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Elements of networks interact in many ways, so modeling them with graphs requires multiple types of edges (or
network layers). Here we show that such multiplex networks are generically more vulnerable to global cascades
than simplex networks. We generalize the threshold cascade model [Watts, Proc. Natl. Acad. Sci. USA 99, 5766
(2002)] to multiplex networks, in which a node activates if a sufficiently large fraction of neighbors in any layer are
active. We show that both combining layers (i.e., realizing other interactions play a role) and splitting a network
into layers (i.e., recognizing distinct kinds of interactions) facilitate cascades. Notably, layers unsusceptible to
global cascades can cooperatively achieve them if coupled. On one hand, this suggests fundamental limitations
on predicting cascades without full knowledge of a system’s multiplexity; on the other hand, it offers feasible
means to control cascades by introducing or removing sparse layers in an existing network.
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When choosing which products to buy, ideas to adopt,
and movements to join, people are influenced by friends,
colleagues, family, and other types of contacts. Such influence
along multiple channels is frequently nonadditive: Just one
type of relationship often suffices to convince someone to
change behavior [1]. Banks also interact in many ways—
through balance sheet claims, derivatives contracts and re-
liance on credit lines—which collectively and nonlinearly
cause cascades [2]. At a broader scale, countries interact
not only through trade [3] but also through investment and
lending [4]. Models with just one type of edge [5] cannot
capture this nonadditive influence along multiple channels.
Instead, one needs graphs that explicitly contain multiple types
of edges (or network layers), called multiplex networks [1,6,7].
Such multiplex networks provide a complementary framework
to the growing body of works on interacting and interdependent
coupled network systems [8–12].

Here we study the impact of such network multiplexity
on cascade dynamics in the threshold model introduced by
Watts [13]. In this stylized model of, for example, contagious
behavioral adoption in a social network [14,15], people join
the growing movement if a sufficiently large fraction of their
friends have. Similarly, banks default if sufficiently many
debtor banks default [16]. Specifically, nodes exist in one of
two states, active and inactive. Each node independently draws
a (frozen) threshold r ∈ [0,1] from a probability distribution
Q(r). A node of degree k activates if its fraction m/k of active
neighbors exceeds its threshold r . Of particular interest are
so-called global cascades, in which a finite fraction of the
infinite network becomes activated from a vanishingly small
fraction of initially active seeds. A key lesson from previous
studies is that, for a given distribution of thresholds, network
connectivity constrains global cascades [13,17]. If it is too
sparse, a network lacks a giant component and the connectivity
needed for a global cascade; if it is too dense, a network
likely cannot surround nodes with sufficiently many active
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neighbors. Various generalizations have since been introduced
and studied [16–20].

In this Rapid Communication we generalize Watts’ thresh-
old model [13] to multiplex networks, in which nodes activate
if a sufficiently large fraction of neighbors in any layer
are active. To motivate this formulation, note that in many
situations what matters is the influence from one layer alone.
For example, a large fraction of colleagues recommending a
certain smartphone application may convince someone to use
it. Similarly, the default of sufficiently many loans may suffice
to depress a country’s trade, and vice versa. To be specific, in
a network with two layers (a duplex network), a node with k1

and k2 many neighbors in layers 1 and 2, respectively, with
m1 and m2 of those neighbors active, itself activates if m1/k1

or m2/k2 exceeds the node’s threshold r . We denoted this
multiplex model the 1 ⊗ 2 model. For comparison, we also
consider the simplex network that has the same topology but
that ignores multiplexity, denoted the 1 ⊕ 2 model (Fig. 1).

The central result of this Rapid Communication is the
greater ease of cascades in multiplex networks. We demon-
strate the effect of multiplexity on cascades in two scenarios.
First, given a singe-layer network [denoted Layer 1 in
Fig. 1(a)], one might realize that another kind of interaction
(Layer 2) plays a role. In this case, we combine a second layer
(Layer 2) with the existing one to form the duplex network
1 ⊗ 2 [Fig. 1(b)]. Alternatively, one might realize that a given
network in fact consists of multiple channels of nonadditive
interactions, so the simplex network [Fig. 1(c)] is split into
two layers to form the 1 ⊗ 2 network [Fig. 1(b)]. We find
that both combining layers and splitting into layers facilitate
global cascades. Layers that in isolation have too much or too
little connectivity to achieve global cascades can cooperatively
achieve them if they are multiplex-coupled. We demonstrate
this analytically and using simulations, and we conclude with
generalizations to networks with three or more layers.

We begin by extending the theory of Ref. [17] to a duplex
network with layers of locally treelike random graphs on
the same set of N nodes. Every node has two independent
degrees, k1 and k2, equal to its numbers of neighbors in layers
1 and 2, respectively. The mean fraction of active nodes in
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FIG. 1. (Color online) Construction of the multiplex 1 ⊗ 2 net-
work (b) by combining two layers (a), the solid green (top) and dashed
red (bottom) interactions. The simplex 1 ⊕ 2 network (c) ignores the
types of interaction (solid gray edges).

the stationary state, called the mean cascade size ρ, equals
the probability that a randomly chosen node is active. This
probability can be obtained by approximating the network as
a tree with the chosen node as its root and by considering the
cascade of activations toward the root [17]. Given the initial
seed fraction ρ0, ρ for a duplex 1 ⊗ 2 network is given by

ρ = ρ0 + (1 − ρ0)
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Here p
(i)
ki

is the degree distribution of layer i; Bk
m(q) ≡

( k
m )qm(1 − q)k−m is shorthand for the binomial distribution;

q(i)
n is the probability that a node n steps above the leaves of

the tree is activated by its children in the tree, conditioned
on its parent in layer i being inactive; Fk1,k2

m1,m2
is the response

function, the chance that a node with ki neighbors in layer i (mi

of which are active) becomes active; and the factor kip
(i)
ki

/zi in
Eq. (3) is the probability that a degree-ki node lies at the end of
a randomly chosen edge in layer i, where zi is the mean degree
in layer i. The response function for the multiplex 1 ⊗ 2 model
is

Fk1,k2
m1,m2

=
{

0 if max(m1/k1,m2/k2) � r ,

1 if max(m1/k1,m2/k2) > r .
(4)

In this work all nodes have the same threshold R [i.e., Q(r) =
δ(r − R)].
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FIG. 2. (Color online) Theoretical cascade boundary given by the
first-order cascade condition (5) (dashed green line) and numerically
simulated mean cascade size ρ for ρ0 = 10−3 (color coded) on a
duplex network of N = 105 with ER layers of equal mean degrees
z. Inset: ρ vs z for threshold R = 0.18 and different ρ0 = 5 × 10−4

(red �), 10−3 (blue ©), 5 × 10−3 (�), obtained from simulations
(symbols) and from Eq. (1) (lines).

To test the validity of the theory, we calculated ρ from (1)
for duplex Erdős-Rényi (ER) networks [21] of layers with
the same mean degree z. The calculated ρ as a function of z

with different seed sizes ρ0 are found to agree well with nu-
merical simulations (Fig. 2, inset). As in the single-layer case
[13,17], for given R, global cascades occur for an interval of z

between two transitions: a continuous transition at small z for
the emergence of global cascades (following the emergence of
the giant connected component), and a discontinuous transition
for the disappearance of global cascades, the location of which
increases with ρ0. The plot of ρ in (R,z)-parameter space
(Fig. 2, main plot) shows the cascade region, the parameters
for which global cascades occur.

The linear stability of the fixed point (q(1),q(2)) = (0,0) of
the recursion (2) as ρ0 → 0 gives a sufficient condition for
global cascades, leading to the so-called first-order cascade
condition [13,17,19,20]. In the multiplex 1 ⊗ 2 case, this
condition is that the maximum eigenvalue of the Jacobian
matrix J of the recursion (2) at the origin as ρ0 → 0
exceeds 1:

λmax(J) > 1. (5)

The 2 × 2 matrix J is given by, from (3) and (4),

J11 =

1/R�∑
k1=1

k1(k1 − 1)p(1)
k1

z1
, J12 =


1/R�∑
k2=0

k2p
(2)
k2

, (6)

and similarly for J21 and J22, where 
·� denotes the floor
function. As shown in Fig. 2 (main plot), this cascade
condition (5) closely approximates the boundary of the cascade
region from simulations, providing a useful approximation to
the actual cascade region. Deviations from simulations occur
because (5) ignores activations by multiple active neighbors.
(Including second-order activations improves the agreement
[17].) For the exact boundary, one must use Eqs. (1)–(3), as in
Fig. 2 (inset).

The following interpretation of the cascade condition
elucidates how multiplexity facilitates cascades. The matrix
J can be identified with the mean reproduction matrix of a
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two-type branching process [22], with Jij representing the
mean number of offspring of type-j branching from a node
born through a type-i branching. Here a type-i branching
corresponds to activation along the layer i by a single active
node. The cascade condition is the supercriticality condition
for this two-type branching process. This branching process
approximates the progression of actual cascades by ignoring
activations by multiple active neighbors. Cascades in a single-
layer network are approximated by a single-type branching
process, so the cascade condition becomes Jii(R,z) > 1
[13]. For the 1 ⊗ 2 network, the cascade condition reads
λmax = 1

2 [(J11 + J22) +
√

(J11 − J22)2 + 4J12J21] > 1. Since
this λmax � max(J11,J22), the 1 ⊗ 2 cascade region contains
the cascade regions of either of its layers in isolation, for any
degree distributions. Thus what enlarges the cascade regions
is the presence of an additional activation channel, repre-
sented by the off-diagonals Jij . The two types of activation
channels promote each other’s activations in a cooperative,
positive-feedback manner, collectively facilitating cascades in
multiplex networks.

As an explicit example, we consider duplex networks with
ER layers of equal mean degrees under the two scenarios of
multiplexity discussed above. First, a second ER layer with
the same mean degree z is combined with an existing ER
layer with mean degree z to form the 1 ⊗ 2 network (of total
mean degree 2z), akin to considering lending as well as trading
relationships among countries in the global economic system.
Second, an ER graph with mean degree 2z is randomly split
into two ER layers with equal mean degrees z to form the
1 ⊗ 2 network, akin to distinguishing social influence among
colleagues and among friends in a social network. Explicit
evaluation of the cascade condition (5) yields, in both cases,
an enlarged cascade region for the 1 ⊗ 2 network (Fig. 3).

A multiplex network with statistically distinct layers sup-
ports even more nontrivial cascades. Both combining two ER
layers with mean degrees z1 and z2 [Figs. 4(a), 4(c), and 4(d)]
and splitting an ER network into two layers with mean degrees
z1 and z2 [Figs. 4(b), 4(c), and 4(e)] enlarge the cascade region.
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FIG. 3. (Color online) Both combining layers (a) and splitting
into layers (b) facilitate cascades. (a) Cascade regions from cascade
condition (5) for single-layer (yellow, brighter) and duplex (red,
darker) network with ER layers of equal mean degree z. (b) Same
plots for a simplex ER network of mean degree 2z (yellow, brighter)
and corresponding duplex network (red, darker). Overlapping regions
appear orange (medium brightness).
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FIG. 4. (Color online) Cascade regions with R = 0.18 for
(a) the union of two independent ER layers with mean degrees z1

and z2 (denoted 1 ∪ 2), (b) the simplex (1 ⊕ 2) ER network with
mean degree z1 + z2, and (c) the duplex (1 ⊗ 2) network with ER
layers of mean degrees z1 and z2. The dotted green lines are the
cascade boundary obtained from Eq. (5); numerically simulated ρ

(ρ0 = 10−3) is color coded. Also shown are additional cascade regions
in the multiplex cases for (d) combining and (e) splitting.

The additional cascade regions in the multiplex case [Figs. 4(d)
and 4(e)] highlight the cooperative effect of multiplexity. For
these parameters, each layer is too sparse or too dense to
achieve global cascades, but they cooperatively achieve them
when multiplex-coupled. Of particular interest is when one of
z1,z2 is too small (<1), the other too large (�6) to support
global cascades in isolation. This presents a way to control
cascades in a system by introducing or removing sparse layers
below the percolation threshold, which may be more feasible
to implement than perturbing the existing, dense network.

We verified a similar enlargement of cascade regions for
networks with layers of broad degree distributions by using
the static model of scale-free graphs, which allows a variable
mean degree [23]. Furthermore, we checked that short loops
introduced by multiplexity can be neglected [19] for the large,
sparse networks considered here.

Finally we generalize to multiplex networks with � > 2
layers. Extending Eqs. (1)–(6) to � layers is straightforward.
Combining more layers further facilitates cascades for larger
z and R (Fig. 5). Notably, introducing a fourth layer permits
global cascades even for thresholds R � 1/2, which Morris

045102-3



RAPID COMMUNICATIONS

CHARLES D. BRUMMITT, KYU-MIN LEE, AND K.-I. GOH PHYSICAL REVIEW E 85, 045102(R) (2012)

 0  0.2  0.4  0.6  0.8  1

R

 0

 5

 10

 15

 20

z

1 layer

2 layers

3 layers

4 layers

10 layers

FIG. 5. Cascade condition of �-plex networks of ER layers each
with mean degree z, for � = 1, 2, 3, 4, and 10. Note that the cascade
region extends to R � 1/2 for � � 4. We show dashed white, lines
on boundaries of regions for visual clarity.

[24] proved cannot occur in simplex networks. This can
be understood from the cascade condition as follows. For
R � 1/2, only activations of degree-1 nodes contribute to
the cascade condition (5) and (6). For multiplex networks
with � ER layers with equal mean degree z, the first-order
cascade condition for R � 1/2 thus becomes (� − 1)ze−z > 1,
which can be satisfied by a nonempty interval of z for � � 4.
This suggests that even people difficult to persuade (R � 1/2)

to buy a new device, for example, may all buy one if they
participate a little (z ≈ 1) in many social spheres (� � 4).

To conclude, the interplay among multiple kinds of
interactions—the multiplexity—can generically increase a
network’s vulnerability to global cascades in a threshold
model. Interestingly, layers unsusceptible to cascades can
cooperatively become susceptible when coupled. The im-
pact of multiplexity on network dynamics is expected to
be widespread [9–12,25]. In other binary-state, monotonic,
threshold cascade models such as bootstrap percolation [26],
a similar analysis can be readily applied, while its impact on
more complicated dynamics [27] remains largely unexplored.
Our results suggest a double-faceted picture for cascade
prediction and control. On one hand, one faces fundamental
limitations on predicting cascades without full knowledge of
a system’s multiplexity; on the other hand, multiplexity offers
a feasible tactic to enable or hinder cascades by introducing or
removing sparse layers, respectively. For instance, advertising
may become more effective with every new medium, while
banks may grow more vulnerable with every new lending
mechanism.
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