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Universality in dynamic wetting dominated by contact-line friction
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We report experiments on the rapid contact-line motion present in the early stages of capillary-driven spreading
of drops on dry solid substrates. The spreading data fail to follow a conventional viscous or inertial scaling. By
integrating experiments and simulations, we quantify a contact-line friction μf which is seen to limit the speed
of the rapid dynamic wetting. A scaling based on this contact-line friction is shown to yield a universal curve
for the evolution of the contact-line radius as a function of time, for a range of fluid viscosities, drop sizes, and
surface wettabilities.
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A generic example of dynamic wetting is the spreading
of a spherical liquid drop as it comes in contact with a dry
solid surface. Its spreading after contact is dominated by
different physical mechanisms at various stages in the temporal
evolution. If the drop radius is less than its capillary length,
the flow is mainly driven by the interfacial energy of the drop
and the substrate surface energy. The contact line is formed at
the intersection of the drop liquid-air interface and the solid
substrate. For a moving contact line, the interface is typically
distorted near the solid substrate, giving rise to a free surface
capillary force, which may pull the contact line forward. These
forces are balanced by different rate-limiting processes, such
as viscous dissipation [1] and inertia [2], which all act to reduce
the contact-line speed.

It is well known that the classical hydrodynamic theory
predicts a divergence of viscous stress at the contact line.
Therefore it might be expected that the spreading is dominated
by the viscous dissipation in the bulk. By regularizing the
viscous dissipation, a model for the spreading in viscously
dominated wetting is established [3]. This is often referred
to as Tanner’s law, where the spreading radius r evolves as
r ∼ R( σ t

μR
)

1
10 , where σ is the surface tension coefficient, R

is the initial drop radius, and μ is the viscosity. This model,
which holds promise if the drop evolves slowly and has a shape
similar to a spherical cap, has explained many experiments.
However, there are many wetting phenomena that it does
not describe, illustrating that there are other mechanisms
influencing or dominating the spreading.

One example is the spontaneous spreading of a water drop
as it comes in contact with a low energy substrate. Experiments
indicate here that the acceleration of liquid in the bulk of the
drop is resisting contact-line motion. An inertial spreading is
found to follow r ∼ R(R3ρ

σ
)

1
4 t

1
2 [4] (ρ is the density), but by

making the substrate more hydrophobic a different exponent
for the spreading radius was found [2]. The hydrodynamic
model cannot fully capture wetting at high capillary numbers
(given by the ratio of the viscous and surface tension force)
[5], and dynamic wetting experiments of viscous (1 Pa s)
drops [6] where the spreading radius as the square root of time
(r ∼ t1/2).
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De Gennes [7] postulated that there might be another
nonhydrodynamic dissipative contribution arising from the
contact line itself. This macroscopic dissipation was defined
by a friction factor local at the contact line, which has the
same units as viscosity. Others [8–13] have also discussed the
importance of local nonhydrodynamic effects at the contact
line, with different interpretations of its microscopic origin

By integrating experiments and axisymmetric simulations
based on the Cahn-Hilliard Navier-Stokes equations [14,15]
we estimate values for the friction factor μf that appears
in the free energy formulation. Theoretically, the friction
factor generates a local dissipation at the contact line through
its boundary condition. Here, particular attention is devoted
to the very first stage of a spontaneous spreading process
that is far from equilibrium. The experimental data cannot
be rationalized as viscous or inertial effects. The data set
collapses for a scaling law based on the numerically measured
contact-line friction parameter μf , even for a wide range
of viscosities (1–85 mPa s), different drop sizes, and surface
energies.

The simulations are based on the Cahn-Hilliard Navier-
Stokes equations [14]. In terms of phenomenological thermo-
dynamics one can postulate the free energy F for a binary
fluid F = ∫

[ σ
ε
�(C) + σε

2 |∇C|2]d� + ∫
[(σsl − σsg)g(C) +

σsg]d�. The volumetric (�) free energy consists of two
terms representing the bulk ( σ

ε
�(C)) and interfacial ( σε

2 |∇C|2)
energies. � = 1

4 (C2 − 1)2 is a double-well function with two
minima, giving the equilibrium values of the order parameter
C, as C = −1 for gas and C = 1 liquid. The diffuse interface
width ε is chosen to be the same as the spatial resolution in
the experiments ε = 7.5 μm. It is important to note, however,
that in [8] ε has been varied one order of magnitude, without
any noticeable change in the results or any increase in viscous
dissipation.

The surface energy of the wet substrate is σsl , and that of the
dry substrate is σsg . g(C) = 1

4 (2 + 3C − C3) is chosen to give
g(1) = 1 and g(−1) = 0, thus producing the corresponding
wet and dry surface energies of the substrate.

By making a variation in F with respect to the concen-
tration, one obtains an expression for the chemical potential
δF/δC. If accounting for the effects of convection of the
concentration, which would equal the flux due to gradients
of the chemical potential, the Cahn-Hilliard equation is
recovered, which along with the Navier Stokes equations forms
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a theoretical basis for modeling of wetting [14] with a no-slip
boundary condition on the wall.

By retaining any perturbation in the concentration at the
wall, a general wetting boundary condition for the concentra-
tion at the solid surface appears [16],

εμf

∂C

∂t
= −εσ∇C · n + σ cos(θe)g′(C). (1)

We interpret here μf as a friction factor at the contact line. θe

is the equilibrium contact angle.
Experiments of spontaneously spreading drops have been

carried out through high-speed imaging (150 kfps) for different
viscosities and coatings (oxide, silane, teflon) on Si wafers.
The viscosity was changed by using different glycerin-water
mixtures, with glycerin mass fractions of 0%, 50%, 65%,
72.5%, and 82.5%, corresponding to viscosities of 1, 6.6, 14,
31, and 85 mPa s, respectively. The different viscosities do
not lead to any significant change in equilibrium contact angle
(±2◦), which was measured as θe = 20◦,60◦,109◦ for oxide,
silane, and teflon coatings, respectively.

The simulations mimic the experiments by using the same
material properties (density, viscosity, surface tension, and
equilibrium angle). To obtain the experimentally observed
spreading behavior, an additional dissipation at the contact line
was necessary through a nonzero μf [14]. μf was determined
by obtaining a direct agreement between simulations and
experiments, enabling a direct measurement of μf even in
the presence of other contributions, such as viscosity and
inertia [15]. The values for μf are reported in Table I for
all the surfaces and viscosities. A nonmonotonicity in μf

is observed for pure water for the SiO2 and silane coatings;
the same dependency was reported in [14] when comparing
with similar experiments [2]. We cannot, at the present time,
explain this nonmonotonicity for pure water. Figure 1 shows
the excellent agreement between simulations and experiments
for a water and an 82.5% glycerin-water drop with an initial
radius R ≈ 0.5 mm. See also the Supplemental Material [17].
Figure 1(a) shows the initial condition in the experiments and
simulations and the field of view in the experiments (dashed
box). The same window was extracted from the numerics, but
the whole drop was simulated.

TABLE I. Values for the contact-line friction parameter μf

(Pa s) for different viscosities and substrates (SiO2, silane, and teflon)
measured from the numerical simulations.

Mass fraction of glycerin

0% 50% 65% 72.5% 82.5%

SiO2 (Pa s) 0.15 0.33 0.51 0.66 1.02
Silane (Pa s) 0.17 0.26 0.33 0.41 0.80
Teflon (Pa s) 0.07 0.06 0.09 0.10 0.19

Figure 2(a) shows how the radial position of the contact
line evolves in time for drops with different initial radii and
for different viscosities on the oxidized Si wafer. The symbols
represent the mean value after several realizations of the
experiments (minimum of four), and the data set has been
reduced for clarity. One observation to be made in Fig. 2(a)
is that the viscosity as well as the drop size influences the
spreading.

Figure 2(b) shows the same data, with the contact-line
radius scaled with initial drop radius R and the time scale
with a viscous capillary speed σ/μ. The capillary speed σ/μ

is 73 m/s for water and 0.75 m/s for an 85% glycerin-water
mix. However, as is evident from Fig. 2(b), this scaling fails to
collapse the data, so the viscous contribution does not seem to
be the limiting factor in this situation. An alternative would be
an inertial scaling of time based on an inertial capillary velocity
scale

√
σ/(ρR), as shown in Fig. 2(c). As is evident here, this

scaling does not capture the essential dynamics either, and we
conclude that neither inertia nor bulk viscosity is the limiting
factor for spreading in our experiments.

The remaining possibility is a capillary velocity based
on the contact-line friction discussed above and quantified
in Table I. A representative velocity in this case can be
found, either from Eq. (2) or from dimensional analysis, to be
u∗ = σ/μf . Introducing the values for σ and μf from Table I
gives a speed of u∗

0% ∼ 4.8 m/s for water and u∗
85% ∼ 0.6 m/s

for 85% glycerin. By scaling time with R/u∗, we do obtain a
collapse of data, for the entire range of viscosities and drop
sizes; see Fig. 2(d). The scattered dimensional plot represented

FIG. 1. (Color online) (a) The initial condition for the experiments and the numerical simulations, where a drop held at the tip of a needle
is brought into contact with a dry solid substrate. The dashed box in shows the field of view in the experiments. (b) and (c) The drop shape
near the substrate at times t = 0.15 ms, t = 0.60 ms, and t = 0.90 ms, after initial contact. Each panel shows a composite of experiment (left)
and simulation (right). The black solid line in the right half of the panel that is plotted on top of the simulation result illustrates experimental
interface shape. (b) A water drop spreading on an oxidized Si wafer (θe = 20◦, viscosity μH2O = 1 mPa s). (c) Glycerin 82.5% drop spreading
on an oxidized Si wafer (θe ∼ 20◦, viscosity μglycerin82.5% = 85 mPa s).
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FIG. 2. The spreading radius in time on an oxidized Si wafer for two drop sizes, R ≈ (0.3 ± 0.02) mm (open symbols) and R ≈ (0.5 ±
0.02) mm (solid symbols) for different mass fractions of glycerin as indicated in the legend. (a) Dimensional units. (b) Viscous scaling.
(c) Inertial scaling. (d) Contact-line friction scaling.

in Fig. 2(a) is reduced to nearly a single spreading curve.
Figure 2 shows only results for the SiO2 surface, but similar
results are also obtained for the other solid surface coatings.

Here μf is determined by adjusting it in simulations so
that the mean spreading radius agrees with that of several
experiments performed using a drop radius of 0.5 mm. It should
be noted that the adjustment of this single parameter achieves
excellent agreement for the entire drop shape, over the whole
spreading event. We have also varied the drop size in additional
experiments, which has a significant influence on the spreading
radius [see Fig. 2(a)]. As shown in Fig. 2(d), the data for both
drop sizes collapse excellently when using a scaling of time
according to σ t/(Rμf ). The value of μf is thus independent
of drop size, and this indicates it to be an intrinsic material
property of the surface in combination with the wetting liquid.

Figure 3(a) shows the nondimensional collapse of data
for the three surface coatings for different drop sizes and
viscosities. By representing the dimensionless curves in
Fig. 3(a) on logarithmic axis, we observe that the radii follow
the same slope independent of the solid surface at the early
stage of the partial wetting; see Fig. 3(b). This indicates
that the governing physical mechanism is indeed the same
for the different solid surfaces. From Fig. 3(b) it is clear

that the spreading radius evolves as r
R

∼ ( σ t
Rμf

)
1
2 . A similar

relationship is expected in a diffusion process, where in this
context σR/μf would represent a diffusion coefficient. This
could indicate that a diffusive process is taking place at the
contact line, which was suggested by [10] from rapid wetting
simulations using molecular dynamics. In the first stage of
the spreading, for nondimensional time <1, the experiments
cannot be fully captured by the hydrodynamic theory through
Tanner’s law r = R( σ t

μR
)

1
10 or by the molecular kinetic theory

that predicts r ∼ t
1
7 [18,19]. We have, for clarity, inserted the

slope predicted from Tanner’s law in Fig. 3(b).
In Fig. 3(b) a distinct transition between the 1/2 slope

and a much more gradual slope (∼1/10) is observed around
nondimensional time 1. This might be an indication of the
transition between contact-line friction-dominated spreading
and another slower spreading regime. We assume here that
the second regime is viscously dominated spreading given
by Tanner’s law, and making this equal to the contact-line
friction-dominated spreading r = R

√
σ t

μf R
, a distinct transition

time tt between the two regimes is obtained. In dimensional
scales this becomes tt = Rμf

σ
(μf

μ
)

1
4 , or in nondimensional time
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FIG. 3. (Color online) Nondimensional spreading radius based
on a contact-line friction scaling on the different substrates: oxide
(black), silane [red (light gray)], and teflon [blue (dark gray)].
Open symbols denote R = 0.3 mm), and solid symbols denote
R = 0.5 mm. (a) Linear axis. (b) Logarithmic axis.

(τ ), τ = tt σ

Rμf
= (μf

μ
)

1
4 . Introducing the material properties in

the expression for τ we notice that a physically reasonable
transition time is obtained and is in very good agreement with
the experimental results presented in Fig. 3. For example, the
dimensionless transition time for water and 85% glycerin on
the oxide surface is found to be τ0% = 3.5 and τ85% = 1.05,
respectively.

An analytical function can be derived for the contact-line
velocity ûcl based on the boundary condition given in Eq. (1)
[20],

ûcl = σ

μf

cos(θe) − cos(θ )

sin(θ )
, (2)

where θ is the dynamic contact angle. Equation (2) is
different from other expressions for the contact-line velocity
previously reported in the literature [7] in that it is divided
by sin(θ ), which makes the expression diverge at angles 0◦
and 180◦. This function is assumed to only be valid when
the local dissipation at the contact line dominates. At these
extrema, other mechanisms such as inertia or bulk viscous
friction are expected to regularize the solution. sin(θ ) gives a
non-negligible contribution to the function and introduces an
additional nonlinearity.

FIG. 4. (Color online) The dimensionless contact-line veloc-
ity function from phase field theory ucl = μf

σ
ûcl = [cos(θe) −

cos(θ )]/ sin(θ ). The inset shows the velocity predicted from the lin-
earized molecular kinetic theory uMKT = (μf /σ )ûMKT = cos(θe) −
cos(θ ). The input in these two functions is the experimentally
measured dynamic contact angle θ for two different drop sizes on
the oxidized Si wafer. The mass fraction of glycerin is indicated in
the legend. Open symbols denote small drops (R = 0.3 mm), and
solid symbols indicate large drops (R = 0.5 mm).

In Fig. 3(b) it is clear that the spreading radius evolves as a
function r ∼ R( σ t

Rμf
)

1
2 ; thus the contact-line speed should be

proportional to ∼t−
1
2 . To evaluate the analytical expression

for the contact-line velocity given in Eq. (2), we use the
experimental data for the dynamic contact angle for the data
presented in Fig. 2(a) for the different viscosities and drop
sizes, as they evolve on the oxidized wafer. We define the dy-
namic contact angle between the tangent along the contoured
interface (interpolated at a fixed height of seven pixels from
the wall) and the solid substrate on the liquid side [15].

Figure 4 shows that the expression given in Eq. (2) indeed
gives a slope for the contact-line speed of ûcl ∼ R

√
σ

Rμf
t
− 1

2 .

This indicates that cos(θe)−cos(θ)
sin(θ) ∼ R/r , which from Eq. (2)

recovers the experimentally observed behavior presented in
Figs. 2(d) and 3. The inset in Fig. 4 shows the predicted contact-
line speed using the linearized function from molecular kinetic
theory ûMKT = (σ/μf )[cos(θe) − cos(θ )] [18]. Since we are
interested in the slope for the contact-line speed in time, we
assume μf to be the same in ûMKT as reported in Table I. One
clear observation to make from the inset in Fig. 4 is that at
nondimensional time <2.4 the slope for the contact-line speed
predicted from molecular kinetic theory uMKT = (μf /σ )ûMKT

does not agree with the experimental observation in Fig. 3.
In summary we have shown that spreading experiments

and simulations for a wide range of viscosities, on sub-
strates with very different wetting properties, all exhibit a
universal spreading behavior if contact-line friction dominates
the spreading. An expression for the contact-line radius is
proposed for this spreading regime as r ∼ R( σ t

μf R
)

1
2 . The

analytical contact-line velocity from phase field theory, where
the dynamic contact angle is the primary input, predicts the
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same slope for the spreading as found directly in experiments.
We hope that these results can help rationalize spreading
phenomena that fall beyond classical hydrodynamic theory
and give a phenomenological explanation for such physics.

We would like to thank F. Carlborg, M. Do-Quang, A.
Oko, and F. Lundell for stimulating discussions. The authors
acknowledge funding from the Swedish Research Council,
through the Linné Flow Center.
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