli map/uniformly distributed noise

The Bernoulli map xn+1 = (2xn) mod 1 defined on the
interval S = [0,1) induces the probability density p(x) = 1.
This yields

T (ε) = C(ε) = C(x; ε) = 3

4
,

L(ε) = 1

3
ε−1,

c(x; ε) = 2ε

1 − 2x + 2x2
,

b(x) = 2x(1 − x).
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The same results hold for uniformly distributed noise on
the interval [0,1] since S and p(x) are identical to those of
the Bernoulli map (an exemplary calculation for this setting
is shown in Appendix B). This equality clearly illustrates
that recurrence network analysis is purely geometric and,
hence, by design masks out the autodependency structure of
dynamical systems. Stochastic and deterministic dynamics can
be distinguished when embedding techniques are used prior to
recurrence network analysis [14].

2. Gaussian noise

Considering Gaussian noise with zero mean and standard
deviation σ , i.e., p(x) = (1/

√
2πσ 2) exp [−x2/(2σ 2)], on the

real axis S = (−∞, + ∞) we obtain

T (ε) = C(ε) = C(x; ε) = 3

4
,

L(ε) = 2σ√
π

ε−1,

c(x; ε) = ε√
2
π
σ exp

(− x2

2σ 2

) + xerf
(

x√
2σ

)
b(x) = 1

2

[
1 − erf

(
x√
2σ

)2 ]
,

where erf(x) = 2√
π

∫ x

0 e−t2
dt is the error function. The results

for mean χ �= 0 can be derived by substituting x → x − χ on
the right side of the equations for the local measures given
above (see also Sec. II F).

3. Logistic map

We can also give exact analytical solutions for the logistic
map in the fully chaotic regime, xn+1 = 4xn(1 − xn), defined
on the interval S = [0,1]. Using the probability density p(x) =
π−1√x(1 − x)

−1
[68] yields

T (ε) = C(ε) = C(x; ε) = 3

4
,

L(ε) = 4

π2
ε−1,

c(x; ε) = πε
{
2
√

x(1 − x) + (1 − 2x)

× [arccos(
√

x) − arcsin(
√

x)]
}−1

,

b(x) = 8 Im[arcosh(
√

x)] arcsin(
√

x)

π2
.

4. Comparison to numerical results

Within an intermediate range of ε, the continuous ε-average
path length L(ε) is approximated well by the estimators L̂(ε)
calculated from ε-recurrence networks for both the Bernoulli
and logistic maps (Fig. 4). For small ε, the estimator breaks
down due to the finite number of samples used (finite size
effect) after the network’s giant component decomposes into
smaller and smaller disconnected components. The Erdős-
Rényi approximation yields a critical percolation threshold
εc = 1/[2(N − 1)] ≈ 5 × 10−4 for both maps using the pa-

(a) Bernoulli map (b) Logistic map

FIG. 4. (Color online) Continuous ε-average path length L(ε) for
(a) the Bernoulli map and (b) the logistic map. Analytical results are
indicated by solid red lines. Estimates L̂(ε) have been obtained from
ε-recurrence networks constructed from one realization of N = 1 000
samples, respectively, for each map (black dots). Ensemble mean
(dashed-dotted black line) and standard deviation (gray band) for
different ε have been obtained from an ensemble of 100 realizations
of each model with initial conditions uniformly distributed in the
interval [0,1]. Vertical dashed lines indicate the estimated percolation
thresholds εc.

rameters of Fig. 4, which is one order of magnitude smaller
than the numerically observed phase transition point (Fig. 4).
As explained in Sec. III B, this is because the Erdős-Rényi
model does not account for the effects of spatial embedding and
clustering. To be able to use the relationship of Eq. (39) based
on the empirical results of [28] for m = 1, we approximate
ρ(ε) = 2ε (Bernoulli map) and ρ(ε) = 8ε artanh(1 − 2ε)/π2

(logistic map) for small ε. This yields εc ≈ 6.4 × 10−3 for the
Bernoulli map and εc ≈ 6.2 × 10−3 for the logistic map, which
is consistent with the phase transition points observed numer-
ically (Fig. 4). The good agreement of predicted and observed
phase transition for the Bernoulli map can be explained by the
fact that the latter exactly meets the assumptions underlying the
theory of Dall and Christensen (Sec. III B). These observations
indicate that Eq. (39) is indeed useful to derive an educated
guess for the proper choice of ε, even for strongly varying
probability densities p. Moreover, the phase transition for the
logistic map occurs at notably larger ε than for the Bernoulli
map. Consistently with the results of [66], this indicates that
the increased spatial clustering induced by peaks in the density
p leads to larger values of the critical mean degree zc and
therefore the associated percolation threshold εc. However,
the results of [52] suggest that there may be in fact no true
phase transition in giant component size for nonuniform p in
the limit N → ∞.

For large ε, the approximation in Eq. (11) is not valid
anymore and, hence, the discrete estimator breaks down in this
regime. Note that L(εc′ ) = 1 for a critical εc′ . Since L(ε) < 1
whereas L̂(ε) = 1 for ε > εc′ , the definition of the discrete
estimator is not meaningful anymore for thresholds larger than
the critical threshold. For the Bernoulli map, we have εc′ = 1/3
and for the logistic map, εc′ = 4/π2 follows.

The continuous ε-closeness c(x; ε) is approximated well
by the estimator ĉ(x; ε) for both the Bernoulli and logistic
maps (Fig. 5). However, ĉ(x; ε) is notably smaller than the true
theoretical value particularly in the center of S at x = 1/2,
implying that shortest paths are longer in the empirical ε-
recurrence network than expected theoretically. This is clearly
a finite size effect as the bias and variance of the estimator
clearly decrease for growing N and fixed ε (Fig. 5).
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(a) Bernoulli map (b) Logistic map

N
 =

 1000

(c) (d)

N
 =

 2000

(e) (f)

N
 =

 5000

FIG. 5. (Color online) Continuous ε-closeness c(x; ε) for [(a), (c),
(e)] the Bernoulli map and [(b), (d), (f)] the logistic map. Analytical
results are indicated by red solid lines. Estimates ĉ(x; ε) have been
obtained from ε-recurrence networks at ε = 0.01 constructed from
single realizations of [(a), (b)] N = 1 000, [(c), (d)] N = 2 000, and
[(e), (f)] N = 5 000 samples (all: black squares). Ensemble mean
(black dashed-dotted lines) and standard deviation (gray bands) have
been calculated as in Fig. 4. The standard deviation is too small to be
visible in the plots for N = 5 000 [(e), (f)].

The shape of continuous ε-shortest path betweenness b(x) is
approached well by the estimator b̂(x; ε) for both maps (Fig. 6).
However, there is a large bias that increases with the number of
samples N , while the variance decreases with growing N . That
the estimator b̂(x; ε) is generally smaller than the theoretical
value b(x) for all x can be explained by the skipping of vertices
due to the finite ε in the empirical ε-recurrence network. This
effect is expected to increase for growing N when ε is fixed
since more and more vertices can be skipped along a shortest
path for the same recurrence radius ε, which also explains the
growing bias in this setting. Accordingly, the bias decreases
for decreasing ε when N is sufficiently large regarding the
discussion of suitable choices of ε in Sec. IIIB [Figs. 6(g) and
6(h)]. However, the bias is not a problem in practical situations
because for local measures we are usually only interested in
relative differences between vertices and not in the absolute
values.

B. Periodic and quasiperiodic dynamics

1. Periodic orbit

We analyze next a periodic orbit (general closed curve)
of curve length l embedded in an m-dimensional phase
space, i.e., S = {x ∈ Rm : x = f (s); s ∈ [0,l]; f (0) = f (l)},
with uniform probability density p(x) = 1/l. The geodesic
distance of two points x(s),x(t) along the curve is then given

(a) Bernoulli map (b) Logistic map

N
 =

 1000

(c) (d)

N
 =

 2000

(e) (f)

N
 =

 5000

(g) (h)

N
 =

 10000

FIG. 6. (Color online) Continuous ε-shortest path betweenness
b(x) for [(a), (c), (e), (g)] the Bernoulli map and [(b), (d), (f), (h)]
the logistic map. Analytical results are indicated by red solid lines.
Estimates b̂(x; ε) have been obtained from ε-recurrence networks at
ε = 0.01 constructed from single realizations of [(a), (b)] N = 1 000,
[(c), (d)] N = 2 000, and [(e), (f)] N = 5 000 samples (all: black
squares). Panels (g) and (h) show results for ε = 0.005 and N =
10 000. Ensemble mean (black dashed-dotted lines) and standard
deviation (gray bands) have been calculated as in Fig. 4. Note that
b̂(x) is the discrete shortest path betweenness of [14], but normalized
by its theoretical maximum value (N − 1)(N − 2)/2.

by g[x(s),x(t)] = |s − t |. This yields

T (ε) = C(ε) = C(x; ε) = 3

4
,

L(ε) = l

4
ε−1,

c(x; ε) = 4ε

l
,

b(x) = 1

4
.

As the periodic orbit is a one-dimensional set, we
have E(ε) = 0 and e(x; ε) = ∞ as above. For example,
a circular orbit of radius R as generated by a har-
monic oscillator with S = {x ∈ R2 : x1 = R sin(s/R),x2 =
R cos(s/R); s ∈ [0,2πR]} and p(x) = 1/(2πR) gives the
above results with l = 2πR.
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2. Flat 2-torus

Quasiperiodic dynamics is displayed by a system oscillating
with two incommensurable frequencies ω1 and ω2, i.e., where
the ratio ω1/ω2 is not a rational number. The phase space trajec-
tory fills a 2-torus S = {x = (s,t) : s ∈ [0,2πR],t ∈ [0,2πr]}
uniformly with p(s,t) = p = 1/(4π2Rr). The radii R,r are
related to the oscillation’s amplitudes. With the geodesic
distance

g[(s,t),(s ′,t ′)] = [min(|s − s ′|,2πR − |s − s ′|)2

+ min(|t − t ′|,2πr − |t − t ′|)2]
1
2 ,

we obtain

T (ε) = C(ε) = C(x; ε) = 1 − 3
√

3

4π
≈ 0.5865,

L(ε) = πε−1

12rR

[
4rR

√
r2 + R2 + 3r3arsinh

(
R

r

)

+ 2R3artanh

(
r√

r2 + R2

)

− r3artanh

(
R√

r2 + R2

) ]
,

E(ε) = 2πrRε−1

[
2rartanh

(
R√

r2 + R2

)

+R ln

(
r + √

r2 + R2

−r + √
r2 + R2

)]−1

.

Because of symmetry, the local path-based measures do not
depend on x as for the periodic orbit discussed above and we
have

c(x; ε) = L(ε)−1,

e(x; ε) = E(ε)−1,

b(x) = 1

4π2Rr
= p.

As expected, in the limit r → 0, the average path length
converges to the value obtained for a circle of radius R

(see above), i.e., limr→0 L(ε) = (πR/2)ε−1.

C. Higher-dimensional symmetric sets

The m-dimensional hyperball and hypercube may be
viewed as tractable idealizations of higher-dimensional attract-
ing sets of dynamical systems (here we use d = m, since d is
integer). Their study highlights that continuous path-based
measures may depend sensitively and nontrivially on the
global geometry of the set. In contrast, their neighborhood and
transitivity-based counterparts just depend on the dimension
m and are therefore identical for the hyperball and hypercube
[Eq. (40)]. The sets considered here are convex, hence,
g(x,y) = ‖x − y‖2 holds when using the Euclidean norm.

1. m-dimensional hyperball

Here, we consider the m-dimensional hyperball S = Sm

with the uniform probability density p(x) = p = 1/
∫
S
dx =

Vol(Sm)−1 = �(m
2 + 1)/π

m
2 . Following Hammersley [69],

the rth moment of the distribution of point-to-point

2 4 6 8 10
m

0.8

0.9

1.0

1.1

1.2

L

FIG. 7. (Color online) Continuous ε-average path length εL(ε)
of the hyperball Sm with uniform probability density, obtained from
Eq. (42).

distances ‖x − y‖2 in Sm is given by

μmr = 2
m�(m + 1)

�
(

1
2m + 1

2

) �
(

1
2m + 1

2 r + 1
2

)
(m + r)�

(
m + 1

2 r + 1
) . (41)

Then, the continuous ε-average path length is

L(ε) = μm1ε
−1 = 2

m

m + 1

�(m + 1)

�
(

1
2m + 1

2

) �
(

1
2m + 1

)
�

(
m + 3

2

) ε−1,

(42)

and all its higher moments are known via Eq. (41) (see Fig. 7).
Some examples for lower-dimensional spheres follow:

εL(ε) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2
3 m = 1
128
45 π−1 m = 2
36
35 m = 3
16384
4725 π−1 m = 4
800
693 m = 5

.

Note that the result for m = 1 agrees with the corresponding
one for the Bernoulli map when considering the stretching of
the domain by a factor of 2 since S1 = [−1,1]. In the limit m →
∞, the continuous ε-average path length isL(ε) = √

2ε−1 (see
Fig. 7). We can also derive in closed form an expression for
the continuous ε-closeness c(0; ε) of the center of Sm, taking
advantage of the spherical symmetry:

c(0; ε)−1 = ε−1
∫

Sm

dx1 . . . dxm p

√
x2

1 + · · · + x2
m

= ε−1�mp

∫ 1

0
dr rm−1r.

With the full solid angle in m dimensions �m = mπ
m
2 /

�(m
2 + 1), this leads to

c(0; ε) = m + 1

m
ε. (43)

Note that the limit εc(0; ε)−1 → 1 for m → ∞ shows that
almost all of the measure μ(Sm) of the unit radius hyperball
Sm is concentrated at its surface for large m. For the special case
of m = 2 [unit disk with uniform p(x)], Lew et al. [70] give a
nearly closed-form expression for the continuous ε-closeness
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at x(q) = (q,0):

c[x(q); ε]−1 = 1

9π
[16(q2 − 1)K(q2) + 4(q2 + 7)E(q2)]ε−1,

where 0 � q � 1 and the value for arbitrary x ∈ S2 may be
obtained after an appropriate rotation. K(m) and E(m) are
complete elliptic integrals of the first and second kind (see
Sec. 17.3 in [71]).

For the continuous local ε-efficiency e(0; ε) of the center of
Sm, we get for m > 1

e(0; ε) = ε

∫
Sm

dx1 . . . dxm p

√
x2

1 + · · · + x2
m

−1

= ε�mp

∫ 1

0
dr rm−1r−1

= m

m − 1
ε.

A somewhat more involved calculation of the continuous ε-
betweenness b(0) of the center of Sm yields (see Appendix C)

b(0) = 1

�m

= �
(

m
2 + 1

)
mπ

m
2

. (44)

The high degree of symmetry of Sm allows us to derive
closed-form results for local path-based measures at its center
for many p(x) = p(r,�), as long as the probability density
separates into a radial and an angular part, i.e., p(r,�) =
p(r)p(�).

2. m-dimensional hypercube

The hypercube S = Km = [0,1]m with uniform probabil-
ity density p(x) = Vol(Km)−1 = 1 is much harder to treat
analytically than the hyperball Sm. Hence, rigorous results
are only available for isolated dimensions m and a subset of
the continuous measures defined above [58,72–74]. Solving
the resulting general box integrals remains a largely unsolved
problem of applied and experimental mathematics.

The following closed-form expressions for the continuous
ε-average path length L(ε) are based on the expectation values
for point-to-point distances �Km(1) = εL(ε) [see Eq. (29)]
listed in [74]:

εL(ε) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
3 m = 1
1

15 [2 + √
2 + 5 ln(1 + √

2)] m = 2

− 118
21 − 2

3π + 34
21

√
2 − 4

7

√
3 m = 3

+ 2 ln(1 + √
2) + 8 ln

(
1+√

3√
2

)
.

Some numerical results for m = 1, . . . ,10 are displayed in
Fig. 8. Anderssen et al. [72] proved the bounds

1

3

√
m � εL �

√
1

6
m

√
1

3

(
1 + 2

√
1 − 3

5m

)
(45)

implying εL → ∞ for m → ∞. This is in contrast to
the hyperball, where this limit is finite (see above). Using
expectation values for the inverse point-to-point distances
�Km(−1) = ε−1E(ε)−1, we are able to give the following

0 2 4 6 8 10
m

0.4

0.6

0.8

1.0

1.2

L

FIG. 8. (Color online) Continuous ε-average path length εL(ε)
of the hypercube Km with uniform probability density, obtained
by numerical Monte Carlo integration using Mathematica (yellow
diamonds). Analytical lower (blue disks) and upper (red squares)
bounds from [72] are also shown.

expressions for the continuous ε-efficiency E(ε):

[εE(ε)]−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ m = 1
4
3 (1 − √

2) + 4 ln(1 + √
2) m = 2

2
5 − 2

3π + 2
5

√
2 − 4

5

√
3 m = 3

+ 2 ln(1 + √
2)

+ 12 ln
(

1+√
3√

2

)
− 4 ln(2 + √

3)

.

Note that as S = K1 = [0,1], the results for m = 1 agree
with the corresponding ones for the Bernoulli map for both
continuous ε-average path length and efficiency. Further
expressions for �Km (1) and �Km (−1) for m = 4,5 are given
in [74].

Another object of interest in the theory of box integrals is
the integral

B̃m(η) =
∫

Km

dx‖x‖η

2, (46)

which is related to the continuous ε-closeness c(0; ε) of the
origin x = 0 (and, by symmetry, to that of all the 2m corners
of the hypercube) for η = 1 and to the local efficiency e(0; ε)
of the same points for η = −1:

c(0; ε) = B̃m(1)−1ε, (47)

e(0; ε) = B̃m(−1)ε. (48)

We can now once again use results from Bailey et al. [74] to
give some closed forms for small m:

εc(0; ε)−1 =

⎧⎪⎨
⎪⎩

1
2 m = 1
1
3 [

√
2 + ln(1 + √

2)] m = 2
1
4

√
3 − 1

24π + 1
2 ln(2 + √

3) m = 3

and

ε−1e(0; ε) =

⎧⎪⎨
⎪⎩

∞ m = 1

2 ln(1 + √
2) m = 2

− 1
4π + 2

3 ln(2 + √
3) m = 3

.

Further solutions for m = 4,5 are given in [74].
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V. DISCUSSION

We have shown that the definitions of continuous geometric
measures provided in this paper are feasible for describing
ε-recurrence networks for time series analysis as well as,
more generally, random geometric graphs [28,50,51]. Our
theoretical framework may readily be generalized to encom-
pass other classes of random networks with spatial constraints
(i.e., spatial networks) [29,52,53], e.g., those with an edge
length distribution of the form P (l) ∝ exp(−l/ξ ) describing
among others the substrate of climate networks [22,75] [in
contrast to the sharp cutoff P (l) ∝ �(ε − l) for random
geometric graphs]. For the neighborhood-based measures,
this generalization can be achieved by substituting terms
containing the Heaviside function or Bε(x) with suitably
chosen expressions involving P (l). One possible application
to real-world spatial networks is computing expectation values
for the characteristics of an ensemble of spatial random net-
work surrogates to assess which properties of a given empirical
network can be explained by P (l) alone. Additionally, more
general metrics could be used for measuring the distance l

between connected vertices. Research along these lines may
also help to shed light on the specific topology and dynamics
of growing spatial complex networks (cf. [8,76]).

Furthermore, we have demonstrated that the resulting
continuous properties can be approximated by estimators
calculated from empirical ε-recurrence networks reasonably
well, even for relatively small N and large ε. The continuous
framework promotes considerable advances in the theoreti-
cal understanding of ε-recurrence-network-based time series
analysis. Among others, from the examples of hyperballs and
hypercubes in various dimensions m, the claim that path-based
measures depend explicitly on the global geometry of the set
S is theoretically justified. This is in contrast to the continuous
notions of local and global transitivity, as at least the continu-
ous local ε-clustering coefficient C(x; ε) depends on the local
dimensionality of the set S [26]. Along these lines, in the future
we may gain an understanding of the differing performance
of transitivity-based and path-based measures in classifying
qualitatively different behavior of dynamical systems [13,33].
For example, more complex dynamical systems such as the
Lorenz and Rössler models or noisy dynamical systems, where
no closed-form expression for the invariant probability density
p exists, may be studied by estimating p̂ from simulated
trajectories. ε-recurrence network measures could then be
calculated by numerical integration techniques relying on p̂

and the integral expressions given in this paper. Circumventing
the computational limitations of discrete ε-recurrence network
analysis when N → ∞, this approach would in principle allow
us to approximate the continuous geometric quantities defined
above as closely as desired.

The examples of hyperballs and hypercubes establish links
to some current research problems in probabilistic geometry
and applied mathematics, among others, to the theory of box
integrals [58,72–74]. Perhaps these highly symmetric model
sets could serve to understand theoretically some qualitative
features of path-based ε-recurrence network measures for
strange attractors such as the Lorenz or Rössler attractors.
It remains an open question as to whether it is possible to
solve the integrals for continuous path-based measures in the

case of self-similar sets S and more complex, potentially also
self-similar densities p.

The theoretical framework put forward in this paper enables
several practical advances, which are particularly relevant
for applications to time series analysis of real-world data.
Analytical solutions for continuous ε-recurrence network
measures allow us to assess the bias and variance of the
discrete estimators from complex network theory that have
been used in the literature so far. These insights led to
devising improved discrete estimators based on the concept of
node-weighted network statistics [49]. Furthermore, we were
able to formulate a theoretically motivated criterion for the
selection of the recurrence threshold ε based on the critical
percolation threshold εc, which for a given system can be
estimated using our theory.

Finally, we should note that we now have a comprehensive
continuous theory for essentially all relevant measures of
ε-recurrence networks. This foundation will help to further
increase our understanding as well as strengthen the general
confidence in the method of ε-recurrence network analysis
in practical situations, e.g., the analysis of real-world time
series. Our results suggest that ε-recurrence network analysis
is the simplest and best understood network-based approach
to nonlinear time series analysis available so far.
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APPENDIX A: SKETCH OF PROOF OF EQ. (11)

For ε > 0, we define the continuous ε-distance l(x,y; ε)
between x �= y ∈ S to be the smallest integer k > 0 such
that there are points z0, . . . ,zk ∈ S with z0 = x, zk = y,
and ||zi−1 − zi || < ε for i = 1 . . . k. Note that because S is
path-connected, l(x,y; ε) is finite. We also put l(x,x; ε) = 0.
Let lij (ε,N ) � l(xi,xj ; ε) be the network distance between xi

and xj in the ε-recurrence network constructed from the first
N points of a sequence of independent draws from p. One can
then prove that for fixed ε, fixed nodes xi,xj , and N → ∞,
it has probability one that lij (ε,N ) = l(xi,xj ; ε) eventually
[i.e., there is some N (i,j,ε) so that lij (ε,N ) = l(xi,xj ; ε)
for all N > N (i,j,ε)]. This is because for k = l(xi,xj ; ε),
there is δ > 0 and z0, . . . ,zk ∈ S with z0 = x, zk = y, and
||zi−1 − zi || < ε − 2δ for i = 1 . . . k, and with probability one,
the sequence contains points w0, . . . ,wk ∈ S with w0 = xi ,
wk = xj , and ||wi − zi || < δ for i = 1 . . . k − 1, so that also
||wi−1 − wi || < ε for i = 1 . . . k, implying lij (ε,N ) � k when
N > N (i,j,ε) where N (i,j,ε) is the index of the last of the wi

to occur in the sequence.
Moreover, l(x,y; ε) � g(x,y)/ε + 1 and εl(x,y; ε) �

g(x,y) if g(x,y) is not an integer multiple of ε. This is because
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for all δ > 0 and ε′ < ε, there is a path from x to y of length
� g(x,y) + δ, hence for k = �(g(x,y) + δ)/ε′� (�x� is the
smallest integer not less than x), there are z0, . . . ,zk ∈ S with
z0 = x, zk = y, and ||zi−1 − zi || � ε′ < ε for i = 1 . . . k, so
that l(x,y; ε) � k. On the other hand, if S is sufficiently well
behaved, one will also have εl(x,y; ε) ↗ g(x,y) for ε → 0.
More precisely, assume S is “locally almost convex” in the
sense that for all L > 1, there is some ε > 0 so that for all
x,y ∈ S with ||x − y|| < ε, we have g(x,y) < Lε. Then, for
all L > 1, there is some ε > 0 so that εl(x,y; ε) > g(x,y)/L.
Putting all these facts together, we see that εlij (ε,N ) is a
plausible estimate of g(x,y).

APPENDIX B: CONTINUOUS ε-AVERAGE PATH
LENGTH FOR BERNOULLI MAP AND UNIFORMLY

DISTRIBUTED NOISE

For illustration, we give the detailed calculation of L(ε)
for the Bernoulli map and, equivalently, uniformly distributed
noise:

εL(ε) =
∫ 1

0

∫ 1

0
dx dy |x − y|

=
∫ 1

0
dx

(∫ 1

x

dy |x − y| +
∫ x

0
dy |x − y|

)

=
∫ 1

0
dx

(∫ 1

x

dy (y − x) +
∫ x

0
dy (x − y)

)

=
∫ 1

0
dx

([
1

2
y2 − xy

]1

x

+
[
xy − 1

2
y2

]x

0

)

=
∫ 1

0
dx

(
1

2
− x − 1

2
x2 + x2 + x2 − 1

2
x2

)

=
∫ 1

0
dx

(
1

2
− x + x2

)

=
[

1

3
x3 − 1

2
x2 + 1

2
x

]1

0

= 1

3
.

APPENDIX C: CONTINUOUS ε-BETWEENNESS
FOR THE CENTER OF A HYPERBALL

b(0) = p2
∫∫

S

dy dz

∫ 1

0
dt δ[f (t)]

= p2
∫∫

d�d�′
∫ 1

0

∫ 1

0
drdr ′rm−1r ′m−1δ(� − �′)

= p2
∫

d�

(∫ 1

0
dr rm−1

)2

= p2�m

1

m2

= �
(

m
2 + 1

)
mπ

m
2

= 1

�m

.
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