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Alternative criterion for two-dimensional wrapping percolation
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Based on the difference between a spanning cluster and a wrapping cluster, an alternative criterion for testing
wrapping percolation is provided for two-dimensional lattices. By following the Newman-Ziff method, the finite
size scalings of estimates for percolation thresholds are given. The results are consistent with those from Machta’s
method.
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I. INTRODUCTION

In a square lattice each site is independently either occupied
with probability p or empty with probability 1 − p. A cluster
is a group of occupied (nearest) neighbor sites [1]. With more
and more sites being occupied, clusters grow larger and larger.
For the square lattice with free boundaries, once a cluster
grows large enough to touch the two opposite boundaries, the
spanning percolation occurrs. This cluster is called a spanning
cluster. While for the lattice with periodic boundary conditions
it is somewhat more difficult to detect a wrapping cluster,
which wraps around the lattice.

Since the very early work on three-dimensional polymers
[2], percolation has found a variety of uses in many fields.
Typically the study of networks [3–6] has attracted much
interest. Recent studies of percolation in physics mainly
involve various functional materials or components, such
as optical lattices [7], magnetic materials or ordinary ma-
terials [8–10], and nanocomposites [11–13]. Very recently,
the study on explosive percolation generated “explosive”
interest [14–17]. Many other interesting works on percolation
theory and its wide applications are collected in some
books [1,18,19].

In all these studies of percolation, one question is how to tell
the onset of percolation. The percolation threshold (or critical
probability) pc is the value of p for which a spanning cluster
(in the case of free boundaries) or a wrapping cluster (periodic
boundary conditions) appears for the first time [20,21]. For a
periodic lattice, once a wrapping cluster appears, say along
the x direction, if we cut the lattice along the y direction to let
the x boundaries be open there exists (at least) one spanning
cluster. In turn, when a spanning cluster first appears on a
free boundaries lattice, if we connect the two opposite open
boundaries to let it be a periodic lattice, a wrapping cluster
does not necessarily appear. Therefore, wrapping percolation
always happens later than spanning percolation for the lattices
with the same linear dimension L but with different boundary
conditions. The difference between a wrapping cluster and a
spanning cluster gives us a clue to build an alternative criterion
for wrapping percolation. Once a spanning cluster occurs, we
amalgamate those clusters (excluding the spanning cluster)
touching the boundaries, build connected relations between
the spanning cluster and the amalgamated clusters. If, finally,
two ends of the spanning cluster connect to each other via
an amalgamated cluster then a wrapping cluster appears. The
data processing after obtaining a wrapping cluster follows the
Newman-Ziff algorithm [20] exactly.

The prevalent criterion for wrapping percolation introduced
by Machta et al. [22] has been described in detail for
bond percolation in the Newman-Ziff algorithm. It can be
easily extended to site percolation once the displacements of
neighboring sites to the same root site differ by an amount
other than zero or one lattice spacing, the cluster wrapping
has occurred. Taking site percolation as an example, the core
idea of the Newman-Ziff algorithm is that, starting with an
empty lattice, a percolation state can be realized simply by
adding sites one by one to the lattice; a sample state with
n + 1 occupied sites is achieved by adding one extra randomly
chosen site to a sample state with n sites. An important
technique in the Newman-Ziff algorithm is the application of
binomial distribution. Taking the number of occupied sites n

as “energy,” if a set of {Qn} in the microcanonical ensemble is
measured then the observable Q(p) in the canonical ensemble
is given by

Q(p) =
N∑

n=0

(
N

n

)
pn(1 − p)N−nQn. (1)

Such observables Q can be the probability of cluster wrapping,
mean cluster size, correlation length, and so on. The main
advantage of this technique is that the continuous observable
Q(p) for all p can be determined from discrete N + 1 values
of Qn.

There are four types of probabilities RL(p) of cluster
wrapping on the periodic square lattice of L × L sites. R

(e)
L is

the probability of cluster wrapping along either the horizontal
or vertical directions, or both; R

(1)
L around one specified axis

but not the other axis; R
(b)
L around both the horizontal and

vertical directions; R
(h)
L and R

(v)
L around the horizontal and

vertical directions, respectively. For the square lattice R
(h)
L =

R
(v)
L . The four wrapping probabilities satisfy the equations

R
(b)
L = R

(e)
L − 2R

(1)
L , (2)

R
(h)
L = R

(e)
L − R

(1)
L , (3)

from which the values of R
(b)
L and R

(h)
L can be obtained by

measuring only the values of R
(e)
L and R

(1)
L , or vice versa. Given

the exact value of R∞(pc), the solution p of the equation

RL(p) = R∞(pc) (4)
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gives a very good estimator for pc. The solution p converges
to pc according to

p − pc ∼ L−11/4. (5)

In this way the corresponding values of pc from R
(e)
∞ (pc),

R
(b)
∞ (pc), and R

(h)
∞ (pc) can be calculated, respectively. Since

the wrapping probability R
(1)
L (p) is nonmonotonic, the position

of its maximum can be used to estimate pc, instead of the value
of R

(1)
∞ (pc).

The CPU time TL is related to the statistical errors σpc

according to σpc
∼ T

−1/2
L L1/4. For finite L and a specific

algorithm, TL depends only on n, the number of runs of the
algorithm. To keep the same statistical error on systems of a
different size, proper values of n are taken to fulfill TL ∼ √

L.
The results explained above are from Ref. [20] and will be

followed in this Brief Report.

II. THE ALGORITHM

Since our criterion for wrapping percolation originates from
the difference in wrapping cluster and spanning cluster, the
central task of the method is how to handle those clusters
touching the boundaries. Each run of the algorithm starts from
a lattice with periodic boundary conditions. In the following,
we take the site wrapping percolation along the x direction
as an example. The whole algorithm can be separated into
two parts, the spanning process and the wrapping process.
In the spanning process, we check the states of a newly
occupied site and its (nearest) neighbor sites previously
occupied. If one site and one of its neighbors happen to
be on the left boundary and right boundary, respectively,
we call them as a pair of occupied “quasineighbor” sites.
Along the x direction, if we shift the periodic boundary
conditions to the open boundary conditions, two sites of any
pair of quasineighbor sites do not neighbor each other. In
Fig. 1(a), there are six pairs of quasineighbor sites on the
square lattice 6 × 6: (0,5), (6,11), (12,17), (18,23), (24,29),
and (30,35). Two occupied quasineighbor sites belong to their
respective clusters. Therefore, pairs of occupied quasineighbor
sites correspond to pairs of their respective clusters. In the
spanning process no implementations are required to these
pairs of clusters or these occupied quasineighbor sites. For
non-quasineighbor sites, if the two sites point to the same
root site (belong to the same cluster), we need do nothing;

FIG. 1. Examples of wrapping clusters with occupied sites
shaded. Pairs of clusters (excluding the spanning cluster) are merged
in the first step of scanning the occupied quasineighbor sites [e.g.,
(18, 23) in (b) and (30, 35) in (c)]. In (a), the occupied quasineighbor
sites (12, 17) belong to the same cluster. In (b) or (c) two ends of the
spanning cluster are connected via a merged cluster.

otherwise, if the two sites belong to different clusters, we
must merge them into a single cluster. We do exactly what we
usually do [23] before the appearance of a spanning cluster1

on the square lattice. In other words, the periodic boundary
conditions along the x direction are suppressed temporarily in
the spanning process.

Once a spanning cluster occurs, we turn to the wrapping
process immediately, which aims to find a wrapping cluster.
Obviously, this process is the core of the present algorithm.
A spanning cluster has at least two ends (left end and right
end), which touch the left boundary and the right boundary,
respectively. When the periodic boundary conditions along the
x direction are recovered, across the boundaries, the two ends
of the spanning cluster could be connected, which implies the
appearance of a wrapping cluster. This process can be finished
in three steps.

In the first step, we check the pairs of clusters touching the
boundaries by scanning the occupied quasineighbor sites row
by row. If two clusters of a pair of occupied quasineighbor
sites, respectively, belong to different root sites and neither
of them is the spanning cluster, we merge them into a single
cluster. The root site of any of them can be chosen as the root
site of the merged cluster. After the implementations on all
the nonspanning clusters touch the boundaries, what we do
next is to build relations between the spanning cluster and the
(merged) nonspanning clusters touching the boundaries. We
may meet three interesting cases when we scan pairs of clusters
touching the boundaries once more. The simplest case is that
the two clusters are the same spanning cluster [see Fig. 1(a)
as an example]. We simply add a pointer from the spanning
cluster to itself. The second case is that a nonspanning cluster
does not possess a pointer pointing to the spanning cluster,
we could add a pointer from the former to the latter, and
label the boundary touched by the nonspanning cluster. For
the third case, a nonspanning cluster already has a pointer
pointing to the spanning cluster and previously touches the
opposite boundary, we add a pointer from the spanning cluster
to the nonspanning cluster. Two examples for the third case are
shown in Figs. 1(b) and 1(c), respectively. For other cases we
need do nothing further. In the final step, a simple statement is
used to check whether the spanning cluster points to itself or
not by following the pointers added in the second step.

Thus the wrapping process of our algorithm can be
summarized as follows.

(1) Amalgamate pairs of nonspanning touching-boundary
clusters.

(2) Add pointers from the amalgamated nonspanning
touching-boundary clusters to the spanning cluster, or in turn,
add a pointer from the spanning cluster to a nonspanning
touching-boundary cluster.

(3) By following a succession of pointers added above,
check if we can get from the spanning cluster to itself.

1For the lattice with open boundary conditions along the x direction,
but with periodic boundary conditions along the y direction, it
is possible there are two or more spanning clusters along the x

direction. In the text, the spanning cluster always indicates that one
is right visited; all other touching-boundary clusters are grouped into
nonspanning clusters whether they are spanning or not.
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TABLE I. The values of pc for infinite lattice. Here, P and M represent the present method and Machta’s method, respectively; p(1)
c , p(b)

c ,
p(h)

c , and p(e)
c correspond, respectively, to the wrapping probabilities R

(1)
L , R

(b)
L , R

(h)
L , and R

(e)
L .

p(1)
c p(b)

c p(h)
c p(e)

c

P 0.592 752 8(16) 0.592 748 0(31) 0.592 747 5(23) 0.592 747 1(19)
M 0.592 749 3(23) 0.592 748 2(14) 0.592 748 7(18) 0.592 749 1(22)

If no wrapping cluster appears, we occupy one additional
site on the previous lattice and repeat the spanning process and
the wrapping process. Since we aim to check the reliability of
our algorithm via the calculation of the percolation threshold
only, we halt the algorithm once the percolation along both the
x and y directions are detected. The program for our algorithm
written in C is available online [24].

(a)

(b)

FIG. 2. The values of pc on square lattices of L × L obtained
from the probabilities of cluster wrapping along one axis but not
the other (solid squares), both axes (solid circles), one axis (solid
upward-pointing triangles), and either axis (solid downward-pointing
triangles). (a) Our method. (b) Machta’s method.

III. RESULTS

All computations are implemented on a desktop PC with a
CPU clock speed 2.6 GHz and memory 1.96 GB. We fix n runs
of the algorithm to 2 × 106 for the lattice with L = 256. The
computation takes the CPU time of about 37 hours. The other
values of n for L equal to 128, 64, and 32 are, respectively,
chosen to ensure TL ∼ √

L. The total n is about 2.7 × 108.
The finite size scaling of pc for square lattice L × L is shown
in Fig. 2(a), and the values of pc obtained from four different
probabilities are listed in Table I.

To check the reliability of our method, a similar computa-
tion within the framework of Machta’s method is implemented.
For L = 256, n is also taken as 2 × 106, CPU time is about
4.5 hours, which is only one-eighth of that in our method.
In other words, the computation time in units of hours is
TM = 0.28

√
L for Machta’s method, while for our method

it is TP = 2.3
√

L. The other values of n corresponding
to L are chosen by reference to this short CPU time,
and the total n in Machta’s method is about 8 × 107. In
comparison with the simulation of more than 7 × 109 separate
samples in the work of Newman and Ziff, the statistical
errors in this work are larger. The finite size scaling and
the results of pc are, respectively, shown in Fig. 2(b) and
Table I.

Besides the difference in computation time, there is little
difference in the results. Obviously, from Table I, one can see
that the data of p(1)

c and p(e)
c are better (smaller errors) than

the data of p(b)
c and p(h)

c in our method, while in Machta’s
method, on the contrary, the data of p(b)

c and p(h)
c are better.

This difference possibly arises from the larger values of p(e)
c

(and therefore larger values of p(b)
c and p(h)

c ) at small L in our
method, which can be seen in Fig. 2. With the exception of
this difference, our results coincide with that from Machta’s
method quite well.

IV. CONCLUSION

A wrapping cluster appears if two ends (touching two
opposite boundaries, respectively) of a spanning cluster are
connected to each other across the boundaries. The results
of percolation threshold in our method are as good as those
from Machta’s method, and are consistent with the published
estimates of the square site percolation threshold [25–27].
The better result of p(1)

c obtained with our method implies
that it might be appropriate to choose the present method
for the further study of the spatially correlated percolation
model [28], where the percolation thresholds have not yet
been well determined.

The lengthy computation time in our method mainly comes
from two aspects of our specific algorithm. In the spanning
process, the clusters are amalgamated by suppressing the
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periodic boundary conditions along the x and y directions,
respectively; after a spanning cluster appears (either along the
x or y direction), a wrapping process for testing a wrapping
cluster is implemented. While in Machta’s method, a wrapping
cluster could be tested in the process of merging clusters on a
square lattice with full periodic boundary conditions.

Although the values of percolation threshold could be
obtained from spanning percolation on a lattice with open
boundary conditions or from wrapping percolation on a lattice
with periodic boundary conditions, different boundary effects
are definitely covered in the results. With our method it is
possible to give a direct computation of different boundary
effects.

The present algorithm differs from the Newman-Ziff algo-
rithm only in the criterion for wrapping percolation. Without
question, the former can be extended to the calculation of pc

for three-dimensional percolation on a cubic lattice in the same
way as that of the latter.
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