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Exact density functional for hard-rod mixtures derived from Markov chain approach
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Using a Markov chain approach we rederive the exact density functional for hard-rod mixtures on a one-
dimensional lattice, which forms the basis of the lattice fundamental measure theory. The transition probability
in the Markov chain depends on a set of occupation numbers, which reflects the property of a zero-dimensional
cavity to hold at most one particle. For given mean occupation numbers (density profile), an exact expression
for the equilibrium distribution of microstates is obtained, which means an expression for the unique external
potential that generates the density profile in equilibrium. By considering the rod ends to fall onto lattice sites,
the mixture is always additive.
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The extension of density functional theory from continuum
to lattice fluids [1] has proven to be useful for treating problems
like ordering transitions [1–3], properties of interfaces sepa-
rating different phases [4–6], phase separation in mixtures [7],
or polymer adsorption at solid-liquid interfaces [8]. Time-
dependent density functional theory [9] furthermore allows
one to describe the kinetics of lattice fluids [10], as emerging
in phase ordering phenomena [11], relaxation processes [12],
and particle transport in driven lattice gases [13–15].

In 2002 Lafuente and Cuesta extended Rosenfeld’s funda-
mental measure theory to lattice models based on a derivation
of an exact density functional for hard-rod mixtures in one
dimension [16,17]. This derivation was carried out following
a procedure developed by Vanderlick et al. [18] for continuum
fluids. Since the excess free energy part of the functional could
be expressed in terms of differences between parts that agree
in their functional form with the excess free energy functional
of a zero-dimensional cavity, approximate functionals in
higher dimensions were obtained by dimensional expansion of
the corresponding difference operator. By construction these
fundamental measure functionals have the property to become
exact under dimensional reduction and their impressive power
was first shown by determining phase diagrams of hard squares
[17,19] and hard cube mixtures [16,17,20] with good quality.
The fundamental measure functionals moreover allow one to
apply the method of dimensional crossover and the merit
of this was demonstrated by deriving functionals for lattice
gases with nearest neighbor exclusion for different lattice
types (square, triangular, and face- and body-centered cubic)
from the functional for cubes in (d + 1) dimensions [21]. The
structure of the corresponding results led to a suggestion how
to construct fundamental measure functionals for hard-core
lattice gases for any type of lattice, shape of the particles, and
arbitrary dimension [22].

In this Brief Report we rederive the exact density functional
for hard-rod mixtures in one dimension, which means the
starting point of the fundamental measure theory for hard-
core lattice gases, by applying the Markov chain approach
developed by Buschle et al. [23]. This approach is conceptually
different from the procedure of Vanderlick et al. [18] and we
believe that it is useful and important for the following reasons:
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(i) The derivation of the functional becomes surprisingly
simple. Making use only of the constraints of mutual rod
exclusions, the relevant transition probability in the Markov
chain is determined almost without any calculation.

(ii) The transition probability is (conditionally) dependent
on a spatial region, where at most one particle can be placed,
i.e., that of a zero-dimensional cavity. In this respect it reflects
a property which turned out to be decisive for the generalized
construction of fundamental measure functionals by Lafuente
and Cuesta [22].

(iii) The simplicity of the derivation suggests that it can
be extended to hard-rod mixtures with additional (thermal)
interactions.

(iv) The derivation yields also an explicit expression for
the probability distribution of microstates for a given density
profile. This means that in the present case an explicit
expression for the “Mermin potential” is obtained, i.e., the
unique external potential that would generate the given density
profile in thermal equilibrium.

In addition to these points we show that it is not necessary
to consider nonadditive mixtures when mixed parities of rod
lengths are present (i.e., rods with both even and odd lengths
in units of the lattice spacing).

The mixture is considered to consist of q types of hard rods
with length lα , α = 1, . . . ,q, in the presence of an external
potential. It is convenient (although not necessary) to order the
lengths according to l1 � l2 � · · · � lq , where different types
of rods could have the same lengths due to different coupling
to the external potential. The rods are located on a one-
dimensional lattice with L sites and the lα are integer multiples
of the lattice spacing that sets our length unit, i.e., lα ∈ N. The
lattice is defined in such a way that the ends of the rods coincide
with lattice sites and we introduce occupation numbers nα

j

(j = 1, . . . ,L; α = 1, . . . ,q) to specify the microstate of the
mixture. We note that this assignment is different from that
in Refs. [16,17], where it was made with respect to the rod
centers. If the left end of a rod of type α is at site j , then nα

j = 1,
else nα

j = 0 (here and in the following, Greek superscripts refer
to the type and must not be mixed up with exponents). The
mutual exclusion of hard rods implies the constraint nα

k n
β

j = 0
for j = k, . . . ,k + lα − 1 (and k = j, . . . ,j + lβ − 1) and all
α,β = 1, . . . ,q [24].

To set up the Markov chain approach following Ref. [23]
it is useful to introduce the multicomponent state variables
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n̂j = (n1
j , . . . ,n

q

j ) that can assume (q + 1) states ê0, . . . ,êq ,
where ê0 refers to an empty site, i.e., ê0 = (0, . . . ,0), while êα ,
α = 1, . . . ,q, refer to a site occupied by rods of type α, i.e.,
êα = (0, . . . ,1, . . . ,0) with the 1 at the (α + 1)th entry. The
probability χ (n̂1, . . . ,n̂L) of microstates can be decomposed
as

χ (n̂1, . . . ,n̂L) =
L∏

k=1

ψ(n̂k|n̂k−1, . . . ,n̂1), (1)

where ψ(.| . . .) denote the corresponding conditional prob-
abilities. To keep the notation simple, we have labeled the
starting of the chain, i.e., ψ(n̂1)ψ(n̂2|n̂1)ψ(n̂3|n̂2,n̂1) · · ·, by
the same symbol “ψ” (meaning in particular that ψ(n̂1) is not
a conditional probability). By using the Boltzmann expression
for the probability of microstates in the grand-canonical
equilibrium ensemble, i.e., χ ∝ exp[−β

∑
i,α(uα

i − μα)nα
i ],

where β = 1/kBT is the inverse thermal energy, uα
i the

external, and μα
i the chemical potential, it can be proven [25]

that the conditional probabilities satisfy the Markov property

ψ(n̂k|n̂k−1, . . . ,n̂1) = ψ
(
n̂k|

{
nα

j

}
k−1

)
, (2)

where {nα
j }k−1 = {nα

j |1 � α � q,k − lα + 1 � j � k − 1}
denotes the set of occupation variables, which have an
influence on the occupation of site k (see Fig. 1).

In the set {nα
j }k = {nα

j |1 � α � q,k − lα + 1 � j � k},
i.e., all occupation variables involved in Fig. 1, there can be
at most one occupation variable nα

j = 1 due to the hard-rod
constraints, which reflects the corresponding property of a
zero-dimensional cavity. In fact this set corresponds exactly
to the zero-dimensional cavity for a mixture introduced in
Ref. [17] as a collection of sets for each rod type. The property
to have at most one occupation variable nα

j = 1 in {nα
j }k can be

utilized to determine the conditional probabilities by simple
probabilistic considerations. First let us write for α = 0, . . . ,q

ψ
(
n̂k = êα

∣∣{nβ

j

}
k−1

) = Prob
(
n̂k = êα,

{
n

β

j

}
k−1

)
Prob

({
n

β

j

}
k−1

) , (3)

FIG. 1. Illustration of the set of occupation numbers affecting
the occupation of site k. Any placement of the left end of a rod
of type α at the sites j with k − lα + 1 � j � k means that site k

is covered by a part of this rod. This implies (i) that if a left rod
end is at site k, all occupation numbers in the set {nα

j }k−1 = {nα
j |1 �

α � q,k − lα + 1 � j � k − 1} must be zero, and (ii) that in the set
{nα

j }k = {nα
j |1 � α � q,k − lα + 1 � j � k} there can be at most

one occupation number with value 1.

where Prob(·) denote joint probabilities. If α �= 0, then all
n

β

j in the set {nβ

j }k−1 must be zero. This implies Prob(n̂k =
êα,{nβ

j }k−1) = Prob(n̂k = êα,{nβ

j = 0}k−1) = pα
k , where pα

k =
〈nα〉 is the mean occupation of site k [〈· · ·〉 denotes an average
over the microstate distribution χ (n̂1, . . . ,n̂L)]. Since with
the same reasoning Prob({nβ

j = 1,all other n
γ

l = 0}k−1) = p
β

j ,
we further have

Prob
({

nα
j = 0

}
k−1

) +
q∑

β=1

k−1∑
j=k−lβ+1

p
β

j = 1 (4)

due to normalization. Accordingly, we obtain for α �= 0

ψ
(
n̂k = êα

∣∣{nβ

j

}
k−1

) = pα
k

1 − S
(0)
k

, (5)

where we used one of the weighted densities (weighted mean
occupations) [26]

S
(m)
k =

q∑
α=1

lα−1∑
j=1−m

pα
k−j , m = 0,1, (6)

appearing in the lattice fundamental measure theory [16].
If n̂k = ê0 there are two possibilities: either one element in
{nβ

j }k−1 is one, or all elements are zero. In the first case, n̂k must
be equal to ê0, implying that the corresponding conditional
probability is 1. In the second case we need Prob(n̂k = ê0,

{nβ

j = 0}k−1) = Prob({nβ

j = 0}k) in Eq. (3), which by utilizing
normalization as in Eq. (4) (now with inclusion of site
k) is given by Prob({nβ

j = 0}k) = 1 − ∑q

β=1

∑k
j=k−lβ+1 p

β

j =
1 − S

(1)
k . In summary,

ψ
(
n̂k = ê0

∣∣{nβ

j

}
k−1

)

=
⎧⎨
⎩

1, one n
β

j = 1 in
{
n

β

j

}
k−1,

1−S
(1)
k

1−S
(0)
k

, all n
β

j = 0 in
{
n

β

j

}
k−1.

(7)

Combining Eqs. (5) and (7), we can write

ψ
(
n̂k

∣∣{nβ

j

}
k−1

) =
(

1 − S
(1)
k

1 − S
(0)
k

)1−∑q

β=1

∑k−1
j=0 n

β

j

×
q∏

α=1

(
pα

k

1 − S
(0)
k

)nα
k

, (8)

where the distinction between the possible configurations in
the set {nβ

j }k is taken into account by the exponents.
Inserting Eq. (8) into Eqs. (2) and (1), the probability distri-

bution of microstates is given by the product of ψ(n̂k|{nβ

j }k−1)
from Eq. (8) over all lattice sites; i.e., an explicit expression for
χ (n) as a function of the set n = {nα

i |1 � α � q,1 � i � L}
of occupation numbers is obtained [we define χ (n) = 0 for all
microstates n violating the hard-rod constraints]. This means
that, for a given density profile p = {pα

k |1 � α � q,1 � k �
L}, the distribution of microstates is uniquely determined if
we require it to satisfy the Markov property (2), i.e., χ (n) =
χp(n). One could get the impression that this is more general
than the uniqueness implied by the Mermin theorem, which
states that the prescription of p fixes the external potential
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uα
k = uα

k [p] in the sense that the Boltzmann distribution yields
p in equilibrium in the presence of uα

k [p]. However, since
the Boltzmann distributions satisfy the Markov property (2),
and χp(n) is unique, there is in fact no more generality; i.e.,
the microstate distribution for given p satisfying the Markov
property (2) and the Boltzmann distribution generating p in
equilibrium must be the same [27]. We can thus identify
the “Mermin potential” Up(n) = ∑

k,α uα
k [p]nα

k by setting
βUp(n) ∝ − ln χp(n), which, up to irrelevant constant con-
tributions, yields (after some rearrangement of summations)

uα
k [p] = ln pα

k − ln
(
1 − S

(0)
k

) +
k+lα−1∑

j=k

ln

(
1 − S

(0)
j

1 − S
(1)
j

)
. (9)

Based on the Gibbs-Bogoliubov inequality the density
functional in an external potential U (n) = ∑

k,α uα
k nα

k is
defined as

�[p] =
∑

n

χp(n)

[
kBT ln χp(n) + U (n) −

q∑
α=1

μαNα

]

= F [p] +
L∑

k=1

q∑
α=1

(
uα

k − μα

)
pα

k , (10)

where F [p] = kBT
∑

n χp(n) ln χp is the free energy
functional. Inserting χp(n) one obtains

βF [p] =
L∑

k=1

{(
1 − S

(1)
k

)
ln

(
1 − S

(1)
k

)

− (
1 − S

(0)
k

)
ln

(
1 − S

(0)
k

) +
q∑

α=1

pα
k ln pα

k

}
. (11)

Minimizing �[p] with respect to the pα
j yields the density

profile in equilibrium.
Following Lafuente and Cuesta [17], one can define an

“ideal part” Fid[p] by

βFid[p] =
L∑

k=1

q∑
α=1

pα
k

(
ln pα

k − 1
)
. (12)

This differs from the expression
∑

k{pα
k ln pα

k − (1−∑
α pα

k )
ln(1−∑

α pα
k )} for a noninteracting multicomponent

Fermionic lattice gas, but has the advantage to lead to a
fundamental measure structure of the excess free energy part
Fexc[p] = F [p] − Fid[p]. When using Eqs. (11) and (12), and∑

α pα
k = S

(1)
k − S

(0)
k , this becomes

βFexc[p] =
L∑

k=1

{[
S

(1)
k + (

1 − S
(1)
k

)
ln

(
1 − S

(1)
k

)]
− [

S
(0)
k + (

1 − S
(0)
k

)
ln

(
1 − S

(0)
k

)]}
. (13)

The terms in the square brackets have the same functional
form as the excess free energy fexc(η) = η + (1 − η) ln(1 − η)
of a zero-dimensional cavity with mean occupation η [28].
Approximate fundamental measure functionals in higher
dimensions can be constructed by considering the two terms
in the square brackets as resulting from a one-dimensional
difference operator and by generalizing this operator together
with the weighted densities to higher dimensions (for details,
see Refs. [16,17]).

The excess free energy in Eq. (13) is equal to that found by
Lafuente and Cuesta for an additive mixture. To recover their
expressions, occupation numbers ñα

k = 0,1 need to be assigned
to the rod centers, which amounts to a simple translation of
the site indices, nα

k → ñα
k = nα

k+(lα−ε)/2, where ε = 0 if all lα
are even and ε = 1 if all lα are odd.

Nonadditive mixtures appear when considering a setup
where the rod centers fall onto lattice sites and both even
and odd lα are present, since in this case neighboring rods
with even and odd lα have a minimum separation of half a
lattice unit between their ends. For such nonadditive mixtures
one can construct the corresponding functional from that for
additive mixtures [17]. When the rod ends fall onto lattice
sites, the mixtures are always additive irrespective of having
mixed parities of rod lengths.

We thank J. Buschle and W. Dieterich for very valuable
discussions.
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