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Textured domains on tense surfaces and membranes: Effect of tilt and chirality
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We study the shape and texture of finite domains comprising chiral or achiral molecules carrying tilt, embedded
in a two-dimensional surface or membrane, using a combination of simulations and exact variational calculations.
We find a variety of shapes and textures including rectangular-shaped domains and a spontaneously broken chiral
texture, when the molecules are achiral. We show that chiral tilt domains nucleating in a region of two-phase
coexistence repel each other, thereby preventing coalescence and further growth. Our work principally addresses
observations of domains in multicomponent giant unilamellar vesicles. It may also be relevant in the study of
domains in phospholipid monolayers, nucleating domains of Sm-C∗ in Sm-A films, and chiral emulsions in Sm-A
films, in situations where we can ignore dipolar interactions.
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I. INTRODUCTION

Shapes and textures of finite-size domains embedded in
surfaces or membranes are governed by an interplay among
elasticity, boundary effects, and defect configurations. A
particularly interesting realization of distinctive shapes and
patterns arises in the context of multicomponent lipid mixtures
in freely suspended monolayers [1] and bilayers (e.g., giant
unilamellar vesicles; GUVs) [2–9], taken as model systems
for the hypothesized lipid-based “rafts” [10,11] on the surface
of living cells. Tense GUVs made from binary or ternary lipid
mixtures, such as DOPC:DPPC, often exhibit coexistence of
liquid disordered (Ld ) and gel phases (or even a liquid ordered
phase; Lo) over a range of temperatures and compositions,
characterized by highly anisotropic domains (and even rosette
patterns) of the gel. Such anisotropic patterning naturally arises
from the existence of some form of in-plane order, such as tilt
order [12].

Our purpose is to provide a detailed analytical and numer-
ical study of the shapes and textures of finite-size domains in
two dimensions when the constituent molecules (or molecular
aggregates) are both chiral [13,14] and possess a tilt [13,15,16].
While dipolar interactions can often play a crucial role [17,18],
we ignore them in this paper; even with this simplification,
we discover a complex phase diagram, with a variety of
novel phases and symmetry breakings. Both domain shape
and tilt texture may be explored by fluorescence microscopy:
the former using partitioning of fluorescent probes [5–9]; the
latter, by analyzing changes in generalized polarization from
probes such as Laurdan [19].

As long as the effects of dipolar interactions can be ignored,
our work may have broader implications for a wide variety
of soft materials such as (i) domains in freely suspended
phospholipid monolayers in an air-water interface [20–24],
(ii) nucleation of Sm-C∗ domains in freely suspended Sm-A
films at the A-C∗ transition [25], (iii) droplets of a suspension
of ferromagnetic particles in a liquid film [26], and (iv)
emulsion of chiral nematogens in a liquid film [27]. A
variety of techniques such as fluorescence confocal polar-
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ization microscopy, atomic force microscopy, Brewster-angle
microscopy and Bitter microscopy (in the case of ferrofluids)
has been used to detect domain shapes and textures on
two-dimensional (2D) substrates.

Over the years, there has been a substantial amount of
experimental and theoretical work on domain shapes in two
dimensions, incorporating the effects of a variety of in-plane
orders such as tilt [28] and hexatic [29,30]. However, most
theoretical work has been restricted to the case where the
constituent molecules are achiral. Here, we systematically
study the effects of chirality on the shape and texture of
tilt domains using a simplified model Hamiltonian. The
competition among bulk orientational order, chirality, and
anisotropic line tension from the boundary gives rise to a
variety of shapes and textures. Even in the achiral limit we
point out several new phases missing in earlier analyses, such
as annular and rectangular domains, which we establish using
an “ exact” variational approach (whose meaning is made
clear later). Unlike previous studies, our variational calculation
allows the topology of the domain (connectedness) and the
shape of the boundary to vary. Our method of analysis takes
off from and extends the elegant treatment in Ref. [28].

In the next section, we discuss the various contributions
to the domain energy containing chiral molecules with an
orientational field. We arrive at an effective continuum
Hamiltonian (Sec. II A) describing the shape and texture of
this finite, 2D domain. We next discuss (Sec. III) the optimum
shape and orientational ordering within the finite patch of fixed
area. The main results of this paper are as follows. (i) We
obtain an “ exact” phase diagram in the achiral limit when the
boundary of the domain is circular (Sec. III A), with a variety
of optimal textures such as virtual boojum, defect, achiral
annular, and a spontaneously broken chiral annular phase. (ii)
We study smooth perturbations of the boundary and determine
the regime of instability of the circular domain (Sec. III B) and
the nature of the resulting equilibrium phase. We find that the
annular phases are no longer minimum energy configurations.
Typical domain shapes are thin and elongated, best described
as rectangular. (iii) Turning on bulk chirality gives rise to a
spiral defect phase and a novel chiral tweed phase (Sec. III C).
(iv) Chirality may even induce a large enough domain to split
into multiple domains; we determine the conditions under
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which such multiple domains are obtained (Sec. IV). This
suggests that tilt domains, nucleated following a quench across
a phase boundary in a multicomponent system, would repel
each other, preventing coalescence and subsequent growth.
We end with a short discussion (Sec. V).

II. ORDER PARAMETER
AND EFFECTIVE HAMILTONIAN

What is the equilibrium texture of a collection of chiral
molecules described by an orientational field, uniformly spread
over a finite domain of fixed area A embedded in a 2D flat
substrate, such as a tense GUV? We show that the interplay
between orientational ordering and domain shape gives rise
to a variety of novel phases and shape transitions. We first
discuss the nature of the order parameter and the dominant
contributions to the energy of the domain.

The orientation of a rigid molecule may be described by
a polar vector which takes values in S2 (Heisenberg spin)
or a director which takes values in the projective space
RP 2 ≡ S2/Z2 [31]. However energetic considerations, e.g.,
in the case of membranes, a combination of van der Waals and
hydrophobic shielding, may constrain (a) the center of mass of
the molecules to lie on a 2D, flat surface and (b) the projection
of the long axis of the molecule onto the 2D plane to have a
fixed magnitude (or small deviations from a fixed value). Thus
owing to strong uniaxial anisotropy, the low-energy sector may
be described by a 2D polar vector m (since the 2D surface
carries a unique local outward normal) which takes values
in S1, an XY spin. The center-of-mass density ρ(x,y) of the
molecules is assumed to be uniformly smeared over the patch
of area A. The molecules outside the finite patch are assumed
to be either in the isotropic or in the Sm-A (i.e., no tilt) or the
liquid-disordered (Ld ) phase.

The tilt molecules interact with each other, and with the
molecules outside the patch, both sterically (purely repulsive)
and via short-range (e.g., van der Waals) attractive interactions.
Both these effects contribute to chiral interactions: the former,
via the Straley picture of interlocking screws [32]; the latter,
via a generalization of the Van der Waals dispersion to chiral
molecules [33]. In the continuum limit, these short-range
interactions can be written as the usual Frank energy, modified
to include the effects of chirality.

In this paper, we ignore the contribution coming from
dipolar interactions. In some cases, such as in phospholipid
domains on GUVs, this may be justified, since the Frank
elastic constants are of order 10kBT (at room temperature),
while the dipolar energy per phospholipid is about 0.1kBT .
In situations where dipolar energy scales are comparable,
it is likely to have a major effect on domain shapes and
textures, such as, for instance, the formation of string-like
aggregates [34].

In our present treatment we assume the surface or mem-
brane to be flat over the scale of the patch; thermal undulations
of the surface controlled by surface tension or bending rigidity
are assumed to be negligible over this scale. Elsewhere we
have discussed the effect of chiral tilt textures on a flexible
membrane, leading to a novel chirality-induced budding and
tubulation [35,36].

A. Tilt texture Hamiltonian

Let us assume that the molecules, now described by a
2D orientational field m, are smeared with a fixed, uniform
density over a patch (domain) of area A embedded in a 2D
surface, the xy plane. The rest of the surface surrounding
the patch is a structureless fluid consisting of molecules
different from the constituents of the patch (or else in a
different phase). We assume that the patch constituents have
come together as a result of strong phase segregation. The
domain energy can be written in terms of bulk distortions
of m and interfacial (perimeter) distortions, including an
orientation-interface coupling.

In our low-energy description, the magnitude of m is
held fixed and normalized to unity (hard-spin model). The
resulting domain energy only contains phase distortions of
m ≡ (cos φ, sin φ). Such a phase-only theory is formally ul-
traviolet divergent and needs to be made finite by a microscopic
cutoff length of molecular dimensions. The regime of validity
of such phase-only theories is over scales larger than this cutoff
length. At these scales, the hard-spin model is equivalent to a
soft-spin model, where the magnitude of m is constrained by
means of a potential V (m) = u(m · m − 1)2 to deviate only
slightly from its preferred value, for u large and postive.

The form of the bulk distortion energy of m can be
constructed from symmetry arguments. Since tilt is a spatial
vector, tilt distortions may be described by a Hamiltonian
invariant under 2D spatial rotations O(2). To lowest order,
this leads to the usual Frank energy in two dimensions, with
two independent contributions: a splay distortion (∇ · m)2

and a bend distortion (∇ × m)2, where ∇ ≡ (∂x,∂y). Recall,
however, that the molecules are chiral, and so on general
symmetry grounds, we should allow for terms which are
invariant under improper rotations alone; thus to lowest order
this gives rise to a term of the form (∇ · m)(∇ × m) [25]. Note
that for a 2D vector field m, ∇ × m is a pseudoscalar, not a
vector. Viewed as a vector in R3, the curl �m is a pseudovector
pointing along �z (we consistently represent 2D vectors by
boldface and 3D vectors by an overhead arrow).

The coupling between the tilt and the interface gives rise to
boundary terms: if n is the local unit normal to the boundary
aiming into the domain, then there are two possible boundary
terms to linear order in m. These are (i) an isotropic line tension
proportional to the perimeter and (ii) anchoring terms of the
form (m · n) and (m × n), which contribute to an effective
anisotropic line tension. One source for this boundary term is
that the interface between the tilt and the nontilt components (in
the case of chiral emulsions, this coincides with the tilt-solvent
interface) prefers a specific alignment of the tilt with the local
normal. Alternatively, such boundary contributions may arise
from the presence of a bulk spontaneous bend ∇ × m and
splay ∇ · m, since ∫

A

div �m =
∮

C

�m · �n, (1)∫
A

curl �m =
∮

C

�m × �n. (2)

The spontaneous bend is a chiral contribution; spontaneous
splay could arise from specific substrate-tilt coupling or from
steric forces arising from a high head-to-tail ratio of the
constituent molecules.
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Thus our low-energy effective Hamiltonian for the chiral tilt
domain in the strong segregation limit is given, to quadratic
order in the fields, by E = EB + EC , where the bulk energy

EB =
∫

A

[
k1

2
(∇ · m)2 + k2

2
(∇ × m)2

+ kc(∇ · m)(∇ × m)

]
δ2x, (3)

and the interfacial energy

EC =
∮

C

dl(σ0 + σ1(m · n) + σ2(m × n)). (4)

The coefficients k1, k2, and kc represent the energies of
splay, bend, and chiral distortions of the tilt field. When the
coefficients k1 and k2 are comparable, the Frank terms resist
any deviation of m from uniformity and hence the m field
would everywhere point in a specific direction. The anisotropic
boundary terms, σ1 (σ2), however prefer to align m at the
boundary along (or orthogonal to) the local normal. This
competition gives rise to a variety of nontrivial textures. The
boundary terms may be interpreted as providing an effective
anisotropic line tension of the form σ0 + σ1(m · n) + σ2(m ×
n). A negative value of this effective line tension would lead to
an instability of the circular domain boundary [28]. Nontrivial
textures also obtain when the Frank coefficients k1 and k2 are
appreciably different [37]. We will see that chirality introduces
a new twist to the texture phase diagram [35,36].

In this strong segregation limit, molecules are not allowed
to exchange across the domain. This imposes a constraint on
the allowable configurations explored by the molecules. Thus
for fixed “bath” conditions (state of the molecules outside the
patch), the configuration of molecules inside the patch can
reach equilibrium. The area of the patch and the density of
molecules in the patch are fixed over this time scale. In the case
of nucleation of the chiral tilt domains (e.g., Sm-C∗ domains
in a freely suspended Sm-A film or tilt domains of chiral lipids
in a mono- or bilayer), slow domain growth justifies the use
of quasiequilibrium ideas. For a dilute emulsion, the area of
the domain is fixed at time scales smaller than the domain
coalescence times; thus the shape and texture of the domain
will be such as to minimize the free-energy subject to the
constraint of constant area.

Our aim, then, is to find that optimal conformation: in
general, a difficult calculational task. We will see that given
the energy scales in the problem (Sec. V), we may ignore
the effects of thermal fluctuations on the shape and texture of
the domain. Thus, the Frank constants k1,k2 are ∼10kBT ,
while the interfacial energy of a domain of radius 10 μm
is an order larger. Hence a mean-field minimization of the
above free-energy functional will suffice. Estimates of the line
tensions obtained from studies of shape and texture changes
of tilt domains in Langmuir monolayers using Brewster angle
microscopy [23] and shapes of lipid domains in GUVs using
fluorescence microscopy [9] give σ0 ≈ 0.4kBT /nm for the
isotropic and σ1 ≈ 0.36 × 10−3kBT /nm for the anisotropic
line tensions, respectively.

III. MEAN-FIELD PHASE DIAGRAM

We perform this constraint minimization of the free energy
using a variational approach, where we vary both the texture
and the domain shape while keeping the area constant. Our
constrained variational ansatz also accounts for the possibility
that the domain may not be simply connected, however, we
will not allow the domain to break up (domain splitting will
be treated in Sec. IV). Our variational guesses are supported
by computer simulations, i.e., Monte Carlo simulations with
simulated annealing to avoid getting stuck in local minima. It is
in this sense that our variational calculation for the mean-field
phase diagram is “ exact” (made more explicit in Sec. III A).
We have also explicitly checked that the effect of including
higher-order (symmetry allowed) terms in the Hamiltonian is
small and does not affect the phase diagram.

We henceforth set k1 = 1 as our unit of energy and R = 1,
associated with the domain size R = √

A/π , as our unit of
length. Some experimental situations are more conveniently
analyzed by fixing σ0 = 1 as the unit of length and determining
the phase structure in the (R,σ1) plane. We discuss both these
ensembles.

Given the total energy functional, we obtain the optimal
conformation of the domain shape and texture that minimizes
this energy, subject to two constraints. One is that the
orientation m is a unit vector: this may be ensured by either
a “hard-spin” version of the model (where we explicitly set
|m| = 1, by suitable parametrization) or a soft-spin potential of
the form V (m) = −α(m · m) + β(m · m)2 or V (m) = u(m ·
m − 1)2, which makes deviations of |m| from unity hard to
obtain.

A. Achiral domain

We first turn off the effects of bulk chirality (kc = 0) but
retain the anisotropic boundary term. In most of our work we
take k2 = k1 = K (the one-coupling-constant approximation);
toward the end we comment on the distinct features when
k1 	= k2.

In terms of the phase angle φ, where m ≡ (cos φ, sin φ),
the free-energy functional simplifies to

E = K

2

∫
A

(∇φ)2 +
∮

dl(σ0 + σ1 cos(ψ − φ)

+ σ2 sin(ψ − φ)), (5)

where we have written the normal n ≡ (cos ψ, sin ψ) in polar
coordinates. Variation of the above Hamiltonian gives the bulk
Euler-Lagrange equation, ∇2φ = 0 (Laplace) and nontrivial
boundary equations which have to be simultaneously satisfied.
Instead of asking for solutions of the combined bulk +
boundary equations, we determine the global minimum free-
energy configuration variationally: this has the advantage of
obtaining boundary minima, minimum energy configurations
that may not be solutions of the Euler-Lagrange equations.

Without loss of generality, we may work with a simpli-
fied free-energy functional: as argued by previous authors
[25,28], a global rotation of m by φ′ = φ − tan−1(σ2/σ1) −
π/2, without rotating the boundary contour, transforms the
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free-energy functional to a new functional,

E = K

2

∫
A

(∇φ)2 +
∮

dl(σ0 + σ cos(φ − ψ)), (6)

where σ =
√

σ 2
1 + σ 2

2 is the single redefined anisotropic
boundary coefficient. Configurations which minimize the free
energy, (5), with parameters (K,σ0,σ1,σ2) can be obtained
from configurations which minimize the free energy, (6), with
parameters (K,σ0,σ ) via the global transformation defined
above. Thus in this equal-constants, achiral regime, it suffices
to work out the phase diagram in the (σ0,σ ) plane using the free
energy, (6); the phase diagram for arbitrary values of σ1, σ2 can
then be reconstructed. This simplification does not occur when
the bulk chiral term is present. Note that by making a global
rotation, it is possible to entirely eliminate the contribution
from the boundary chiral term ∇ × m. This implies that the
domain shapes will always be achiral [28]. Now set R = 1, as
our unit of length. We first discuss the limit of large σ0, when
the domains are forced to be circular (we discuss the limit of
stability of a circular domain in Sec. IV). The extreme limit,
σ0 → ∞, might be experimentally arranged by smearing a
thin film of Sm-C∗ over a hole made in a solid substrate.
Clearly, in the absence of any anisotropic line tension, σ = 0,
the lines of m describing the optimal texture are a (parallel) set
of straight lines pointing in any direction. This configuration
is invariant under arbitrary translations and rotations of the
boundary circle with respect to the lines of m. An infinitesimal
(positive) σ forces the lines of m to curve slightly (at the
cost of Frank energy) to meet the circular domain boundary
at a desired angle (Fig. 1). From the axial symmetry of the
solution, it is clear that this configuration is associated with
a +2 virtual defect, situated outside the domain, called a
virtual boojum [25]. Note that this configuration is infinitely
degenerate. To calculate the energy we need to parametrize the
virtual boojum configuration, where the center of the circular
domain is a distance, a, away from the core of a virtual
defect of strength N . Placing the origin of polar coordinates
(r,θ ) at the core of the boojum, we can describe the texture
m ≡ (cos φ, sin φ) by the equation

φ = Nθ + c1r sin θ + c2r
2 sin 2θ + c3r

3 sin 3θ + · · · . (7)

The first term is the singular part representing the boojum;
subsequent terms represent the most general smooth solution
of Laplace’s equation with the desired symmetry. The energy
E is minimized with respect to the variational parameters
(N,a,{cn}) for fixed (σ0,σ ). Consistent with our symmetry
arguments, we explicitly find that the optimal value of N is

FIG. 1. Effect of anisotropic line tension on the texture of an
achiral circular domain: (a) a boojum of charge 2; (b) texture of a
domain of radius R whose center is at a distance a from the core of
the boojum. Arrows give the local direction of m.

FIG. 2. (Color online) Variation of a, the distance of the virtual
boojum from the center of the domain, as a function of the anisotropic
line tension σ : note that the penetration of the boojum core into the
domain is pre-empted by the annular phase. We have taken σ0 = 1
for convenience.

exactly 2 and independent of a. In principle, of course, we
can take as many variational parameters {cn} as we desire;
however, in drawing the phase diagram we have parametrized
the texture by a and c1 alone; inclusion of higher order cn

lowers the energy by 1% at most. The form of the variational
energy for φ = 2θ is given by [28]

E(a) = −2πK ln

[
1 −

(
R

a

)2 ]
− 2π

σR2

a
+ 2πσ0R, (8)

which is to be minimized with respect to a. The minimization
with respect to the whole set of parameters (a,{cn}), however,
is best carried out numerically. Upon variation, we find that an
increase in the anisotropic line tension σ leads to an increase
in c1, pushing the core of the virtual defect toward the domain
center. Experimental characterization of this texture in the
context of Langmuir monolayers at the air-water interface
[23,24] agrees with our analysis above. This movement of
the core continues till a = 1.7, beyond which there is a
discontinuous transition to the annular phase (Fig. 2). Note
that the boojum is always virtual; the core never penetrates the
domain, since it is pre-empted by the annular phase. Reference
[28] misses this feature, since their variational shapes do not
include such multiply connected topologies.

The achiral annular phase can be parametrized by inner
and outer radii r1 and r2, respectively. At the outer rim of
the annulus, m is directed radially outward, while at the inner
boundary, m is inclined at an angle α to the local normal
n. With the origin of polar coordinates at the center of the
annulus, the texture may be described by

φ = θ − α
r2 − r

r2 − r1
, (9)

where r1, α are variational parameters (r2 may be obtained
from the constant area constraint). With this parametrization,
the energy of this configuration is given by

E(r1,α) = πK

[
α2

2

(
r2 + r1

r2 − r1

)
+ ln

r2

r1

]
− 2πσ (r2 − r1 cos α) + 2πσ0(r1 + r2), (10)
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FIG. 3. (Color online) The inner radius r1 of the annular domain
decreases (increases) with σ in the achiral (chiral) phases [represented
by circles (squares)]. We have taken σ0 = 1 for convenience.

where r2
2 − r2

1 = R2. The inner radius r1 monotonically
decreases as we increase σ (Fig. 3) such that m always points
radially outward (α = 0) at every point of the domain. With
increasing σ , we cross a first-order phase boundary (Fig. 4)
into a new annular phase with a chiral texture.

The chiral annular phase is obtained when the angle α

jumps to a value greater than π/2 at both the inner and the
outer boundaries. The bulk texture is chiral and is a true
symmetry-broken configuration (recall that there is no bulk
chiral interaction) with the pseudoscalar order parameter

C = 1

R

∫
d2x (∇ × m) 	= 0. (11)

This chiral phase is doubly degenerate and can spontaneously
acquire either sign; the anisotropic tension σ behaves as a
surface field conjugate to this Ising-like chiral order parameter.

Note that the “core” of these annuli must consist of
molecules without tilt; our assumption in minimizing the
energy has been that the two species of molecules are free to
diffuse across the domain of fixed area A. If for some reason

FIG. 4. Phases of the tilt texture domain with a circular pe-
riphery: (1) virtual boojum; (2) achiral annular; (3) chiral annular;
(4) hedgehog with εc = 0. Arrows indicate the direction of the m
field.

the diffusion of the nontilt molecules from outside the patch to
the core of the annulus is hindered, then the appearance of such
a phase would be kinetically blocked. In this case, the virtual
boojum will penetrate the domain and would lead ultimately
to the hedgehog configuration (as in Ref. [28]).

The hedgehog phase has a defect at the domain center and
a texture described by φ = θ (when the origin is at the domain
center). The energy includes a core contribution εc of the defect
of microscopic size rc (rc  R),

Ehedge = πK ln
R

rc

− 2πR(σ − σ0) + εc. (12)

The phase diagram in the (R,σ ) plane is shown in Fig. 4.
The transitions between these phases are discontinuous, as
indicated by the change in slope of the energy branches as
a function of σ . As discussed earlier, in some experimental
situations it is more useful to study the phase diagram in the
(R,σ ) plane; thus we set σ0 = 1 to obtain a unit of length.
Assuming that the domain is still circular, the phase diagram
shows the discontinuous transitions, which weaken (i.e., the
jump in the appropriate order parameter decreases) as the
domain size R shrinks.

This analysis suffices to reconstruct the entire phase
diagram in the (σ1,σ2) plane by global rotation of the optimal
textures obtained above. For instance, the virtual boojum
texture reported in Ref. [28] can be obtained from a global
rotation of the texture in Fig. 1. Likewise, the vortex phase
can be obtained by globally rotating the hedgehog texture by
an angle π/2. The vortex texture spontaneously breaks chiral
symmetry. Other nontrivial phases may be obtained by global
rotations of the texture in the annular phases.

Finally, we mention in passing the case where k1 	= k2,
which was the subject of study in Ref. [37]. The difference
in the splay and bend energies implies that the hedgehog
and vortex defects are no longer degenerate. If K = (k1 −
k2)/k1, then as K goes from large negative to large positive
values, the texture goes from a hedgehog to a vortex via a
spiral defect phase.

B. Noncircular achiral domain

For smaller values of σ0/σ1, the domain is no longer
circular; as shown in Refs. [28,38], deviations from circularity
arise when the effective line tension σ0 + σ1(m · n) + σ2(m ×
n) < 0. We summarize their results, based on linear stability
analysis.

Parametrize the boundary by smooth deformations of a
circle, r(θ ), where we have temporarily shifted the origin from
the core of the boojum by a distance a to the center of the
domain, i.e., the center of the circle of radius r0, and 0 < θ <

2π is the angle to the polar axis,

r(θ ) = r0

(
1 +

∞∑
n=1

αn cos nθ

)
. (13)

Such a parametrization only includes shapes with no over-
hangs; i.e., the coordinate r(θ ) is a single-valued function of θ .
Further, the parametrization is smooth and so does not include
shapes with cusps, as in Refs. [24,38]. Since the area of the
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domain has to be A, we must have

πr2
0

(
1 + 1

2

∞∑
n=1

α2
n

)
= A = πr2. (14)

Perturbative analysis [28] of the domain boundary about the
circle and the texture about the optimal texture (virtual boojum,
annuli or hedgehog), as carried out in Ref. [28] for the virtual
boojum, indicates that the circle is unstable to the n = 2 mode
when σ > σ0, below a critical value of K/σR.

We complement the linear stability analysis by a variational
calculation. The reason we do this is because (a) linear
stability analysis typically underestimates phase boundaries
and (b) linear stability analysis does not give the (new) stable
configuration in the regime of instability of the circle. To
address these issues, we parametrize both the boundary and
the texture and determine the lowest energy configurations of
the texture and the domain shape using a variational scheme.

Again, we set K = σ0 = 1 to fix the units of length
and energy. We now minimize the energy as a function of
variational parameters {N , a, {cn}, {αn}} for a given value of
R and σ . The optimal value of N is, as before, N = 2. We
also find that including terms in the texture with coefficients
{cn>1} reduces the minimum value of E by at most 1%. So we
parametrize the texture in the simpler form

φ = 2θ + c1y, (15)

where y is the distance of any point from the axis of the
domain. As σ is increased from 0, the core of the boojum
approaches the center of the domain but the domain remains
almost circular.

As σ is raised beyond a threshold σ ∗, the core begins to
recede from the center and the domain bulges out at the equator
(Fig. 5) and flattens near the poles. Indeed we find that the
texture throughout the (R,σ ) plane is either a virtual boojum
or a hedgehog defect. For large values of σ , but still in the
boojum phase, it is a good approximation to set φ = c1y and
take the domain to be a rectangle bracketed at the equator by
two semicircular caps (Fig. 5). When the defect is within the
domain, the texture is a hedgehog; we leave the study of the
corresponding domain shapes for later.

FIG. 5. Stretching action of strong anisotropic line tension:
domain conformation for (a) σ = 6.5 and (b) σ = 9.5. (c) Variation
of 1/a (thin line) and the prolateness (l − b)/b with σ for a domain
of effective radius R = 1.

Such rectangular domains have been observed on GUVs
consisting of a binary lipid mixture, a saturated component
(e.g., DPPC) and an unsaturated component (e.g., DOPC), at
temperatures below the gel transition of the saturated lipid
(e.g., 42 ◦C for DPPC). Following a temperature quench,
domains of the saturated lipid, observed using fluorescence
microscopy, were found to nucleate in the background of
the unsaturated lipid and grow as rectangular domains. We
suggest that the tilt of DPPC in the gel phase gives rise to
an anisotropic line tension, accounting for the shape of these
domains, consistent with our analysis.

C. Chiral domain

We now turn to a description of the phases with nonzero
bulk chirality kc. In this case, both the texture and the shape
of the boundary may assume chiral shapes. For the moment,
however, let us assume that the boundary of the patch is
circular. As before, we set k1 = k2 = 1 and σ0 = 1. Further,
without loss of generality, we take kc > 0. To highlight the
effects of bulk chirality, we have set the anisotropic line tension
σ = 0. It will be clear that the effects of bulk chirality dominate
the nature of the texture.

Let us rewrite the Frank expression as

E = 2πR +
∫

A

1

2
(div m + curl m)2

+ (kc − 1)(div m)(curl m). (16)

It is clear, and we have checked this explicitly, that for a
low enough bulk chirality, |kc| < 1, the uniform phase, with a
circular domain and uniform m, is the lowest energy state.
Indeed, had we included the anisotropic line tension, we
would have seen that the optimal achiral domains described
in Fig. 4 would be the lowest energy configurations for small
enough |kc|.

As seen in Eq. (16), increasing the magnitude of kc, makes
the optimal texture more wound up: the texture prefers to
have a very high curl and a divergence equal and opposite to
the curl. The optimal texture is neither a pure divergence nor
purely rotational, but an (Archimedes) spiral with an angle of
opening α = π/4 with respect to the local radial (Fig. 6).

In polar coordinates, with the origin at the center of the
circular domain, the spiral hedgehog is described by an m
with constant radial and tangential components everywhere,
mr = cos α and mθ = sin α (m2

r + m2
φ = 1). Using

div m = mr

r
, (17)

curl m = mφ

r
, (18)

FIG. 6. (a) Pure divergence. (b) Pure rotational. (c) Spiral defect.
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we may compute the energy of this spiral configuration,

E = 2π (rc + R) − 1

2
(kc sin 2α − 1) ln

R

rc

+ εc, (19)

where rc is the radius and εc is the energy of the defect core.
The optimum value of α is π/4 when |kc| > 1, making mr =
1/

√
2, mφ = −1/

√
2. The spiral hedgehog phase clearly gives

a nonzero value for the chiral order parameter C, Eq. (11).
We see that the effect of the kc term is felt most strongly at

the core of the spiral defect, falling off inversely as the square
of the distance from the core. Can we find a texture whose
chiral strength is large not just at one point but over the entire
domain ? If so, this would surely be a candidate for the optimal
texture.

To answer this question, we have carried out a Monte Carlo
simulation of 3055 particles carrying O(2) spins on a triangular
lattice with a Hamiltonian obtained by discretizing E. In order
to search for the lowest energy configuration, we had to resort
to simulated annealing from (kB T )−1 = 0.1 → 300 starting
from a variety of initial conditions. The energy functional is
augmented by a higher order term γ ((div m)4 + (curl m)4) to
provide a cutoff to the spatial variations of m. Figure 7 shows
the optimal texture obtained for σ = 0 and kc = 12.75: the
texture is best described as a chiral tweed with a stripe size
l∗ = 0.01.

This texture may be easily parametrized variationally.
First, place the origin of coordinates on the boundary of the
domain with the x axis along a diameter and parametrize the
texture by

mx =
∣∣∣cos

x

l

∣∣∣ , my = −
∣∣∣sin

x

l

∣∣∣ . (20)

The texture consists of stripes of width πl parallel to the y axis.
This parametrization is shown in Fig. 7 for comparison with
the optimal texture obtained in the simulation. This texture
confers a net chiral strength to the domain: (∇ · m)(∇ × m)
has the same sign everywhere, although the sign of individual
terms, ∇ · m and ∇ × m, varies from one stripe to the next.
The energy of the chiral tweed domain is

E=2πR− kc

2l2

∫ 2R

0
dx

√
2xR − x2

∣∣∣∣sin
2x

l

∣∣∣∣ + πR2

2l2
. (21)

The variational parameter l approaches 0 to minimize this
energy: higher order derivative terms in the Hamiltonian,

FIG. 7. (a) Closeup of the chiral tweed texture generated by a
Monte Carlo simulation, and (b) its continuum representation by
a mathematical formula. In the shaded (white) portions, div m is
positive (negative) and curl m is negative (positive). This shows the
texture within a unit cell; the pattern repeats periodically to form the
tweed phase.

FIG. 8. (a) Phases of the tilt texture domain with bulk chirality
and σ = 0: (1) uniform phase; (2) spiral defect (where we have taken
εc = 0 and rc = 0.005); (3) chiral tweed (stripe width l∗ = 0.01).

such as γ ((div m)4 + (curl m)4), would, however, cut off this
monotonic decrease at some scale l∗. Note that the energy
decreases rapidly as kc increases (Fig. 9). The phase diagram
of this chiral domain is given in Fig. 8, together with a
demonstration of discontinuous transitions as shown by the
crossing of the energy branches (Fig. 9).

IV. DOMAIN SPLITTING

So far our restriction to the strong segregation limit has also
assumed that the planar domain of area A does not break up. If
the chiral strength is large enough, kc � 1, the texture might
prefer to maximize the number of spiral defect points. This
could induce domain splitting. To study the conditions under
which such breakup is favorable, we calculate the energy of n

circular domains of equal area, each bearing the same spiral
texture, and compare it to that of a single circular domain
with the same total area and texture. The total energy of this
configuration is

E(n) = 2πσ0
√

nR − nπ (kc − 1) ln
R/

√
n

rc

+ nεc. (22)

For small values of A, a single domain E(1) has the least
energy. As A increases, E(2) becomes smaller than E(1):
chirality in the bulk wins over interfacial energy (Fig. 10). As
A increases further, multidomain splitting is favored (Fig. 10).

FIG. 9. (Color online) Variation of the energy branches of the
(1) uniform, (2) spiral hedgehog, and (3) tweed phases as a function
of kc at R = 1, indicating discontinuous transitions. Note that the
energy decreases rapidly in phase 3 as kc increases.
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FIG. 10. (Color online) Energy E(n) of a domain split into n equal parts, keeping the total area, A = πR2, fixed (R in units of the core
radius, rc). Here we show the n = 1,2,3 branches: the domain prefers to split in two for a range of R values (σ0rc = 0.1, εc = 0, kc = 3).
(b) Phase diagram of kc versus R (in units of rc) shows a regime where a single domain (n = 1) splits into two domains (n = 2).

At even higher values of A, however, domain splitting is
prohibited by a large interfacial energy cost; thus there is a
window of areas for which chirality induces domain split-up.
This tendency to split holds when kc is large enough; for a
fixed value of σ0rc, there is a critical kc beyond which chirality-
induced splitting would manifest. This splitting phase diagram
is shown in Fig. 11. Increasing the value of σ0rc increases the
value of kc at which the domain splitting transition takes place.

This chirality-induced splitting has implications in the
nucleation and growth of tilt-ordered domains in a fluid
substrate, as in binary lipid mixtures, where one of the
components has a tilt and is chiral, or in the nucleation
of Sm-C∗ domains in a Sm-A film (since the SmA-SmC∗
transition can be first order [39]). For instance, consider a GUV
composed of a binary lipid mixture of a saturated (minority
component) and an unsaturated lipid species, quenched below
the gel transition of the saturated lipid. Domains of the gel
phase spontaneously nucleate in the liquid-disordered phase.
Growth initially occurs via coarsening; as the domains get
larger, they undergo random Brownian diffusion on the surface
of the GUV, coalescing when two domains encounter each
other. If, however, the molecules in the gel phase have a
tilt and chirality, then coalescence of large enough domains
(determined by the value of kc; Fig. 11) could be prevented
by the above mechanism, leading to a suppression of further
growth. A similar feature should be observed in the nucleation
and growth of Sm-C∗ domains in a Sm-A film.

V. DISCUSSION

In this paper we have discussed the equilibrium shapes
and textures of a single domain consisting of molecules
endowed with a tilt embedded on a rigid surface, in situations
where dipolar interactions are unimportant. In addition to
having a tilt, the molecules constituting the domain may be
chiral. The interplay among tilt, chirality, and boundary effects
gives rise to a rich variety of shapes and textures separated
by discontinuous transitions. Our results are obtained by a
combination of Monte Carlo simulations and exact variational
calculations. A key feature of our variational ansatz is that
it allows for a variation in the connectedness of the domain

and the shape of the domain boundary. Our main results are
as follows. (i) In the achiral limit, optimum textures include
virtual boojum, annular, and hedgehog phases. A novel feature
is the occurrence of spontaneous chiral symmetry breaking
to a chiral annular phase. (ii) When the domain shapes
are allowed to deviate from circularity, then the tilt-induced
anisotropic line tension typically gives rise to anisotropic
domains whose shapes are roughly rectangular and elongated.
(iii) A threshold chirality produces spiral defects and an
unusual chiral tweed phase. (iv) Chirality induces large enough
domains to break up into smaller domains, leading to a
limiting domain size (keeping all other parameters fixed) and
preventing coalescence.

In our theoretical study we have not included the effects of
long-range multipolar (dipolar, quadrupolar) interactions; even
so, we obtain a rich variety of shapes and shape transitions.
In Ref. [36], we estimated the numerical values of parameters
entering the Frank free energy, Eqs. (3) and (4), and showed
that they are small compared to a typical dipolar interaction for
the systems under consideration, providing a justification for
dropping it. It is true, however, that a long-range dipolar inter-
action, if present, will always dominate at large length scales.
In reality, dipolar interactions are screened; this introduces an
additional length scale in the problem. If the screening length is
large, then dipolar and quadrupolar interactions will crucially
change the results reported here. This has been beautifully
demonstrated in a series of experimental and theoretical studies
on domains in lipid monolayers [40].

While our results are, in principle, applicable to a variety of
systems featuring tilt domains of finite size embedded in a 2D
substrate, our main interest is in the shapes and dynamics of
domains in a multicomponent lipid mixture. GUVs composed
of saturated and unsaturated lipid components typically exhibit
a wide coexistence regime between a liquid disordered phase
(enriched in the unsaturated component) and a gel phase
(enriched in the saturated lipid), with the saturated lipid
showing a tilt with respect to the plane of the membrane.
Following a quench into this coexistence region, domains
of the gel phase nucleate and grow in the liquid disordered
phase. If the saturated lipid is chiral and/or if chiral impurities
partition into the gel domain, then our analysis regarding the
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shapes and dynamics of nucleating domains would hold. We
look forward to experimental studies of these systems. We have
recently studied an extension of this theory of orientational
order on rigid membranes to the case of active polar filaments
such as cortical actin on a rigid 2D surface [41].
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