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Preasymptotic hydrodynamic dispersion as a quantitative probe of permeability
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We interpret a generalized short-time expansion of stochastic hydrodynamic dispersion dynamics in the case of
small Reynolds number flow through macroscopically homogenous permeable porous media to directly determine
hydrodynamic permeability. The approach allows determination of hydrodynamic permeability from pulsed field
gradient spin-echo nuclear magnetic resonance measurement of the short-time effective hydrodynamic dispersion
coefficient. The analytical expansion of asymptotic dynamics agrees with experimental NMR data and lattice
Boltzmann simulation of hydrodynamic dispersion in consolidated random sphere pack media.
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Macrotransport models that evolve from pore-scale dynam-
ics in porous media have implications across the physical
and life sciences [1]. The common pore-scale scenario of
steady fluid flow dominated by viscous forces is modeled on
the macro scale by Darcy’s law [1–3], εμū = k (f − ∇p̄).
Macroscopically homogenous (MH) porous media [4] are
characterized by a spatially uniform fluid volume fraction ε and
permeability tensor k that couple the intrinsic volume-average
saturating fluid velocity ū, dynamic fluid viscosity μ, gradient
of the intrinsic average fluid pressure ∇ p̄, and body force
f. Connection of pore geometry and permeability is an out-
standing question, and complex pore structures necessitate a
measurement of permeability [1–3]. Estimates of permeability
govern environmental, engineering, and economic models
used in the management of groundwater and petroleum
resources, design of novel flow control [5], and study of
physiological fluid transport [6].

In this Rapid Communication we demonstrate the connec-
tion between permeability and a short-time expansion of en-
semble average hydrodynamic dispersion dynamics resulting
from Stokes flow through MH porous media. The connection
is made through the interaction of molecular diffusion and
a mechanical potential gradient, with fluid pressure being
only one of the possible potentials. The result facilitates a
noninvasive measurement of permeability by a postprocessing
pulsed field gradient spin-echo (PGSE) nuclear magnetic
resonance (NMR) measurement of the relevant dynamics. In
the following, we first present the final results of a generalized
short-time expansion of the effective dispersion coefficient and
reduction in the case of Stokes flow through MH porous media,
demonstrating that the coefficient scales with permeability.
We then outline the derivation in detail. Finally, the ansatz
is compared with numerical random-walk particle tracking
transport simulation in consolidated random sphere pack
media and experimental PGSE NMR data.

The approach is restricted to Stokes flow, defined here as
pressure-driven, steady, Newtonian, single-phase, incompress-
ible, small Reynolds number flow Re = uLρ/μ � 1, where
L is the characteristic pore-length scale, u is the mean flow
velocity, and ρ is the fluid density. The fluid is assumed to
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fully saturate the pore volume of an equilibrated MH porous
media that is bounded by a rigid, reflecting (i.e., the fluid tracer
particles are conserved), no-slip, and piecewise-smooth (i.e.,
finite surface curvature and nonfractal) pore-grain interface.
As will be later shown, these constraints, when applied to the
general short-time expansion of the time t-dependent effective
dispersion coefficient D(t) = 〈|R(t) − 〈R(t)〉|2〉/6t of fluid
particle displacement R(t), imply D(t) varies as

D (t) = Do (t) + 1

6
u′ · u′ t − u2εκ

18k
t2 + O(t5/2) (1)

as t→0+. Here the brackets and overbar denote ensemble
and pore-volume average, respectively, the mean flow velocity
is u = |ū|, κ is the molecular diffusion constant, Do(t)
is D(t) without convection, and k = εμu/|f − ∇p̄| cos θ is
directional permeability in the direction of the flow [1–3],
where θ is the angle between ū and the hydraulic gradient.
At short times Do(t) = κ − Ao(κ3t)1/2 + O(t), where Ao is
governed by the surface area to pore-volume ratio [7,8].
Equation (1) with the Green-Kubo relation [9] D(t) = Do(t) +
(3t)−1

∫
(t − t ′)ψ(t ′)dt ′ implies the velocity autocorrelation

ψ(t) = 〈u′(0) · u′(t)〉 of the fluctuating convection velocity
u′ = u − ū varies as

ψ(t) = u′ · u′ − u2εκ

k
t + O(t3/2) (2)

as t→0+. Equations (1) and (2) are consistent with the
preasymptotic dynamics in planar and cylindrical flow [10–19]
and imply that the short-time dispersion behavior may be used
as a measurement of permeability.

We now turn to a summary of our derivation of the general
short-time behavior of D(t) leading to Eq. (1). The term
dispersion is used in the context of Taylor’s pioneering work
[20,21] with regard to ensemble-averaged linear convection-
diffusion transport as applied to porous media by Saffman
[22]. Formally, the time t-dependent displacement R(t) =
r′(t) − r′(0) of a passive particle confined to an equilibrated
pore-volume � and driven a steady convection field u(r′),
where r′ ∈ �, is governed by a Langevin stochastic differential
equation [1,23]

d

dt
R (t) = L (t) + u(r′), (3)
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where L(t) is consistent with Brownian motion and a uniform
molecular diffusion constant κ . A large particle population
is assumed to uniformly saturate the pore-volume. The pore-
grain interface is defined by the surface �. Over short time
and length scales, the convection field varies according to the
spatial Taylor series [24]

u(r′) = u(r) +
∞∑

j=1

1

j !
[R · ∇]j u(r) (4)

where r = r′(0). Short-time displacement dynamics resulting
from Eq. (3) with the Taylor series Eq. (4) are well known
for simple shear and planar flow [10–19], and stationary,
homogenous turbulence [24]. In these cases, short-time
displacement dynamics resulted from the nonequilibrium
interaction of molecular diffusion and spatial variation (stress)
of the respective convection field, e.g., velocity gradients.
These results suggest the opportunity for permeability
measurement through the vector Laplacian of the convection
field for small Reynolds number flow through MH porous
media [25,26]. Although the exact short-time dynamics are
known for Eq. (3) in the special cases of planar and pure
shear flow, the exact explicit dynamics are not known for the
general three-dimensional Taylor series in Eq. (4).

To address this question, we performed a nonlinear response
analysis of the general three-dimensional problem. The deriva-
tion is based upon the nonlinear response characteristics of
Eq. (3) with the convection expansion Eq. (4). The memoryless
components of this system define an input function h(t) =
u(r) + L(t) which drives displacement memory governed by
Eq. (4). As a result, we have found the Volterra series [27] to
be suited as a representation of displacement

R(t) =
∞∑

m=1

∫ t

0
dτ1 . . .

∫ t

0
dτmHm(τ1, . . . ,τm) :

m∏
k=1

h(t − τk).

(5)

The Volterra kernel matrices Hm(τ1, . . . ,τm) describe displace-
ment response to the static and stochastic input [28]. The ker-
nels are organized by Hm = [Hm]i=1...n,j=1...n,k=1...n,..., where
n is the dimensionality, i is the component R = [R]i=1...n,
and the entries j ,k,. . . refer to h(t − τ1) = [h(t − τ1)]j=1...n,
h(t − τ2) = [h(t − τ2)]k=1...n, etc. The Laplace transform of
each kernel, Hm(s1, . . . ,sm), describing displacement resulting
from Eq. (3) with the convection expansion Eq. (4), was
determined using the growing exponential approach [29]. A
large s expansion of the kernels leads to the general short-time
behavior of D(t) for the pore-saturating fluid particles. A linear
mean displacement 〈R(t)〉 = ūt implies the term varies as

D (t) = Do (t) + Ds (t) +
(

1

6
u′ · u′ + 1

3
κ∇ · u

)
t +

⎛
⎜⎝

1
6 u · (u · ∇) u + 1

18κu · ∇2u +
1
9κ∇ · (u · ∇)u + 1

9κ(u · ∇) (∇ · u) +
2
9κ2∇ · ∇2u + 1

18κ∇ · (I · ∇)diag(u)u

⎞
⎟⎠ t2 + O(t3) (6)

as t→0+, where I = ∑
ê is the sum of standard basis vectors. The nonlinear interaction of convection and diffusion near the

pore-grain interface is described by Ds(t). At short times only molecules within the diffusion length (κt)1/2 interact with the
walls [7,8], implying for a rigid, reflecting, and locally flat pore-grain interface the term varies as

Ds (t) = 1

Vp

∫
dr′′

{
1

3
n̂ · uκt + 8

45
√

π
n̂ · ∇ (n̂ · u) (κt)3/2

+
[

1

6κ
n̂ · (u · ∇) u + 1

12κ
n̂ · ∇(u · u) + 1

6
n̂ · ∇2u + 8

9
n̂ · ∇ (∇ · u) − 13

18
(n̂ · ∇)2 (n̂ · u)

]
(κt)2 + O(t5/2)

}
(7)

as t→0+, where Vp is the integrated pore volume, n̂ is the inward surface normal, and the coefficients are integrated over the
pore-grain interface. Surface curvature increases the order of the flat wall terms in powers of t1/2.

The generalized terms in Eq. (6) are reduced in the case of Stokes flow for which the Stokes equation, ∇p − f = μ∇2u, and
continuity, ∇ · u = 0, govern momentum and mass conservation of the single-phase fluid and a no-slip condition, u(r′′)

∣∣
r ′′∈ ∑ = 0,

applies at the pore-grain interface. These constraints together with the assumption of a rigid, reflecting, and piecewise smooth
pore-grain interface imply Ds(t)→O(t5/2) as t→0+. Taken together, these constraints reduce Eq. (6) to

D (t) = Do (t) + 1

6
u′ · u′t +

[
1

6
u · (u · ∇) u + 1

18
κu · ∇2u

]
t2 + O(t5/2). (8)

Further consider Eq. (8) in the case of a MH porous
media for which two volume-average constraints on u are
introduced:

u · (u · ∇) u = 0, (9a)

u · ∇2u = −εū · (k−1ū). (9b)

The first, Eq. (9a), assumes the ensemble-average convective
kinetic energy of the tracer particles is stationary, i.e., on
average the fluid does not accelerate. Second, Eq. (9b)
follows from substituting the Stokes equation and Darcy’s
law following volume averaging and is consistent with a
homogeneous permeability tensor and fluid volume fraction.

045301-2



RAPID COMMUNICATIONS

PREASYMPTOTIC HYDRODYNAMIC DISPERSION AS A . . . PHYSICAL REVIEW E 85, 045301(R) (2012)

0 0.5 1 1.5 2
−2

0

2

4

6

8

10

time (s)

[D
(t

) 
−

 D
o(t

)]
/ κ

0 0.5 1 1.5 2
0.4

0.5

0.6

0.7

0.8

0.9

1

time (s)

ψ
(t

)/
ψ

(0
)

Pe = 150                   

          54.6              

          5

Pe = 5                    54.6             150

FIG. 1. Analytical short-time predictions compared with numer-
ically simulated hydrodynamic dispersion dynamics in a random
sphere pack for three regimes of transport determined by Peclet
number. (Top) Comparison of the linear prediction (solid lines)
and simulated velocity autocorrelation function (dots). (Bottom)
Comparison of the quadratic prediction (solid lines) and simulated
difference in effective dispersion and diffusion coefficients (dots).
The simulation parameters were d = 1.0 × 10−4 m, u = 1.0 ×
10−5 m/s, ε = 0.44, and k = 1.55 × 10−11 m2.

Thus, Eq. (1) follows from Eqs. (8) and (9) and leads to the
connection between short-time dispersion and permeability.

We now demonstrate these results using numerical and
PGSE NMR data. A pore-scale Lattice-Boltzmann (LB)
simulation [30] of single-phase flow was conducted within a
random packing of diameter d monodisperse spheres for Re =
1 × 10−3. The domain consisted of 53 spheres and 10243

grid points. Fluid viscosity was μ/ρ = 1/6 in lattice units. A
pore-saturating population of random-walk particles subject
to the steady-state LB-determined velocity field simulated
the transient displacement statistics. The computed ψ(t) is
compared with the linear prediction from Eq. (2) in the top
panel of Fig. 1. The computed D(t)−Do(t) is compared
with the quadratic (two-term) prediction from Eq. (1) in the
bottom panel of Fig. 1. The three regimes shown in Fig. 1
are characterized by Peclet number Pe = udε/[κ(1−ε)],
where the effective pore length scale dε/(1−ε) is used.
Convection-dominated transport is demonstrated by Pe = 150,
diffusion-dominated transport by Pe = 5, and a quasilinear
regime of ψ(t) by Pe = 54.6. The prediction terms u′ · u′ and
k were determined from the LB simulation data.

The linear prediction gives excellent agreement with the
initial ψ(t) decay for all Pe (top panel of Fig. 1). The
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FIG. 2. PGSE NMR measurement of the difference in effective
dispersion and diffusion coefficients (open circles) compared with the
linear (dashed line) and quadratic (solid line) short-time predictions
for Pe = 50.1 in a consolidated random sphere pack. Parameters of
the experiment were u = 5.7 × 10−4 m/s, Re = 0.14, ε = 0.42,
κ = 2 × 10−9 m2/s, and k = 7.4 × 10−11 m2 estimated from the
Kozeny-Carman correlation.

convex-to-concave transition in ψ(t) (top panel of Fig. 1) and
the corresponding over-to-under transition of the quadratic
prediction for D(t)−Do(t) (bottom panel of Fig. 1) is a
product of the three-dimensional pore structure. This transition
portends the quasilinear regime of ψ(t) near Pe = 54.6 (top
panel of Fig. 1); in this regime the quadratic prediction of
D(t)−Do(t) dominates the summation of higher-order terms
(bottom panel of Fig. 1).

The quasilinear regime of ψ(t) is further demonstrated
in Fig. 2 by PGSE NMR data for Pe = 50.1. Previously,
PGSE NMR has been used to characterize transient dispersion
dynamics in porous media in the ideal sense that the fluid
molecules themselves act as the tracer particles [31–35].
The data in Fig. 2 characterizes D(t)−Do(t) of water fully
saturating a packed bed of d = 240 μm polystyrene spheres
(Duke Scientific) within a 10-mm-diam glass capillary. Also
shown in Fig. 2 are the linear and quadratic short-time
predictions of D(t)−Do(t) from Eq. (1). The dynamics were
measured using a stimulated echo single PGSE sequence
implemented on a Bruker 300-MHz superconducting magnet
interfaced to a Micro2.5 gradient probe. The gradient of the
PGSE sequence was incremented through eight values along
three orthogonal axes for each observation time with and
without steady flow driven by a Pharmacia P500 high-pressure
liquid chromatography pump. The total coefficients D(t) and
Do(t) were determined by averaging the respective orthogonal
coefficients from the Stejskal-Tanner relation for the NMR
signal intensity [36].

The PGSE NMR data shown in Fig. 2 is a Peclet number
regime in which neither convection nor molecular diffusion
dominate molecular displacement. Agreement between the
quadratic short-time prediction (solid line) and data is ex-
cellent. Transitioning the Peclet number to a more diffusion-
or convection-dominated regime necessitates the inclusion of
higher-order (greater than t2) expansion terms to maintain the
short-time prediction accuracy (see Fig. 1). The linear short-
time prediction (dashed line) coefficient in Fig. 2 was estimated
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from a linear fit to initial data points. Permeability k entering
the t2 coefficient of the quadratic prediction was estimated by
the Kozeny-Carman correlation k = d2ε3/[180(1 − ε)2] [2]
because the packed bed confinement mechanism prevented
an accurate classic measurement of permeability; the corre-
lation predicts the LB-simulated permeability within 2.7%.
Fluid volume fraction ε was determined by comparing the
measured intrinsic average and superficial flow velocities. The
excellent agreement in Fig. 2 between data and short-time
quadratic prediction indicates a measurement of permeability
by postprocessing PGSE NMR measurement of the short-time
dynamics.

A general short-time expansion of the effective dispersion
coefficient for steady flow and Brownian fluid particles was
interpreted in terms of Stokes flow through MH porous
media with a piecewise smooth pore-grain interface. The
result facilitates a noninvasive measurement of hydrodynamic
permeability by postprocessing PGSE NMR measurement of
the effective dispersion coefficient. A virtue of this technique
is that it does not require knowledge of the pressure gra-
dient nor fluid viscosity. The general short-time expansion
suggests a broader interpretation and application of stochastic
hydrodynamic dispersion dynamics for inertial, multiphase,
electro-osmotic, non-Newtonian, and other flows.

[1] H. Brenner and D. A. Edwards, Macrotransport Processes
(Butterworth-Heinemann, Boston, 1993).

[2] J. Bear, Dynamics of Fluids in Porous Media (Elsevier, New
York, 1972).

[3] F. A. L. Dullien, Porous Media; Fluid Transport and Pore
Structure (Academic, New York, 1979).

[4] M. Sahimi, Rev. Mod. Phys. 65, 1393 (1993).
[5] Y. A. Urzhumov and D. R. Smith, Phys. Rev. Lett. 107, 074501

(2011).
[6] S. Vogel, Life in Moving Fluids: The Physical Biology of Flow

(Princeton University Press, Princeton, NJ, 1996).
[7] P. P. Mitra, P. N. Sen, L. M. Schwartz, and P. Le Doussal, Phys.

Rev. Lett. 68, 3555 (1992).
[8] P. P. Mitra, P. N. Sen, and L. M. Schwartz, Phys. Rev. B 47, 8565

(1993).
[9] J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw Hill,

New York, 1980).
[10] M. J. Lighthill, IMA J. Appl. Math. 2, 97 (1966).
[11] P. C. Chatwin, J. Fluid Mech. 43, (1970).
[12] R. T. Foister and T. G. M. Van de Ven, J. Fluid Mech. 96, (1980).
[13] C. Van den Broeck, Physica A 112, 352 (1982).
[14] N. Liron and J. Rubinstein, SIAM J. Appl. Math. 44, 493 (1984).
[15] W. R. Young and S. Jones, Phys. Fluids A 3, 1087 (1991).
[16] P. T. Callaghan, S. L. Codd, and J. D. Seymour, Conc. Magn.

Res. 11, 181 (1999).
[17] R. Camassa, Z. Lin, and R. M. McLaughlin, Commun. Math.

Sci. 8, 601 (2010).
[18] R. Camassa, R. M. McLaughlin, and C. Viotti, Phys. Fluids 22,

117103 (2010).

[19] R. R. Ratnakar and V. Balakotaiah, Phys. Fluids 23, (2011).
[20] G. I. Taylor, Proc. R. Soc. London 219, 186 (1953).
[21] R. Aris, Proc. R. Soc. London 235, 67 (1956).
[22] P. G. Saffman, J. Fluid Mech. 6, 321 (1959).
[23] N. G. Van Kampen, Stochastic Processes in Physics and

Chemistry (Elsevier, Oxford, 2007).
[24] P. G. Saffman, J. Fluid Mech. 8, 273 (1960).
[25] J. C. Slattery, AIChE J. 13, 1066 (1967).
[26] S. Whitaker, Transp. Porous Media 1, 3 (1986).
[27] V. Volterra, Theory of Functionals and of Integral and Integro-

differential Equations (Dover, New York, 1959).
[28] N. Wiener, Nonlinear Problems in Random Theory (The MIT

Press, Cambridge, MA, 1966).
[29] W. J. Rugh, Nonlinear System Theory: The Volterra/Wiener

Approach (Johns Hopkins University Press, Baltimore, 1981).
[30] R. S. Maier, D. M. Kroll, R. S. Bernard, S. E. Howington, J. F.

Peters, and H. T. Davis, Phys. Fluids 12, 2065 (2000).
[31] J. D. Seymour and P. T. Callaghan, AIChE J. 43, 2096

(1997).
[32] B. Manz, L. F. Gladden, and P. B. Warren, AIChE J. 45, 1845

(1999).
[33] U. M. Scheven and P. N. Sen, Phys. Rev. Lett. 89, 254501

(2002).
[34] U. M. Scheven, R. Harris, and M. L. Johns, Phys. Rev. Lett. 99,

054502 (2007).
[35] T. R. Brosten, S. L. Codd, R. S. Maier, and J. D. Seymour, Phys.

Rev. Lett. 103, 218001 (2009).
[36] P. T. Callaghan, Principles of Nuclear Magnetic Resonance

Microscopy (Oxford University Press, Oxford, UK, 1991).

045301-4

http://dx.doi.org/10.1103/RevModPhys.65.1393
http://dx.doi.org/10.1103/PhysRevLett.107.074501
http://dx.doi.org/10.1103/PhysRevLett.107.074501
http://dx.doi.org/10.1103/PhysRevLett.68.3555
http://dx.doi.org/10.1103/PhysRevLett.68.3555
http://dx.doi.org/10.1103/PhysRevB.47.8565
http://dx.doi.org/10.1103/PhysRevB.47.8565
http://dx.doi.org/10.1093/imamat/2.1.97
http://dx.doi.org/10.1017/S0022112070002409
http://dx.doi.org/10.1017/S0022112080002042
http://dx.doi.org/10.1016/0378-4371(82)90224-2
http://dx.doi.org/10.1137/0144033
http://dx.doi.org/10.1063/1.858090
http://dx.doi.org/10.1002/(SICI)1099-0534(1999)11:4<181::AID-CMR1>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1099-0534(1999)11:4<181::AID-CMR1>3.0.CO;2-T
http://dx.doi.org/10.1063/1.3491181
http://dx.doi.org/10.1063/1.3491181
http://dx.doi.org/10.1063/1.3555156
http://dx.doi.org/10.1098/rspa.1953.0139
http://dx.doi.org/10.1098/rspa.1956.0065
http://dx.doi.org/10.1017/S0022112059000672
http://dx.doi.org/10.1017/S0022112060000591
http://dx.doi.org/10.1002/aic.690130606
http://dx.doi.org/10.1007/BF01036523
http://dx.doi.org/10.1063/1.870452
http://dx.doi.org/10.1002/aic.690430817
http://dx.doi.org/10.1002/aic.690430817
http://dx.doi.org/10.1002/aic.690450902
http://dx.doi.org/10.1002/aic.690450902
http://dx.doi.org/10.1103/PhysRevLett.89.254501
http://dx.doi.org/10.1103/PhysRevLett.89.254501
http://dx.doi.org/10.1103/PhysRevLett.99.054502
http://dx.doi.org/10.1103/PhysRevLett.99.054502
http://dx.doi.org/10.1103/PhysRevLett.103.218001
http://dx.doi.org/10.1103/PhysRevLett.103.218001

