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Weighted patterns as a tool for improving the Hopfield model
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We generalize the standard Hopfield model to the case when a weight is assigned to each input pattern. The
weight can be interpreted as the frequency of the pattern occurrence at the input of the network. In the framework
of the statistical physics approach we obtain the saddle-point equation allowing us to examine the memory of the
network. In the case of unequal weights our model does not lead to the catastrophic destruction of the memory due
to its overfilling (that is typical for the standard Hopfield model). The real memory consists only of the patterns
with weights exceeding a critical value that is determined by the weights distribution. We obtain the algorithm
allowing us to find this critical value for an arbitrary distribution of the weights, and analyze in detail some
particular weights distributions. It is shown that the memory decreases as compared to the case of the standard
Hopfield model. However, in our model the network can learn online without the catastrophic destruction of the
memory.
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I. INTRODUCTION

The Hopfield model [1] is a well-known variant of an
artificial associative memory. At the heart of the model is the
Hebb connection matrix J = (Jij ), which stores information
about the set of N -dimensional input binary patterns:

Jij = 1 − δij

N

M∑
μ=1

x
μ

i x
μ

j , x
μ

i = ±1, i,j = 1,2, . . . ,N.

Here δij is the Kronecker symbol, xμ = (xμ

1 ,x
μ

2 , . . . ,x
μ

N ) is the
μth input pattern, and the number of patterns is equal to M .
The input patterns are to be recognized by the network. In
the second half of the 80th, a storage capacity of the Hopfield
model has been estimated by methods of statistical physics:
the network is able to recognize about Mc = 0.138N random
patterns [2,3]. Let us explain this result in more detail.

Let the number of patterns M be less than the critical value
Mc. If the neural dynamics starts with a binary configuration
that is a distortion of a kth pattern, the network rather quickly
will be either in the pattern xk itself, or in a configuration x̃k

that is very close to the pattern xk: m(xk,x̃k) ≈ 1, where the
overlap m(xk,x̃k) is

m(xk,x̃k) = 1

N

N∑
j=1

xk
i x̃

k
i . (1)

Theory shows [2–4] that when the number of patterns
M increases, at first the overlap m(xk,x̃k) decreases slowly,
remaining of the order of 1. At the moment when the
number of patterns Mexceeds a critical value Mc, the overlap
m(xk,x̃k) reduces abruptly almost to zero: m(xk,x̃k) ≈ 0. Such
phenomena are well known in physics as phase transitions of
the first kind (see [2–4]). The system in a jumplike way passes
from the mixed phase (where all the patterns are metastable
states) to the spin-glass phase (where all the local minima
do not correlate with the patterns). This phase transition is
regarded as a destruction of the memory. In the theory of
neural networks it was named “catastrophic forgetting” [4–9].

Catastrophic forgetting is a troublesome defect of the
Hopfield model. Indeed, let us imagine a robot whose memory
is based on the Hopfield model. It is natural to assume that
its memory is steadily filled up. When the robot sees a
new image, it has to be written additionally to its memory.
Catastrophic forgetting means that when the number of
stored patterns exceeds Mc, the memory becomes completely
destructed. Everything that was accumulated in the mem-
ory would be forgotten. This behavior contradicts common
sense.

Earlier some modifications of the Hebb matrix were
proposed to eliminate the memory destruction [5–9]. These
models allow one to write down one after another an unlimited
number of random patterns into the matrix elements. However,
the real memory of the network is restricted. If as previously
the maximum number of recognized patterns is denoted byMc,
for the models discussed in [5–9] the value of Mc ≈ 0.05N . All
these models have the same weak point: only those patterns that
are the last written down in the connection matrix constitute
the real memory of the network. Let us explain the last
statement. Suppose the patterns are enumerated in order of
their appearance during the learning process: the later the
pattern is shown to the network, the larger is its number. Then
it turns out that the real network memory is formed only of the
patterns whose numbers are in the interval μ ∈ [M − Mc,M].
Patterns with order numbers less than M − Mc are irretrievably
excluded from the memory. That is the common property of
the models [5–9].

In other words, such a memory has the form of a moving
window whose width is ∼0.05N . The first shown patterns are
removed from the memory. Can these patterns be restored?
What happens if they are again shown to the network? From
general reasons it follows that the anew shown patterns cannot
be recognized. However, up to now we do not have the
irrefragable answer to this question.

In our work we succeeded in eliminating the catastrophic
forgetting typical for the Hopfield model. We supply every
pattern with an individual weight that is proportional to the
frequency of the pattern appearance at the input of the network.
Then in place of the Hebb matrix we obtain a quasi-Hebbian
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matrix of the form

Jij = (1 − δij )
M∑

μ=1

rμx
μ

i x
μ

j . (2)

The weights rμ are positive and put in decreasing order: r1 �
r2 � · · · � rM � 0. In computer simulation it is convenient to
use the normalization condition

∑M
μ=1 r2

μ = 1.
The main result is the following: Formula (2) allows one

to write down any number of patterns in a matrix without
catastrophic forgetting. At the same time, only those patterns
whose weights exceed a critical value rc would be recognized.
The critical weight rc depends on the distribution of the
weights.

This approach allows the network to learn continuously,
even during the process of pattern recognition. Each pattern
which appears at the input of the network is automatically
added to the matrix. The distribution of weights is continually
changing, but no catastrophic destruction of the memory
occurs. At any time the real memory of the network consists of
the patterns that have been shown to the network quite often.

In Sec. II with the aid of statistical physics methods the
main equation for the quasi-Hebbian connection matrix (2)
is derived. To verify our equation we examine again the well-
known case of the standard Hopfield model (rμ ≡ 1). In Sec. III
we analyze the case when only one weight is different from the
others, which are identical r1 �= r2 = r3 = · · · = rM = 1. Here
the complete analytical analyses can be performed. We show
that the pattern with the unique weight substantially affects
the properties of the network memory. Computer simulations
confirm the theoretical results. In Sec. IV we analyze the main
equation for an arbitrary weight distribution. The main result
is as follows: For every distribution of the weights there is such
a critical value rc that only patterns whose weights are greater
than rc would be recognized by the network. Other patterns
are not recognized. We succeeded to find only the algorithm
of calculation of the critical value rc. It is not clear whether
it is possible to obtain an analytical expression for rc in the
general case. Some particular distributions of the weights are
discussed in Sec. V in detail.

Note, for the first time the quasi-Hebbian connection matrix
(2) was discussed many years ago. For this matrix the implicit
form of the main equation (5) was obtained in [8]. However,
in [8] the authors examined the case of the standard Hopfield
model only (rμ ≡ 1). Our contribution is the solution of the
main equation in the general form.

II. MAIN EQUATION AND THE STANDARD
HOPFIELD MODEL

A. The main equation

Let S = (S1,S2, . . . ,SN ), where Si = ±1, define a state of
the system as a whole. The energy of the state can be presented
in the form

E(S) = −1

2

M∑
μ=1

rμ

(
m2

μ(S) − 1

N

)
, (3)

where mμ(S) is the defined in Eq. (1) overlap of the current
state S with the input pattern xμ:

mμ(S) = 1

N

N∑
i=1

Six
μ

i .

Fixed points of the network are the local minima of the
energy (3). Statistical physics methods allow one to obtain
equations for the overlap of a local minimum with the patterns
{xμ}M1 (see [2–4]). After solving these equations it is possible
to understand under which conditions the overlap of the local
minimum with the kth pattern is of the order of 1 (mk ∼ 1).
In other words, under which conditions the local minimum
coincides (or nearly coincides) with the kth input pattern.

Suppose the dimensionality of the problem is very large:
N � 1. After repeating step by step the calculations performed
in [2–4] for the standard Hopfield model, we obtain the system
of equations for the kth pattern (in the zero-temperature limit
T → 0):

mk = erf

(
rkmk√

2σk

)
,

σ 2
k = 1

N

M∑
μ �=k

r2
μ

(1 − Crμ)2
, (4)

C = 1

σk

√
2

π
exp

[
−

(
rkmk√

2σk

)2]
.

Here mk is the overlap of the local minimum with the kth
pattern, σ 2

k = ∑M
μ �=k r2

μm2
μ is the weighted sum of squared

overlaps of all patterns except the kth one, and C =
limT →0(1 − q)/T , where q is the Edwards-Anderson order
parameter [10]. Equations (4) are obtained in the replica
symmetry approximation. In the case of equal weights (rμ ≡ 1)
this system reduces to the well-known system for the standard
Hopfield model [see Eqs. (2.71)–(2.73) in [4]).

Let us introduce an auxiliary variable y = rkmk/
√

2σk .
Excluding σk and C from the system (4), we obtain the equation

1

α
= 1

γ 2

1

M − 1

M∑
μ �=k

r2
μ

(rkϕ − rμ)2
. (5)

As usual by α = M/N we define the load parameter; γ = γ (y)
and ϕ = ϕ(y) are equal to

γ (y) =
√

2

π
e−y2

, ϕ(y) =
√

π

2

erf y

y
ey2

. (6)

The function γ = γ (y) decreases monotonically, and the
function ϕ = ϕ(y) increases monotonically beginning from
its minimal value ϕ(0) = 1. For simplicity sometimes we omit
the argument of these functions.

Let us fix the values of the external parameters: N , α =
M/N , {rμ}M1 , and k. If y0 is a solution of Eq. (5), the overlap
of the local minimum with the kth pattern is equal to

mk = erf(y0). (7)

When y0 is known, we can calculate the value of σk =
rk erf y0/

√
2y0 entering into Eq. (4).

It is important to determine the critical value of the load
parameter αc for which the solution of Eq. (5) still exists;
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FIG. 1. (Color online) Graphical solution of Eq. (8) for the
standard Hopfield model. The solid line is the graph of the rhs of
Eq. (8). The dashed horizontal straight line corresponds to α = 0.04.

however, if α is larger than αc there is no solution of Eq. (5).
All characteristics corresponding to the critical value αc are
indicated by the same subscript “c”. They are yc, mc, and σc.

B. The standard Hopfield model: rμ ≡ 1

Since all patterns are equivalent, the subscript k in Eqs. (4)
and (5) can be omitted. It is easy to see that in this case Eq. (5)
has the form

α = γ 2(ϕ − 1)2. (8)

The plot of the right-hand side (rhs) of Eq. (8) is shown in
Fig. 1. We see that for all α (that are less than the critical
value) there are two solutions: ȳα and yα (ȳα < yα). We are
interested in the larger solution yα only. The solution ȳα is a
spurious one, and it has to be omitted.

When α increases the solution yα shifts to the left.
Consequently, the overlap mk [Eq. (7)] decreases. In other
words, the local minimum little by little moves away from the
pattern. Increasing α, we reach the critical value αc, which
is equal to the maximal value of the function in the rhs of
Eq. (8). It is not difficult to calculate the critical value: αc ≈
0.138. This well-known result was obtained for the first time
in [2,3].

What happens when the load parameter α exceeds the
critical value αc? In this case there is no solution of Eq. (8). As
they say, “a breakdown” of the solution happens. The detailed
analysis shows [2–4] that the overlap abruptly decreases almost
up to zero. Local minima do not correlate with the input
patterns anymore. In other words, the memory of the network
is completely destructed.

The expression in the rhs of Eq. (8) reaches its maximum
value at the point yc ≈ 1.511. Equation (7) allows one to
calculate the critical value of the overlap: mc ≈ 0.967. We see
that even in the worst case of the maximal value of the load
parameter αc, the overlap of a pattern with the nearest local
minimum is large enough. If the value of the load parameter is
less than αc, the overlap is even closer to 1. Since we considered
an arbitrary pattern, we can say that while α < αc there is a
local minimum in the vicinity of each pattern. It can be shown

that the depths of these local minima are approximately the
same [4].

Note. Of the two solutions of Eq. (8) we use only one that
is yα . The rejected one, ȳα , is the spurious solution: When the
load parameter αdecreases, it tends to 0, and, consequently, has
no physical meaning. A more general statement is as follows.
Equation (5) always has several solutions, and all of them
correspond to the stationary points of the saddle-point equation
[4]. However, if there are more than two solutions, only the
one lying to the right of the rightmost maximum of the rhs of
Eq. (5) corresponds to the minimum of the free energy. We use
this in the next section.

III. ONE PATTERN WITH UNIQUE WEIGHT

Interesting is the case when all the weights rμ, except one,
are equal to each other, and only one weight differs from the
others. Without loss of generality we can write

r1 = τ, r2 = r3 = · · · = rM = 1. (9)

The unique weight τ can be both larger and less than 1.
It might appear that in this case the difference with the

standard Hopfield model has to be negligibly small: An
enormous number of patterns with the same weights enter
the expression for the connection matrix and only one pattern
provides a different contribution. However, this is not the case.
One pattern with a unique weight τ can substantially change
a network memory. Let us examine separately what happens
to the local minimum in the vicinity of the pattern with the
unique weight τ , and what happens to the local minima near
other patterns with the same weights.

A. Pattern with a unique weight: r1 = τ

For this pattern Eq. (5) has the form

α = γ 2 (τϕ − 1)2 . (10)

If y is a solution of Eq. (10), the overlap of the local minimum
with the first pattern is m(1) = erf(y). The superscript “(1)”
emphasizes that we deal with the overlap with the pattern
number 1.

The point of the breakdown y(1)
c (τ ), the one where the rhs of

Eq. (10) reaches its maximum, is the solution of the equation

ϕ(y) = 1 + 2y2

τ
. (11)

After finding y(1)
c (τ ), the critical characteristics m(1)

c =
erf(y(1)

c ) and α(1)
c can be calculated.

In Fig. 2(a) we present graphs of the rhs of Eq. (10) for
different values of the weight τ > 1. We see that when τ

increases, the critical value α(1)
c (τ )increases, too. In the same

time the breakpoint y(1)
c (τ ) steadily moves toward zero. It turns

out that Eq. (11) has a nontrivial solution only if τ < 3.
Suppose, for example, that τ = 2. Then the breakpoint

y(1)
c (2) ≈ 1 and the critical characteristics are equal to α(1)

c ≈
0.805 and m(1)

c ≈ 0.84. As long as the load parameter α does
not exceed the critical value α � 0.805, Eq. (10) has a solution
in the region y � 1, and the overlap is relatively large (it is
larger than m(1)

c ). In other words, the first pattern is recognized.
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FIG. 2. (Color online) The graphs of the rhs of Eq. (10) for different values of τ : (a) τ � 1; the straight line intersects the graphs
corresponding to different values of τ ; (b) τ � 1.

If the load parameter is larger than the critical value α > 0.805,
Eq. (10) has no solutions, and the first pattern is not recognized.
The breakdown of the solution occurs because when α crosses
the value α(1)

c the system undergoes phase transition of the first
kind. This is true for each τ < 3.

Let us examine now what happens when τ � 3. For such
τ , Eq. (11) has no solutions at all, and the phase transition
in the system vanishes. In the same time for a fixed value
τ � 3, Eq. (10) has a solution when α is less than its limiting
value that coincides with the value of the maximum of the rhs
of Eq. (10). For τ � 3 this maximum is always in the point
y = 0. Again, by α(1)

c (τ ) we denote the limiting value of α.
From the expression in the rhs of Eq. (10) it follows that for
τ � 3 we have α(1)

c (τ ) = 2(τ − 1)2/π . So, for a fixed value
τ � 3 the overlap of the first pattern does not equal zero only
if α is less than the limiting value 2(τ − 1)2/π . If, on the
contrary, α � 2(τ − 1)2/π , the overlap is equal to zero and
the pattern is not recognized.

Now let us examine the weights τ from the interval [0,1]. In
Fig. 2(b) we present graphs of the rhs of Eq. (10) for different
weights τ � 1. We see, that when τ decreases from 1 to 0,
the point of the rightmost maximum y(1)

c (τ ) steadily shifts
to the right. Consequently, the critical value of the overlap
m(1)

c (τ ) tends to 1. In the same time the critical value of the
load parameter α(1)

c (τ ) steadily decreases. Note we are not
interested in the behavior of the curve to the left from the
rightmost maximum, since in this region Eq. (10) has only
spurious solutions.

So, when τ increases from 0 to 3, the critical value of
the overlap m(1)

c (τ ) decreases. Let us point out that this is
true only for the critical values y(1)

c (τ ) and m(1)
c (τ ), i.e., to

the value of the overlap at the breakdown point α = α(1)
c (τ ).

Absolutely another situation arises when α is less than the
critical value α < α(1)

c (τ ). Indeed, for example, in Fig. 2(a)
we see intersections of a straight line α = 0.5 and the graphs
representing the rhs of Eq. (10) for different values of τ > 1.
We see that when τ increases, the point of intersection shifts to
the right. This means that when τ increases, the overlap m(1)(τ )
also increases. This behavior of the overlap is in agreement
with common sense: The greater the weight of the pattern τ ,
the greater its influence. Then the overlap of this pattern with
the local minimum has to be greater.

Let us summarize the obtained results. In contrast to
the standard Hopfield model we have two independent free
parameters. They are the load parameter α and the weight τ .
Let us fix the value of τ and change the load parameter α. If
τ < 3, then for some value of α(1)

c (τ ) the solution of the set
of equations (10) and (11) vanishes. This breakdown of the
solution means that the system undergoes a phase transition of
the first kind. In this case the pattern ceases to be recognized.
However, if the fixed value of τ is larger than 3, τ � 3,
Eq. (11) has no solutions. When α increases, the value of
the overlap decreases smoothly, and it becomes equal to zero
beginning from the value α(1)

c (τ ) = 2(τ − 1)2/π . There is no
phase transition of the first kind whenτ � 3.

Let us on the contrary fix α and vary τ > 0. From Figs. 2(a)
and 2(b) it follows that if we steadily increase τ , sooner or later
we reach the value τ (α), the beginning of which a solution of
Eq. (10) appears. For α< 8/π the point of contact is equal
to the critical value y(1)

c > 0. For example, in Fig. 2(a) we fix
α = 0.5. Then y(1)

c is the point of contact of the straight line
α = 0.5 with the curve that is the rhs of Eq. (10) for τ = 1.66.
In the point of contact the overlap increases in a jumplike way
from zero to m(1)

c = erf(y(1)
c ) (also see the jumps of the overlaps

in Fig. 5). However, if the fixed value of α exceeds 8/π , the
contact of the line α = const with the above-mentioned curve
occurs in the pointy = 0 and the corresponding overlap is
equal to zero: m(1) = 0. The following increase of the weight
τ leads to the steady increase of the overlap m(1)up to its
maximal value equal to 1.

In the two left panels of Fig. 3 we show the critical
characteristics α(1)

c (τ ) and m(1)
c (τ ) as functions of τ . Let us

emphasize that at the point τ = 3 in Fig. 3(a) two different
curves conjugate smoothly. To the left of τ = 3 is the curve
that corresponds to the critical values of the load parameter
α(1)

c (τ ), for which the breakdown of the solution occurs. These
values of α(1)

c (τ ) are obtained as a result of numerical solution
of the system of equations (10) and (11). To the right of the
point τ = 3 is the curve α(1)

c (τ ) = 2(τ − 1)2/π .

B. Patterns with the same weights: rμ = 1,μ � 2

Let us examine how the overlap of the local minimum with
one of the patterns whose weight is equal to 1 depends on the
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FIG. 3. Critical values of the load parameter αc(τ ) (two upper panels) and overlap mc(τ ) of the local minimum with the pattern (two lower
panels). The curves on the left panels (a) and (b) correspond to the pattern with a unique weight r1 = τ ; the curves on the right panels (c) and
(d) correspond to the patterns with the same weights rμ = 1, μ � 2.

value of τ . Since all these patterns are equivalent, we choose
the pattern with number “2.” The superscript (2) indicates the
characteristics m(2),y(2),α(2) that are interesting for us. Now
Eq. (5) has the form

α = L(y) ≡ γ 2 (ϕ − 1)2 (ϕ − τ )2

(1 − ε) (ϕ − τ )2 + ετ 2 (ϕ − 1)2 , (12)

where ε = 1/M . When M → ∞, the value of ε tends to zero.
However, we cannot simply put ε = 0, since then for some
value of y the denominator of L(y) necessarily vanishes (at
least when τ > 1), and then it is impossible to cancel (ϕ − τ )2

in the numerator and the denominator of L(y). So, we analyze
Eq. (12) for a small, but finite value of ε and after this we let
it tend to zero. This way of analysis is correct.

When τ � 1 the function ϕ(y) − τ has no zeros, and we can
simply take ε = 0. In this case the expression for L(y) turns
into γ 2 (ϕ − 1)2. Then Eq. (12) transforms into Eq. (8), and the
last corresponds to the standard Hopfield model. Consequently,
until τ ∈ (0,1], the solution of Eq. (12) does not depend on τat
all, and it coincides with the solution for the standard Hopfield
model. The critical characteristics do not depend on τas well
and they are equal:

y(2)
c (τ ) ≡ yc ≈ 1.511, α(2)

c (τ ) ≡ αc ≈ 0.138,

m(2)
c (τ ) ≡ mc ≈ 0.967. (13)

Let us examine the interval τ > 1. In this case the function
ϕ(y) − τ vanishes at the point y0(τ ). The value of the argument
y0(τ ) is determined by the equation

ϕ(y0(τ )) = τ ⇔ y0(τ ) = ϕ−1(τ ), (14)

where ϕ−1 is the inverse of ϕ. Out of the small vicinity of the
point y0(τ ) the parameter ε in Eq. (12) can be allowed to tend
to zero with the function L(y) being the same as in the case

of the standard Hopfield model: L(y) = γ 2 (ϕ − 1)2. On the
other hand, for a small, but nonzero value of ε at the point y0(τ )
the function L(y) itself is equal to zero: L [y0(τ )] = 0. If y is
from the vicinity of the point y0(τ ) and it tends to y0(τ ), for any
nonzero value of ε the curve L(y) quickly drops to zero. Thus,
for any nonzero value of ε the graph of the function L(y)
practically everywhere coincides with the “standard” curve
γ 2 (ϕ − 1)2, but in the vicinity of the point y0(τ ) the curve L(y)
has a narrow dip down to zero (whose width is proportional to
the value of ε).

As long as the weight τ < ϕ(yc) ≈ 5.568, the point where
the function ϕ(y) − τ is equal to 0 is to the left of yc = 1.511:
y0(τ ) < yc. For this case in Fig. 4(a) we show the curve
L(y). The rightmost maximum of the curve L(y) corresponds
to the critical point yc ≈ 1.511 and it does not depend on
τ . Consequently, the equalities (13) are valid not only for
τ ∈ [0,1], but in the wider interval 0 < τ � ϕ(yc) ≈ 5.568.

On the contrary, for the values of the weight τ > 5.568 the
point y0(τ ) is to the right of yc. For this case an example of
the curve L(y) is shown in Fig. 4(b). The rightmost maximum
of the curve L(y) coincides with the peak of the curve that
is slightly to the right of the point y0(τ ). From continuity
conditions it is evident that when ε → 0 this peak shifts to the
point y0(τ ). Consequently, when ε → 0 for τ > 5.568 we have

y(2)
c (τ ) ≡ y0(τ ) > 1.511, m(2)

c (τ ) ≡ erf
[
y(2)

c (τ )
]

> 0.967,

α(2)
c (τ ) = 2

π
(τ − 1)2 e−2y2

0 (τ ) < αc = 0.138. (15)

Let us summarize the results obtained for patterns with the
same weights. First, as far as the value of τ is less than ϕ(yc) =
5.568, all characteristics of the local minima do not depend
on τ and coincide with the characteristics of the standard
Hopfield model. Secondly, as soon as the value of τ exceeds
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FIG. 4. (Color online) The graph of the function L(y) from Eq. (12) for ε = 10−5 (solid line): (a) when τ = 3 < ϕ(yc) the point y0(τ ) is
on the left of yc ≈ 1.511; (b) when τ = 10 > ϕ(yc) the point y0(τ ) is on the right of yc. The dashed line shows the difference with the standard
Hopfield model.

ϕ(yc) = 5.568, the situation changes. In this case the
breakdown point of the solution depends on τ and coincides
with y0(τ ), which is the solution of Eq. (14). When τ increases
the critical value of the load parameter, αc(τ ) decreases and
the overlap with the pattern increases and tends to 1
[see Eq. (15)]. The graphs showing the behavior of the critical
characteristics m(2)

c (τ ) and α(2)
c (τ ) are presented in the two

right panels in Fig. 3.

C. Computer simulations

The obtained results were verified with the aid of computer
simulations. For a given value of N the load parameter α was
fixed. Then M = αN randomized patterns were generated,
and they were used to construct the connection matrix with the
aid of Eqs. (2) and (9). When choosing the weight coefficient
τ we proceeded from the following reasons.

Let α be a fixed value of the load parameter. Then we
found the value of the weight τ (α) for which the given α

was a critical one. This can be done by solving Eqs. (10)
and (11) simultaneously. We also defined the breakdown point
yc(α) of the solution. [For example, Fig. 2(a) shows that the
value of the load parameter α = 0.5 is a critical one for the
weight τ (α) = 1.66, while the breakdown point is equal to
yc(α) ≈ 1.15.] When constructing the connection matrix with
the weight τ that is less than τ (α), the mean value of the
overlap with the pattern has to be close to 0. If the weight τ

is equal to τ (α), the mean value of the overlap has to be close
to mc(α) = erf [yc(α)]. If the weight τ is larger than τ (α), the
mean value of the overlap has to be larger than mc(α). Under
further increase of τ the mean overlap has to tend to 1. In
other words, the main idea of the computer simulations is as
follows: For a fixed value of αwe vary the weight τ near the
critical value τ (α) to verify that our numerical results are close
to theoretical predictions.

1. Pattern with unique weight

To verify the theoretical conclusions for the pattern with
the unique weight r1 = τ , three experiments have been done
for three different values of α. For each α we varied τ in the
region of the critical value τ (α) and with the aid of computer

simulations examined how the mean value of the overlap of
the pattern with the nearest local minimum 〈m〉 depends on
τ . For this purpose for each fixed value of τ we generated
a set of random matrices. For each matrix we started the
neural dynamics from the pattern with unique weight τ and
found the local minimum, and then we calculated its overlap
with the pattern. The mean value of the overlap 〈m〉 was
calculated by averaging over the set of all random matrices.
We did our simulations for three different dimensionalities:
N = 1000, 10 000, and 30 000. For N = 1000 we averaged
over 100 matrices, for N = 10 000 over 20 matrices, and for
N = 30 000 over 10 matrices [the complexity of calculations
increases as O(N3), and this is why we had to decrease the
number of random matrices].

Let us list the values of α that were chosen for testing with
the theoretical values of τ (α) and mc(α): (1) α = 0.12, τ (α) ≈
0.944, and m(1)

c (α) ≈ 0.971; (2) α = 0.38, τ (α) ≈ 1.501, and
m(1)

c (α) ≈ 0.919; and (3) α = 3.0; for this value of α there is
no jump of the overlap, but beginning from τ (α) ≈ 3.171, the
overlap has to increase smoothly.

In Fig. 5 the graphs for all three values of α are presented.
Theoretical curves m(1)(τ ) are shown by chained lines. The
results of our computer simulations are given by dotted lines
for N = 1000, by dashed lines for N = 10 000, and by solid
lines for N = 30 000.

For α = 0.12 and α = 0.38 on the experimental curves
we clearly see the expected jumps of the mean overlaps
that have a place in the vicinities of the critical values of
the weights τ (α) ≈ 0.944 and τ (α) ≈ 1.501, respectively.
To the left from the jump point the values of the mean
overlap are not equal to zero. First, this can be due to an
insufficiently large dimensionality of the problem. (The point
is that all theoretical results are valid in the thermodynamic
limit N → ∞. For computer simulations we used very large,
but finite dimensionality N . Note that when N increases, the
experimental curve becomes more aligned with the theoretical
step function.) Secondly, the theory is correct when the mean
overlap is close to 1 (but not to 0). For these values of τ we have
rather good agreement between the theory and the computer
simulations.
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FIG. 5. (Color online) Theoretical and experimental results for
the pattern with the unique weight τ . The graphs correspond to
three different values of the load parameter α and to three different
dimensionalities N . Chained lines correspond to theoretical results.
For experimental results: dotted lines correspond to N = 1000,
dashed lines correspond to N = 10 000, and solid lines to
N = 30 000.

For the third value of the load parameter α = 3.0 we
expected a smooth increase of the mean overlap 〈m〉 from 0
to 1. Indeed, all the rightmost experimental curves increase
smoothly without any jumps. However, according to our
theory the increase ought to begin from τ ≈ 3.1, while the
experimental curve starts to deviate from zero much earlier.
This discrepancy between our theory and the experiment
can be explained in the same way as in the end of the
previous paragraph. When the dimensionality N increases, the
experimental curve again approximates the theoretical curve
better.

2. Patterns with the same weights

To verify our theory in the case of patterns with the same
weights (rμ = 1, μ � 2) we used an analogous procedure. For
the value of the load parameter α = 0.12 and several dimen-
sionalities N (N = 3000, 10 000 and 30 000) we calculated the
mean overlap 〈m〉 between the pattern and the nearest local
minimum for different values of τ . We averaged both over
M − 1 patterns of the given matrix and over ten randomized
matrices constructed for the given value of τ .

According to the theory, for α = 0.12 the breakdown of
the overlap 〈m〉 has to take place when τ ≈ 17.1. In Fig. 6
this is shown by the right dashed straight line with the label
“M → ∞.” If N and M are indeed infinitely large, just in this
place the breakdown of 〈m〉 has to take place. The dependency
of 〈m〉 on τ observed in our experiments is shown in Fig. 6 by
three solid lines corresponding to different dimensionalities
N .

This noticeable difference between the theory and computer
simulations must not confuse us. Apparently this difference is
due to finite dimensionalities of the experimental connection
matrices. Earlier computer verifications of classical theoretic
results faced just the same problems [11,12]. As a way out the
authors of these papers extrapolated their experimental results
into the region of very large dimensionalities N .

Note, when N increases, the experimental curve in Fig. 6
tends to “theoretical step function,” which is indicated with the

FIG. 6. (Color online) Theory and experiments for patterns with
the same weights rμ = 1 for α = 0.12. Solid lines show the results
of the experiments for three values of dimensionality N .

aid of a dashed line. A correction due to a finite dimensionality
of the problem can be taken into account if we insert the explicit
expression ε = 1/M in Eq. (12). Then for N = 30 000 we have
M = αN = 3600. When this value of M is used in Eq. (12),
we find that the breakdown of the overlap 〈m〉 has to take place
not in the vicinity of τ ≈ 17.1, but much earlier, when τ ≈ 7.1.
The corresponding dashed line with the label “M = 3600” is
shown in Fig. 6. Its location noticeably better correlates with
the experimental curves.

IV. ARBITRARY DISTRIBUTION OF WEIGHTS

In this section we present the method of solving Eq. (5) in
the general case. We show that there is a critical weight rc, so
that the memory of the network consists only of the patterns
whose weights exceed rc. Patterns whose weights are less than
rc, are not recognized by the network.

Let us transform Eq. (5) dividing the left-hand and the
right-hand sides by M . Then the main equation takes the form

N =
M∑

μ �=k

f (k)
μ (y), (16)

where f (k)
μ are functions of γ , ϕ, and rμ:

f (k)
μ (y) =

(
t (k)
μ

γ
(
ϕ − t

(k)
μ

)
)2

, t (k)
μ = rμ

rk

, μ �= k. (17)

The number of the patterns M enters only the upper limit of
the sum in the rhs of Eq. (16). It can be either finite or infinite,
but it is not important for the further discussion.

The values t (k)
μ are arranged in decreasing order. For what

follows it is important that the first k − 1 of these numbers are
larger than 1, and the other ones are less than 1:

t
(k)
1 > t

(k)
2 > · · · > t

(k)
k−1 > 1 > t

(k)
k+1 > t

(k)
k+2 > · · · . (18)

The rhs of Eq. (16) is the result of summing up over the
set of functions {f (k)

μ (y)}μ �=k . Let us consider the behavior of
functions f (k)

μ (y) (17). It is easy to see that when y → ∞ the
denominators γ (ϕ − t (k)

μ ) of all the functions f (k)
μ (y) tend to 0.

In other words, at the infinity each function f (k)
μ (y), as well as

the rhs of Eq. (16), increases without limit.
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The behavior of the function f (k)
μ (y) for finite values of

argument depends on the constant t (k)
μ in its denominator. If

t (k)
μ < 1, thenf (k)

μ (y) is everywhere a continuous function. If
t (k)
μ > 1, the function f (k)

μ (y) has a singular point. In this case
for some value y(k)

μ of the argument of the function f (k)
μ (y) its

denominator is equal to zero:

ϕ
(
y(k)

μ

) = t (k)
μ ⇔ y(k)

μ = ϕ−1
(
t (k)
μ

)
,

where ϕ−1 is the inverse of the function ϕ. We see that for
every t (k)

μ > 1 the function f (k)
μ (y) has the discontinuity of the

second kind in the point y(k)
μ . Since in the series (18) the first

k − 1 numbers t (k)
μ are greater than 1, it is easy to understand

that the rhs of Eq. (16) has the discontinuities of the second
kind in k − 1 points y

(k)
k−1 < y

(k)
k−2 < · · · < y

(k)
1 .

For simplicity let us rewrite Eq. (16) using the reciprocal
values

1

N
= Fk(y), where Fk(y) =

⎛
⎝ M∑

μ �=k

f (k)
μ (y)

⎞
⎠

−1

. (19)

It is evident that non-negative function Fk(y) in the rhs of
Eq. (19) is equal to zero in the points y

(k)
k−1 < y

(k)
k−2 < · · · <

y
(k)
1 . At the infinity Fk(y) tends to zero. The typical behavior

of the function Fk(y) is shown in Fig. 7. To the right of the
rightmost zero y

(k)
1 , where the inequality ϕ(y) > t

(k)
1 holds,

the function Fk(y)at first increases, and then after reaching
its maximum, the function Fk(y) decreases monotonically.
Let y(k)

c be the coordinate of the rightmost maximum of the
function Fk(y). The value of Fk(y) in the point y(k)

c determines
the critical characteristics related to the recognition of the kth
pattern. Let us explain what it means.

Generally speaking, Eq. (19) has several solutions. Their
number is equal to the number of intersections of the function
Fk(y) with the straight line that is parallel to the abscissa
axis at the height 1/N (see Fig. 7). However, only one of
these intersections corresponds to the minimum of the free
energy. Namely, this intersection is to the right of the rightmost

FIG. 7. (Color online) The behavior of the function Fk(y)
[Eq. (19)] when the weights are equal to rμ = 1/μ: k = 5, y0 is
the solution of the Eq. (19) for 1/N = 0.001 and y(5)

c is the critical
value of the argument.

FIG. 8. (Color online) The same as in Fig. 7 for k = 3,6,9. When
k increases, the critical point y(k)

c shifts to the right, and the value of
the maximum Fk(y(k)

c ) decreases.

maximumy(k)
c (see Note at the end of Sec. II). Other solutions

of Eq. (19) have to be omitted.
As an example, in Fig. 7 the behavior of the rhs of Eq. (19)

for the fifth pattern (k = 5) is shown for the weights that are
the terms of the harmonic sequence rμ = 1/μ. Four points
y

(5)
4 < y

(5)
3 < y

(5)
2 < y

(5)
1 are zeros of the function F5(y). When

y is greater than y
(5)
1 , the function F5(y) at first increases up

to the value in the point of the local maximumy(5)
c and then

decreases monotonically. The dashed line that is parallel to the
abscissa axis is drawn at the height 0.001. When the left-hand
side of Eq. (19) is equal to 0.001, we have N = 1000. In other
words, for this quasi-Hebbian matrix of the dimensionality
N = 1000 in the vicinity of the fifth pattern there necessarily
is a local minimum. Since the solution of Eq. (19) is large
enough,y0 ≈ 3.5, the overlap (7) with the pattern is close
to 1.

Let us little by little decrease the dimensionality N . The
dashed straight line will go up, and the solution y0(N ) of
Eq. (19) will shift in the region of smaller values. This will
go on till y0 coincides with the critical value y(5)

c . Just this
defines the minimal dimensionality Nmin for which the local
minimum in the vicinity of the fifth pattern still exists. Since
for N < Nmin Eq. (19) has no solution in the region y > y

(5)
1 ,

for such N there is no local minimum in the vicinity of the fifth
pattern. This means that when N < Nmin the fifth pattern is
not recognized by the network.1

Up to now we fixed the number of the pattern k and
decreased the dimensionality N . It is reasonable to fix the
dimensionality N and increase k little by little. We seek its
maximal value for which Eq. (19) has a solution. In Fig. 8 the
behavior of the curves Fk(y) for different values of k is shown.
We see that when k increases, the critical point y(k)

c shifts to
the right, and the value of the maximum of Fk(y(k)

c ) decreases
steadily. It is not difficult to find the maximal value of k for

1Let us note that when the dimensionality N decreases, some
patterns would be forgotten. This is in agreement with the well-
known property of the network: Its memory is proportional to the
dimensionality of the problem.

041925-8



WEIGHTED PATTERNS AS A TOOL FOR IMPROVING THE . . . PHYSICAL REVIEW E 85, 041925 (2012)

which Eq. (19) has a solution. By km = km(N ) we denote this
maximal value of k.

For a given dimensionality N the pattern with the number
km is the last in whose vicinity there is a local minimum. For
k < km Eq. (19) has a solution to the right of the rightmost
maximum y(k)

c as well. Consequently, these patterns would
also be recognized. On the contrary, for k > km Eq. (19) has
no solution in the region y > y(k)

c . Consequently, the patterns
with such numbers would not be recognized.

Let rc be the weight corresponding to the pattern with the
number km: rc = rkm

. Our consideration shows that only the
patterns whose weights are not less than the critical value rc

would be recognized. So, the memory of the network is limited,
but the catastrophic forgetting does not occur.

This analysis is correct for an arbitrary distribution of the
weights rμ. It provides the algorithm of calculation of
the critical value rc. We failed to calculate rc analytically in the
general case. However, in the next section we examine some
specific distributions of the weights for which some analytic
results can be obtained.

V. SOME SPECIAL DISTRIBUTIONS

A. The weights in the form of geometric sequence

Let us discuss in detail the case of the weights in the form of
decreasing geometric sequence rμ = qμ, where the common
ratio q ∈ (0,1). It was mentioned in [6,7] that such weights are
interesting for applications.

Suppose in Eq. (16) the number of the patterns Mtends to
infinity: M → ∞. It is natural to assume that in Eq. (16) the
first value of the summation index is equal to zero and the first
weight is equal to 1: r0 = 1. Then

f (k)
μ (y) ∼

(
qμ

ϕk − qμ

)2

, where ϕk = qkϕ(y).

Now Eq. (16) has the form

N = 1

γ 2

∞∑
μ=0,μ �=k

(
qμ

ϕk − qμ

)2

. (20)

We look for the solution of this equation for large values of
the argument when the inequality ϕk = qkϕ(y) > 1 is fulfilled.
In the rhs of Eq. (20) we replace summation by integration,
and as a result we obtain

lim
M→∞

M∑
μ=0

q2μ

(ϕk − qμ)2
= 1

|ln q|
[

ln

(
ϕk − 1

ϕk

)
+ 1

ϕk − 1

]
.

If by 
k(y) we denote the rhs of this expression and subtract
the term with μ = k, the rhs of Eq. (20) takes the form

∞∑
μ=0,μ �=k

f (k)
μ (y) = 1

γ 2

[

k(y) − 1

(ϕ − 1)2

]
.

It is convenient to pass to the reciprocal functions in both sides
of Eq. (20). Then we obtain an analog of Eq. (19):

1

N
= γ 2(ϕ − 1)2

(ϕ − 1)2
k − 1
. (21)

By solving Eq. (21) for a given q with the aid of computer
simulations, one can find the number of the last pattern that
can be recognized. We denote this number as km(N,q). We are
interested in the value of q that defines the maximal value of
km(N,q). Let qm denote this optimal value, and let km(N ) be the
corresponding number of the patterns: km(N ) = km(N,qm) =
maxq km(N,q). It is evident that such an optimal value qm has
to exist. Indeed, as long as the number q is small, the number
of recognized patterns is also small. In this case the weights
rμ = qμ decrease very quickly when μ increases, and only the
very first patterns will be recognized. It is even possible that
it will be the first pattern only. On the contrary, when q → 1,
our model becomes very close to the standard Hopfield model.
For sufficiently large values of q ≈ 1, none of the patterns is
recognized due to the catastrophic forgetting. Consequently,
there must be the optimal value qm ∈ (0,1), so that the number
of recognized patterns would be maximal: qm = qm(N ).

It is easy to find out the critical value qc for which only the
first pattern would be recognized. It may be shown that the
following estimate for qc is true:

qc = 1 − δ, where δ ≈ 1

0.329N
.

For q > qc, the network ceases to recognize patterns at all.
Up to now we did not succeed in an analytical calculation

of qm(N ). However, this estimate can be obtained by solving
Eq. (21) numerically for different values of q and N . In the
left panel of Fig. 9 the dependence of the ratio km(N,q)/N
on q for three dimensionalities N is shown. We see that the
curves have distinct points of maximum, but the values of all
the maximums are approximately the same:

lim
N→∞

km(N )/N ≈ 0.05. (22)

It can be shown that for the optimal value qm the following
estimate is valid:

qm ≈ 1 − 2.75δ. (23)

The expression (22) shows that the maximal number of
patterns that can be stored by the network is Mc ≈ 0.05N . It is
less than the storage capacity of the standard Hopfield model
(0.138N ), but the catastrophic destruction of the memory does
not occur.

The right panel of Fig. 9 shows the dependence of the
overlap on q for the last recognized pattern (whose number is
km). In the point of the solution “breakdown” all overlaps have
approximately the same values mc ≈ 0.933.

We can move a step forward in the analytical calculations
if for q → 1 and large values of y(let us say, for y � 2) we
use the asymptotic expression for the rhs of Eq. (21):

1

N
= g2 2q2k| ln q|

1 − 2q2k| ln q| , where g = erf y√
2y

≈ 1√
2y

. (24)

In Fig. 10 the right-hand sides of Eqs. (21) and (24) are shown
for different values of k and q. We can see that for large
values of the argument (y � 2) the rhs of Eqs. (21) and (24)
practically coincide. Equation (24) allows us to write down the
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FIG. 9. (Color online) For three dimensionalities N we show the dependence km/Non q (left panel) and the corresponding values of the
overlap for the last recognized pattern (right panel). In both panels solid lines correspond to the dimensionality N = 1000, the dashed lines
correspond to N = 10000, and the dotted lines correspond to N = 100 000.

explicit expression for k:

k = ln[2(Ng2 + 1)| ln q|]
2| ln q| . (25)

We can calculate the maximal value of k(q). When q0 ≈
1 − [e/2(Ng2 + 1)], the maximal value of k is equal to
k0 ≈ Ng2/e ≈ N/2ey2. Now we require the conditions of
the perfect recognition to be fulfilled. That means that the
difference between the pattern and the nearest local minimum
has to be less than 1: m = erf(y) > 1 − 1/N . We find that in
this case y ≈ √

ln(N/4). Substituting this value of yinto the
expression for k0 and denoting by kp the maximal number of
perfectly recognized patterns, we have

lim
N→∞

kp/N = lim
N→∞

0.5e−1/ln(N/4) = 0. (26)

Thus, the requirement of the perfect recognition decreases
the storage capacity of the network substantially: compare
expressions (26) and (22). The same is true for the standard
Hopfield model.

In Fig. 11 we plot three graphs corresponding to the
dimensionality N = 1000. The solid line shows the dependence
of the value of the recognized patterns km on q. The dashed
line shows the dependence of the value of the perfectly
recognized patterns kp on q. This dependence is calculated
by substituting the expression y ≈ √

ln(N/4) into Eq. (25).
Markers in Fig. 11 show the numerical results for the number
of perfectly recognized patterns. The experimental results are
averaged over 500 random matrices. On the whole, agreement
with the theory is quite good.

B. The weights in the form of harmonic series: rμ = 1/μ

In this case we also can let the upper limit in the sum in the
rhs of Eq. (16) tend to infinity: M → ∞. Next, the function
f (k)

μ (17) has the form

f (k)
μ (y) ∼

(
k

μϕ − k

)2

= a2
k

(μ − ak)2
,

0.5 1 1.5 2 2.5 3 3.5 4
0

0.002

0.004

0.006

0.008
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y0 0.5 1 1.5 2 2.5 3 3.5
0
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FIG. 10. (Color online) Rhs of Eq. (21) (solid lines) and rhs of Eq. (24) (dashed lines) for different values of k and q: In the left panel
q = 0.999; in the right panel q = 0.99. In both panels the lower curves correspond to k = 10, and the upper ones to k = 100.
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FIG. 11. (Color online) For N = 1000 we show the dependencies
on qof the maximal number of the recognized patterns km (solid line)
and the number of the perfectly recognized patterns kp (dotted line).
Markers are the experimental numbers of the perfectly recognized
patterns.

where ak ≡ ak(y) = k/ϕ(y) < 1. Then

∞∑
μ �=k

f (k)
μ (y) = a2

k

γ 2

∞∑
μ �=k

1

(μ − ak)2
. (27)

The sum in the rhs of Eq. (27) resembles the Hurvitz ζ function
ζ (s,a) for s = 2 (see [13]):

ζ (s,a) =
∞∑

μ=0

1

(μ + a)s
.

Usually one examines the ζ function as a function of positive
argument a, but in Eq. (27) this argument is negative. It is not
difficult to show that for a ∈ (0,1) the equality ζ (2, − a) =
(1/a2) + ζ (2,1 − a) is true. Now after simple transformations
we obtain an equation analogous to Eq. (19):

1

N
= γ 2(ϕ − 1)2

a2
k (ϕ − 1)2ζ (2,1 − ak) − 1

. (28)

As before, by Fk(y) we denote the rhs of Eq. (28). As an
example, in Fig. 7 we show the graph of the function F5(y).
We are interested in the behavior of the function Fk(y) in the
region of large values of its argument, where the inequality
ak(y) < 1 is fulfilled. This inequality means that ϕ(y) > k.
Moreover, we have to examine the values of y that are to the
right of the rightmost maximum Fk(y) only.

By solving Eq. (28) numerically for each N we can find the
maximal number of the pattern km(N ), which is still recognized
by the network. Patterns whose numbers are less than km(N )
are also recognized, but patterns whose weights are larger
than km(N ) are not recognized. Here the critical value of the
weight rc is equal to the reciprocal of km(N ): rc = 1/km(N ).
On the other hand, in Refs. [14,15] the critical value of rc was
estimated as rc = √

2 ln N/N . The last result was obtained
with the aid of a probability-theoretical technique known as
“signal-to-noise ratio” under the most general assumptions
about the weights {rμ}∞μ=1. After adjusting the normalization
conditions we find that km(N ) has to be equal to kc(N ) [kc(N )

FIG. 12. (Color online) The dependence of km (solid line) and kc

(dashed line) on N . Markers show experimental values of kexp
m .

is obtained from the estimate rc = √
2 ln N/N]:

kc(N ) = 1

π

√
3N

ln N
. (29)

In Fig. 12 we show the graphs km(N ) (solid line) and kc(N )
(dashed line) for different values of N . We see that in the
wide range of values of N the curves are close to each other:
km(N ) ≈ kc(N ).

In Fig. 12 markers indicate the experimental values of the
critical numbers of the patterns for the dimensionalities N =
1000, 5000, 10 000, and 25 000. For each given Nwe generated
a random matrix with the weights in the form of the terms of
the harmonic series and determined the maximal number of
the pattern, which was a fixed point. As a result of averaging
over ten random matrices we obtained the value of k

exp
m , which

is an experimental estimate for km. We see that our experiment
is in good agreement with the theoretical prediction. Thus, the
storage capacity of such a network tends to zero:

lim
N→∞

km(N )/N ∼ lim
N→∞

1/
√

N ln N = 0. (30)

It is not surprising that the storage capacity of this network
is much less than the storage capacity of a network with the
weights in the form of the terms of the geometric sequence.
The point is that the harmonic series is dominated by the
geometric sequence. In Fig. 13 for different values of N we
show the difference between the terms of the harmonic series
1/k and the geometric sequence with q = qm(N ) (23). For
convenience, along the abscissa axis we put the values of
k/N . We see that for k < N/2 the terms of the geometric
sequence are noticeably larger than the terms of the harmonic
series. Only beginning from k ≈ N/2 the terms of these
two sequences become almost equal. In other words, an
overwhelming number of the weights in the form of the terms
of the harmonic series are substantially less than the weights
in the form qk

m.

C. The weights in the form of arithmetic progression

The weights in the form of an arithmetic progression

rμ = 1 − (μ − 1)d, μ = 1, . . . ,M

041925-11



KARANDASHEV, KRYZHANOVSKY, AND LITINSKII PHYSICAL REVIEW E 85, 041925 (2012)

FIG. 13. (Color online) The differences 1/k − qk−1 when k ∈
[1,N ], and q is equal to the optimal value qm(N ) [Eq. (23)]. The
values of N are shown in the panels. Along the abscissa axis is the
value of k/N .

are interesting because they can serve as an approximation of
the case of random weights distributed uniformly inside the
interval (0,1). Since the weights have to be positive, the upper
limit of the sum in the rhs of Eq. (16) has to be finite: M < ∞.
The parameters M and N are independent: The number of
patterns M can be more or less than the dimensionality N .
Another free parameter is the common difference d. The
maximal possible common difference dm = 1/M is defined
from the condition that the smallest weight rM would be
positive. At first we analyze the case d = dm, and after that we
examine the case d = dm/g, where g > 1.

Generally speaking, the weights in the form of the arith-
metic progression are larger than the weights in the form of
the geometric sequence. This is clearly seen from Fig. 14.
Here for different dimensionalities N we show the behavior

FIG. 14. (Color online) The difference of the weights 1 − (k − 1)
d − qk−1 for d = 1/N , q = qm(N ) [Eq. (23)], and k ∈ [1,N ]. Along
the abscissa axis is the value of k/N .

of the difference 1 − (k − 1)d − qk−1: When d = 1/N , the
common ratio is q = qm(N ) (23), and k varies from 1 to N .
We see that everywhere the terms of the arithmetic progression
exceed the terms of the geometric sequence. One can expect
that the storage capacity of a network with the weights in
the form of the terms of the arithmetic progression exceeds the
capacity of the network with the weights in the form of the
geometric sequence. In what follows we will see that this is
indeed the case.

Let us transform the rhs of Eq. (16) in the same way as
it was done in Secs. V A and V B. Assuming that M is very
large we replace summation by integration. Then the rhs of
this equation is

M∑
μ �=k

f (k)
μ (y) = 1

γ 2

[
M
k(y) − 1

(ϕ − 1)2

]
,

where


k = 2ϕk − 1

ϕk − 1
+ 2ϕk ln

(
ϕk − 1

ϕk

)
, ϕk = ϕ(y)

(
1 − k

M

)
.

If we introduce a relative number of the pattern κ = k/M we
obtain the equation that is analogous to Eqs. (21) and (28):

α = γ 2

2ϕk−1
ϕk−1 + 2ϕk ln

(
ϕk−1
ϕk

) , (31)

where ϕk = ϕ(y) (1 − κ). Here α = M/N is the standard
notation for the load parameter. We solve this equation in the
region of the large values of y where ϕk = ϕ(y)(1 − κ) > 1.
We are interested in the solutions which are to the right of the
point, where the expression in the rhs of Eq. (31) is maximal.

In Fig. 15 we show the behavior of the rhs of Eq. (31)
for three different values of κ = 0, 0.49, and 0.6. The solid
line corresponds to κ = 0. It characterizes the conditions of
recognition of the very first pattern with the largest weight
r1 = 1. We see that the maximal value of the load parameter α

for which the first pattern is still recognized is αc(0) ≈ 0.47.
No pattern will be recognized, if the load parameter of the
network is larger than this value, i.e., when α > αc(0). The

FIG. 15. (Color online) The rhs of Eq. (31) for different values
of κ: κ = 0 (solid line), κ = 0.49 (dashed line), and κ = 0.6 (chain
line). The maximum on the curve defines the critical value of the load
parameter αc(κ).
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FIG. 16. (Color online) The dependence of the critical value of
the load parameter αc(κ) and the storage capacity k/N = καc(κ) on
κ . The storage capacity reaches its maximum km/N ≈ 0.06, when
κ ≈ 0.3.

dashed line corresponds to κ = k/M = 0.49. To recognize
49% of the patterns written down into the connection matrix
the load parameter α has to be less than 10%: αc(0.49) ≈
0.09. To recognize 60% of the patterns the load parameter
has to be even smaller (see the chain line): αc(0.6) ≈ 0.05.
When κ increases the critical value of the load parameter,
αc(κ) decreases monotonically. This dependence can be easily
understood: The greater the part of the patterns κ that have to
be recognized, the greater must be the dimensionality of the
problem N , and, consequently, the lesser must be the value of
the load parameter α.

As the storage capacity of the network one usually
understands the ratio of the recognized patterns k to the
dimensionality of the problem N : k/N = κα. In Fig. 16 we
show the dependences of the functions αc(κ) and καc(κ) on κ ,
where by αc(κ) we define the maximal value of the function in
the rhs of Eq. (31) for the given κ . We see that when κ increases,
the function αc(κ) decreases monotonically (the lower panel
in Fig. 16). In the same time the curve k/N = καc(κ) has
a pronounced maximum when κm ≈ 0.3. The value of this
maximum is

km/N ≈ 0.06. (32)

The expression (32) defines the optimal value of the storage
capacity of a network whose weights are the terms of the
arithmetic progression. Comparing (32) with the analogous
expression (22), we see that if the weights are in the form
of the terms of the arithmetic progression, the larger storage
capacity can be obtained.

In the above-mentioned case the common difference is
equal to dm = 1/M and the weights decrease up to a very small
value rM = 1/M . Let us reduce the common difference. Sup-
pose d = dm/g, and g > 1. Then the weights are distributed in
the interval (b,1], where b = 1 − 1/g > 0. It is easy to verify

FIG. 17. (Color online) The behavior of the storage capacity
k/N = καc(κ) for different values of the parameter g.

that now Eq. (32) takes the form

α = γ 2

1 + ϕ2
k

(ϕk−1)(ϕk−b) + 2ϕk

1−b
ln

(
ϕk−1
ϕk−b

) , (33)

where ϕk = ϕ(y) (1 − κ/g). When g = 1, Eq. (33) transforms
into Eq. (31).

In Fig. 17 we show how the curve καc(κ) depends on the
parameter g(in the upper panel of Fig. 16 is the same curve
for g = 1). The maximum of this curve corresponds to the
maximal storage capacity of the network km/N . We see that
when g increases, the value of the maximum also increases,
and the point of the maximum shifts to the right toward the
value κ = 1. Beginning from g ≈ 4 the maximum of the curve
always is in the point κ = 1. Further increase of g only leads
to the rectification of the curve. Little by little it transforms
into a straight line, and the maximal storage capacity tends
asymptotically to the value of the storage capacity of the
standard Hopfield model: αc ≈ 0.138. The larger g, the less
the common difference d, and also the less the difference
between the maximal weight r1 = 1 and the minimal weight
rM = 1 − 1/g. This means that our model more and more
resembles the standard Hopfield model.

VI. CONCLUSIONS

In the standard Hopfield model a stage of learning of the
network and a working stage are absolutely separated. At the
learning stage the Hebb connection matrix is constructed with
the aid of input patterns. At the working stage the network
recognizes the distorted versions of the input patterns. Before
adding the new patterns in the connection matrix one must
verify that the new number of the patterns does not exceed
the critical value Mc = 0.138N . Otherwise the memory of
network will be destructed.

Usually in nature learning processes are continuous ones.
An artificial memory also has to work even if it obtains new
information continuously. For this reason the catastrophic
destruction of the memory of the Hopfield model due to its
overfilling is absolutely inadmissible.
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The method of eliminating of the catastrophic destruction,
which we propose in our paper, seems to be very attractive:
It allows the network to learn even during the working stage.
Each input pattern modifies the matrix elements according to
the standard Hebbian rule. If the input pattern is the same as
the one written down previously, its weight increases by 1. If
the pattern is new, it is written down into the connection matrix
with the initial weight equal to 1. The current connection
matrix is modified uninterruptedly. Since the memory of the
network consists of the patterns whose weights are larger than
the critical value rc, one should not worry about its overfilling.
This critical rcdepends on the current weights distribution.

Let the weight of a pattern be less than rc, but this pattern
has to be recognized by the network. For this purpose it is

sufficient to increase the weight of this pattern making it larger
than the critical value rc. It is possible that at the same time
some other patterns cease to be recognized. Such replacement
of patterns by other ones does not contradict common sense. It
corresponds to the general conception of the human memory.
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