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Zero-point energies, the uncertainty principle, and positivity of the quantum
Brownian density operator
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High-temperature and white-noise approximations are frequently invoked when deriving the quantum
Brownian equation for an oscillator. Even if this white-noise approximation is avoided, it is shown that if
the zero-point energies of the environment are neglected, as they often are, the resultant equation will violate
not only the basic tenet of quantum mechanics that requires the density operator to be positive, but also the
uncertainty principle. When the zero-point energies are included, asymptotic results describing the evolution of
the oscillator are obtained that preserve positivity and, therefore, the uncertainty principle.

DOI: 10.1103/PhysRevE.85.042103 PACS number(s): 05.40.Jc, 05.30.−d, 03.65.Yz

Quantum Brownian motion arises when a system of interest
interacts with its environment and is therefore ubiquitous in
nature. One theoretical approach for studying this phenomenon
involves the scattering of particles by an otherwise free, heavier
particle [1,2]. Alternatively, in the approach adopted below, a
bound oscillator coupled to a heat bath is analyzed, which, by
setting the appropriate frequency to zero, can include a free
particle coupled to the bath as a limiting case. Efforts to derive
from first principles a quantum Brownian equation (QBE) for
such an oscillator have been extensive ([3–5] and references
therein). A major obstacle that has hindered attempts in this
direction is the basic tenet of quantum mechanics that requires
any density operator obeying the QBE to remain positive
[6]. After a temperature expansion, a positivity-preserving
equation was obtained in Ref. [7] by neglecting terms that
are no smaller than some appearing in the final equation.
However, this equation is not valid at the small times where
positivity failure originates. The results herein establish that
rather than a low-order temperature expansion, it is inclusion
of the zero-point energies of the environment that is pivotal.

From what is perhaps the most popular model for studying
quantum Brownian motion, a harmonic oscillator coupled to
a heat bath with a factorized initial condition, an exact QBE
has been derived in the literature [3] describing the evolution
of the oscillator’s density operator ρ:
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Sparing the reader the rather unwieldy expressions for the
coefficientsfpq , fpp, dpp, and dpq , it will suffice to mention
that these coefficients depend not only on time, but some
also on temperature via frequency integrals that involve the
bath energy equilibrium values, h̄ω(n̄ + 1/2), where n̄ are
the average occupation numbers (eh̄ω/kT − 1)−1. It is common
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practice to invoke the high-temperature approximation

h̄ω(n̄ + 1/2) → kT (2)

followed by a white-noise approximation to render the forego-
ing coefficients time independent, resulting in an autonomous
equation that is analogous to the classical Brownian equation
[3–5]:
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where the constant � is a measure of the coupling strength
between the harmonic oscillator and the bath, and the constant
�1 is the shifted harmonic oscillator frequency. Although
this last equation is simpler than Eq. (1), the simplifying
approximations leading thereto come at a price. Because the
last two terms of Eq. (3) are not expressible in Lindblad form
(i.e., cannot be rewritten as a sum −∑

k {Ak,ρ,Ak}, where
{A,ρ,B} ≡ BA†ρ + ρBA† − 2A†ρB) [8], Eq. (3) does not
generally preserve positivity of the density operator [3,9–11].
On the other hand, it is interesting to note that although the
last three terms of Eq. (1) are also not expressible in Lindblad
form, Eq. (1), being exact, does preserve positivity, managing
to achieve this feat because its coefficients depend on time.

This suggests that a simpler, positivity-preserving equation
might be obtained from Eq. (1) by making the usual high-
temperature approximation (2), but abandoning the white-
noise approximation that leads to the autonomous Eq. (3).
Unfortunately, herein it is shown that the QBE so obtained
does not preserve positivity. To repeat, even if the white-noise
approximation is avoided to allow the QBE coefficients to
depend on time, the popular high-temperature approximation
(2) causes the resultant density operator to be generally
nonpositive. It is further shown in the appropriate regime that
if instead of the high-temperature approximation (2) the more
uniform approximation

h̄ω(n̄ + 1/2) → kT + h̄ω/2 (4)

is adopted, the resultant nonautonomous equation does pre-
serve positivity. Thus, inclusion of the zero-point bath ener-
gies, the “h̄ω/2” in the expression h̄ω(n̄ + 1/2), appears to be
crucial.
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Our starting point is the exact solution of Eq. (1) in operator form [12],

ρ(t) = exp
[

ln R2
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×N (t)M̃(t)ρ(0)M̃(t)†N (t)†, (5)

where the following definitions are similar to those found in the Wigner function solution in [3] and arise with the use of
Ullersma’s [13] spectral strength:
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with

A(t) = 2�[e−(α−2�)t − e−�t cos(�t)] + �−1[(α − 2�)2 + �2 − �2]e−�t sin(�t)

(α − 3�)2 + �2
, (7)

where α plays the role of a high-frequency cutoff of the bath,
κ = 2�[(α − �)2 − �2]/α2, and � is approximately equal to
the shifted frequency �1 when � is small compared to �1

and α;
(ii) Y (t) is the same expression as X(t) but with A replaced

by dA/dt ′; and
(iii) R(t) =

√
(dA/dt)2 − Ad2A/dt2, where to ensure that

the radicand is positive, it is assumed that α � 3�.
The explicit expression for the unitary operator N (t)M̃(t),

which satisfies N (0)M̃(0) = 1, is given in [12], but need not
concern us here.

The following theorem will be used.
Theorem. Suppose an allowable (i.e., normalized, self-

adjoint, and positive) initial state ρ(0) evolves according to

ρ(t) = exp

[
ln(1 − r2)

2r2h̄2 (ma{q, · ,q} + b
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]

× V (t)ρ(0)V (t)† (8)

where a � 0, b � 0, 0 � r < 1, and c are real parameters
that depend on t subject to a(0) = b(0) = c(0) = r(0) = 0,
and V (t) is a unitary operator satisfying V (0) = 1.
Letting the symbol 〈〉V denote expectation values
with respect to the state V (t)ρ(0)V (t)† [e.g.,
〈qp + pq〉V ≡ Tr(qp + pq)V (t)ρ(0)V (t)†], suppose further
that at some time t ′ > 0 the following four conditions
involving the initial state ρ(0) are obeyed:
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(13)

Then ρ(t ′) is nonpositive provided that at time t ′

0 � 4ab − c2 < h̄2r4. (14)

Proof. Consider the quadratic form in x,

amx2 − 1

2
(h̄2r2 + c〈qp + pq〉V )x+ b

4m
(h̄2 + 〈qp + pq〉2

V ),

(15)

where this and all other expressions in this proof are evaluated
at t ′ unless otherwise indicated. Its discriminant is d1. Because
of inequality (9), expression (15) has a pair of real, distinct
roots s±, and because of inequality (10) and the assumptions
that a > 0 and b � 0, the smaller root s− is non-negative and
the larger root s+ is positive. Consequently, on account of
assumption (12),

am〈q2〉2
V − 1

2
(h̄2r2 + c〈qp + pq〉V )〈q2〉V

+ b

4m

(
h̄2 + 〈qp + pq〉2

V

)
< 0. (16)

Using Eq. (11), inequality (16) may be rewritten as

h̄2 − 4(1 − r2)2〈q2〉V 〈p2〉V − 4ma(1 − r2)〈q2〉V
− 4(1 − r2)

b

m
〈p2〉V − h̄2r4 + (1 − r2)2〈qp + pq〉2

V

+ 2(1 − r2)c〈qp + pq〉V > 0. (17)
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Now introduce a parameter

λ = h̄ + w1/2

2[(1 − r2)〈p2〉V + ma]
, (18)

where w is defined to be the left-hand side of inequality (17).
By virtue of inequality (17), λ is real, and by construction, λ

is a root that satisfies

[(1 − r2)〈p2〉V + ma]λ2 − h̄λ + (1 − r2)〈q2〉V + b

m
− ab − h̄2

4 r4 + 1
4 (1 − r2)2〈qp + pq〉2

V + 1
2 (1 − r2)c〈qp + pq〉V

(1 − r2)〈p2〉V + ma
= 0.

(19)

In another vein, it may be noted [14] that the evolution
governed by Eq. (8) yields the following expectation values
for all t � 0:

〈q2〉 = (1 − r2)〈q2〉V + b

m
, (20)

〈p2〉 = (1 − r2)〈p2〉V + ma, (21)

〈qp + pq〉 = (1 − r2)〈qp + pq〉V + c. (22)

These last three expressions allow us to write

I (λ,β; t) ≡ Tr[q + (β + iλ)p]ρ(t)[q + (β − iλ)p]

= [(1 − r2)〈p2〉V + ma]β2

+ [(1 − r2)〈qp + pq〉V + c]β

+ λ2[(1 − r2)〈p2〉V + ma] + (1 − r2)〈q2〉V
+ b

m
− h̄λ, (23)

where β is a real parameter. Considering the right-hand side
of Eq. (23) as a quadratic function in β, we conclude that
I (λ,β̄; t ′) < 0 provided the discriminant satisfies

[(1 − r2)〈qp + pq〉V + c]2 − 4[(1 − r2)〈p2〉V + ma]

×
(

λ2[(1 − r2)〈p2〉V + ma] + (1 − r2)〈q2〉V + b

m
− h̄λ

)

> 0 (24)

and provided β̄ lies between the two roots of the right-hand
side of Eq. (23) evaluated at t ′, which are both real when
inequality (24) is imposed. It is straightforward to show that
when Eq. (19) holds, inequality (24) is equivalent to the simpler
inequality 4ab − c2 − h̄2r4 < 0, which is part of assumption
(14). We have thus shown that with the foregoing assumptions,
I (λ,β; t ′) is negative when λ and β are given by expression
(18) and β̄, respectively. This implies that ρ(t ′) is nonpositive,
which completes the proof.

If in addition to the hypotheses of the theorem, we also
assume 〈q〉(t ′) = 〈p〉(t ′) = 0, then from expressions (18),
(20)–(22), and (24) we obtain at time t ′

(�q)2(�p)2 < (〈q̃p̃ + p̃q̃〉2 + h̄2 − w)/4, (25)

where q̃ ≡ q − 〈q〉 and p̃ ≡ p − 〈p〉, in violation of the
uncertainty principle [15]. We further note that some of the
hypotheses of the theorem can be redundant [17].

The evolution Eq. (5) is of the form of Eq. (8) if we associate
a with Y , b with X, c with

.

X, V with NM̃ , and r2 with
1 − R2. We assume that each of α, κ , and t is positive. We

check that assumptions (9)–(14) are true for the oscillator at
some time t ′ > 0, which, as will now be shown, can be short.
When the high-temperature approximation (2) is employed,
the following asymptotic results are obtained as t → 0:

X = kT t4

4
κα + o(t4), (26)

dX

dt
= kT t3κα + o(t3), (27)

Y = kT t2κα + o(t2), (28)

and

1 − R2 = α2t3κ/6 + o(t3). (29)

When these expressions are inserted into definition (9), we
find that there exists a sufficiently small time at which the
discriminant d1 is greater than zero if we insist that at that time

〈qp + pq〉V = 3
kT

α
. (30)

With reference to assumption (14), we note that 0 � 4ab −
c2 holds for all t � 0 under any positive approximation of
n̄ + 1/2, which follows from the definitions of X, Y , and the
Cauchy-Schwarz inequality for integrals. In addition,

4ab − c2 − h̄2r4 = −
(

h̄α2t3κ

6

)2

+ o(t6), (31)

which is less than zero if t is small enough. Given Eq. (30),
assumption (10) also follows for small enough t . Hence, ∃ t ′ >

0 such that by choosing the initial state

ρ (0) = M†(t ′)N †(t ′)χN (t ′)M̃(t ′), (32)

with χ being the pure density operator corresponding to the
Wigner function

1

πh̄
exp

[
− 2

h̄2

(
h̄2 + (3kT /α)2

4s̄
q2 + s̄p2 − 3

kT

α
pq

)]
(33)

with s̄ ≡ [s+(t ′) + s−(t ′)]/2, assumptions (9)–(14) are true.
We thus conclude that making the oft-used high-temperature
approximation (2) yields evolution that violates the positivity
requirement and, in view of expression (25) and the fact that
〈q〉(t ′) = 〈p〉(t ′) = 0 when the initial state is Eq. (32), violates
the uncertainty principle even if the coefficients in the QBE
are allowed to depend on time [18].

Given that the only approximation in play is expression
(2), and that this approximation would appear to be innocuous
at high temperatures, why is expression (2) not good enough
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to preserve positivity, no matter how high the temperature?
A partial answer is that expressions (26)–(29) yield 4XY −
Ẋ2 = o(t6) and h̄2(1 − R2)2 ∼ (h̄α2κ)2t6/36; thus, the latter
dissipation contribution is larger than the former fluctuation
contribution at small times no matter how high the temperature,
and the left-hand side of (31) is consequently negative.
Moreover, the use of the continuous, as opposed to a discrete,
spectral strength in deriving Eq. (1) gives rise to larger values
of the dissipation factor (1 − R2)2 at small times.

In contrast, if instead of the high-temperature approxima-
tion (2) we were to use the more uniform expression (4), then
positivity is preserved at small times [19]. To demonstrate this,
we first need the following corollary to Theorem 2 of Ref. [8]
(cf. also Eq. (27) of Ref. [12]).

Corollary. Let σ , η, and ξ be real, time-dependent param-
eters, ζ a time-dependent complex parameter, and ρ(0) an
allowable initial state. Then the density operator

exp[ − σ (t)[η(t){q, · ,q} + ξ (t){p, · ,p} + ζ (t){q, · ,p}
+ ζ ∗(t){p, · ,q}]]ρ(0) (34)

is positive for any t � 0 at which σ � 0, η � 0, ξ � 0, and
ηξ � |ζ |2.

Proof. As can be shown using the Cauchy-Schwarz inequal-
ity and as has already been pointed out in [20], the sum of
operators in the exponent in expression (34) may be rewritten
in Lindblad form, i.e.,

−[η(t){q, · ,q} + ξ (t){p, · ,p} + ζ (t){q, · ,p} + ζ ∗(t){p, · ,q}]
= −

∑
n=1

{an(t)q + bn(t)p, · ,an(t)q + bn(t)p}, (35)

for some generally complex numbers an and bn, provided η �
0, ξ � 0, and ηξ � |ζ |2. Thus, if these last three inequalities
are true,

L ≡ −σ (t)[η(t){q, · ,q} + ξ (t){p, · ,p} + ζ (t){q, · ,p}
+ ζ ∗(t){p, · ,q}] (36)

may also be rewritten in Lindblad form:

L = −
∑

n

{σ 1/2(t)an(t)q + σ 1/2(t)bn(t)p, · ,σ 1/2(t)an(t)q

+ σ 1/2(t)bn(t)p}. (37)

It is implicit in Ref. [8] [assuming the results therein also
apply to the unbounded operators in Eq. (37)] that the solution
of the differential equation dρ/dτ = Lρ, with initial condition
ρ(0), is positive for all τ � 0 since L is of Lindblad form. In
this last differential equation, τ is considered to be the “time”
and t a parameter. But expression (34) is the solution of this
last differential equation at τ = 1. Hence, the operator (34)
is positive for any t � 0 at which σ � 0, η � 0, ξ � 0, and

ηξ � |ζ |2 if ρ(0) is an allowable initial state, which proves the
Corollary.

The evolution Eq. (5) is in the form of Eq. (34) if we
associate σ with −lnR2/2h̄2(1 − R2), η with mY , ξ with X/m,
and ζ with −[

.

X +ih̄(1 − R2)]/2. Using approximation (4)
instead of (2), the following asymptotic results are obtained as
t → 0:

X = κα2h̄

4π

(
π

kT

h̄α
+ 7

4
− γ − lnαt

)
t4 + o(t4), (38)

dX

dt
= κα2h̄

π

(
π

kT

h̄α
+ 3

2
− γ − ln αt

)
t3 + o(t3), (39)

and

Y = κh̄α2

π

(
π

kT

h̄α
+ 3

2
− γ − ln αt

)
t2 + o(t2), (40)

where γ is Euler’s constant 0.577. . .. The quantity R, being
independent of temperature, continues to satisfy relation (29)
under approximation (4). With the use of relations (29) and
(38)–(40), it is straightforward to check that σ � 0, ξ � 0,
η � 0, and ηξ � |ζ |2 for small enough t . Thus, by the
previous Corollary, we see that the approximation (4) ensures
that positivity is preserved for small times. The author has
elsewhere shown [21] that for large values of α/�, α/�,
and kT /h̄�, with α� � �2/2, the approximation (4) leads to
positivity for all t � 0.

The greater-than-zero energy lower bound of an
oscillator—its zero-point energy—prevents its position and
momentum from being overly determined, sparing the uncer-
tainty principle. The results herein show that the zero-point
energies of the environment also play a key role: if the high-
temperature approximation (2) that ignores these zero-point
energies is invoked, then not only is the positivity requirement
violated, but so too is the uncertainty principle; moreover, in
the appropriate regime, if approximation (4) that includes these
energies is used then the density operator remains positive.

Equations (5) and (38)–(40), preserving positivity, afford
the opportunity of investigating entanglement decoherence
that arises when the initial factorized bath-system state
rapidly entangles in an inner limit on the order of 1/α

as the total system seeks local equilibrium. It is hoped
that either numerical calculations [22] or increasingly fast
experimental probes might be able to explore this regime.
At a theoretical level, the inner limit was studied in Ref. [12],
but because dissipation was neglected in the inner limit, the
zero-point energies were not confronted there. Extension of
the work in Ref. [12] to include this dissipation and the
zero-point energies of the environment will be left for a future
communication.
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