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Despite research spanning several decades, the exact value of the shear modulus G of the erythrocyte membrane
is still ambiguous, and a wealth of studies, using measurements based on micropipette aspirations, ektacytometry
systems and other flow chambers, and optical tweezers, as well as application of several models, have found
different average values in the range 2—10 uN/m. Our study shows that different methodologies have predicted
the correct shear modulus for the specific membrane modeling employed, i.e., the variation in the shear modulus
determination results from the specific membrane modeling. Available experimental findings from ektacytometry
systems and optical tweezers suggest that the dynamics of the erythrocyte membrane is strain hardening at both
moderate and large deformations. Thus the erythrocyte shear modulus cannot be determined accurately using
strain-softening models (such as the neo-Hookean and Evans laws) or strain-softening/strain-hardening models
(such as the Yeoh law), which overestimate the erythrocyte shear modulus. According to our analysis, the only
available strain-hardening constitutive law, the Skalak et al. law, is able to match well both deformation-shear
rate data from ektacytometry and force-extension data from optical tweezers at moderate and large strains, using
an average value of the shear modulus of G, = 2.4-2.75 uN/m, i.e., very close to that found in the linear regime
of deformations via force-extension data from optical tweezers, G, = 2.5 &£ 0.4 uN/m. In addition, our analysis
suggests that a standard deviation in G of 0.4-0.5 uN/m (owing to the inherent differences between erythrocytes
within a large population) describes well the findings from optical tweezers at small and large strains as well as

from micropipette aspirations.
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I. INTRODUCTION

A human erythrocyte is essentially a capsule (i.e., a
membrane-enclosed fluid volume) where the liquid interior
(cytoplasm) is a concentrated hemoglobin solution that be-
haves as a Newtonian fluid with viscosity p, & 6-10 m Pa s
[1,2]. In healthy blood and in the absence of flow, the average
human erythrocyte assumes a biconcave discoid shape of
surface area S, = 135 um?, with a diameter of 7.8 um
and a thickness varying from 0.8-2.6 pum at physiological
osmolarity, resulting in a volume of V, = 94 um? [3,4]. The
erythrocyte membrane is a complex multilayered object con-
sisting of a 4-nm-thick lipid bilayer (which is essentially a two-
dimensional incompressible fluid with no shear resistance) and
an underlying elastic network of spectrin (which exhibits shear
resistance like a two-dimensional elastic solid) [4].

Despite research spanning several decades, the exact value
of the shear modulus G, of the erythrocyte membrane is still
ambiguous, and a wealth of studies, using measurements based
on micropipette aspirations, ektacytometry systems and other
flow chambers, and optical tweezers, as well as application
of different models, have found different average values in
the range 2-10 uN/m. Early experimental studies using
micropipette aspiration reported an average shear modulus
of Gy = 4-10 uN/m [5-7], while models proposed a strain-
dependent shear modulus with a value near Gy =2 uN/m
at low strains; e.g., see Ref. [8]. In 1999, Hénon et al. [9],
utilizing optical tweezers at small strains, found the membrane
shear modulus to be Gy = 2.5+ 0.4 uN/m. Later studies,
using force-extension data from optical tweezers and matching
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them with continuum and molecular models, found a shear
modulus in the high range, G; = 8.3 uN/m [10-12]. In our
recent work [13], we compared our computational results with
ektacytometry findings [14] and found a very good match for a
shear modulus very close to the average value found by optical
tweezers at low strains, G; = 2.5 uN/m [9]. (To facilitate
the subsequent discussion, in several places only the shear
modulus value will be presented with the implicit assumption
that its units are always uN/m.)

The significant discrepancies between these values suggest
aneed to examine the methodologies employed. Our review of
published studies on the determination of the erythrocyte shear
modulus reveals the following conclusions (as also discussed
in Secs. III and IV). (i) Several studies are approximate since
they utilize simple (or even crude) models and thus, at best,
they find the order of magnitude of the shear modulus rather
than its exact value. (ii) From the rest of the studies, which
rely on accurate models, many utilize identical or very similar
methodologies and thus it is not surprising that they predict
a similar value for the shear modulus. Therefore, from the
available large number of studies employing accurate models,
only a much smaller set is truly independent. (iii) This small
set of independent methodologies still predicts different values
of the shear modulus. Thus a question naturally arises as to the
reasons for this variation on the shear modulus determination.

Based on the above, the present paper has two main goals:
(a) to explain why different methodologies predict different
values of the erythrocyte shear modulus, and (b) to predict
accurately the value of the shear modulus and, in particular,
its average value and the range of its possible variation (owing
to the inherent differences between erythrocytes within a large
population).
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In Sec. II, we review several constitutive laws that have
been used for the continuum description of the erythrocyte
membrane since they are the basis to relate the available experi-
mental measurements to the erythrocyte shear modulus. Based
on the nature of these constitutive laws and their relationship,
in Sec. III we discuss the determination of the shear modulus
via four distinct methodologies: force-extension data from
optical tweezers at small and large strains, deformation-shear
rate data from ektacytometry, and data from micropipette
aspirations. A review of additional methodologies on the
shear modulus of the erythrocyte membrane has been included
in Sec. IV.

We emphasize that our review of the existing studies on
the determination of the erythrocyte shear modulus included
in this paper cannot be all inclusive owing to the difficulty
in finding all papers published and, most important, to the
limited space commonly available for the references in a
given publication. Thus, in this work, we include and discuss
a few representative publications for several methodologies
employed on shear modulus determination. Our comparisons
and comments on earlier studies do not intend, by any means,
to discount any previous study; all of them have provided
invaluable information on the challenging problem of the
physics of erythrocyte dynamics and its modeling.

II. MEMBRANE DYNAMICS

A. Common constitutive laws

Several constitutive laws have been used for the continuum
description of thin elastic membranes such as that of the ery-
throcyte and many artificial capsules; see, e.g., [10,13,15-17].
These laws describe the principal elastic tensions 7; (i = 1,2)
on the membrane as a function of the principal stretch ratios
A;. Note that A; = ds;/dS;, where dS; and ds; denote line
elements in the reference and the deformed shapes, while the
principal strain components are given by ¢; = ()Li2 — 1)/2[15].
Below we present the elastic tension t; for five constitutive
laws; to calculate 1o, reverse the A; subscripts.

The Hooke (H) law (physically valid for small deforma-
tions) assumes that the membrane tensions depend linearly on
the surface strain [15],

2 H
7' = lqu (e1 + vge2)
GH
= [ —1+v,(A3 - 1)], (1)

where G is the shear modulus associated with this law and
v, is the surface Poisson ratio (v, # 1).

The neo-Hookean (NH) law, a special case of the Mooney-
Rivlin law, results from the application of the corresponding
three-dimensional law to a very thin membrane [15,18],
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where G is the associated shear modulus. This law does not
contain a parameter associated with area dilatation which is
implicitly embodied into the law.
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The Yeoh law (YE) [19] is a higher-order extension of the
neo-Hookean law; its application to a very thin membrane
gives the corresponding two-dimensional law [18],
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where GYF is the associated shear modulus, and CY* and CY®
are dimensionless parameters.
The Skalak et al. (SK) law [20] adds nonlinearly the area
dilatation to the shear deformation,
sk _ G
=
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In the equation above, G3X is the shear modulus associated
with this law, while the dimensionless parameter C is associ-
ated with the area-dilatation modulus G5X of the membrane
(scaled with its shear modulus). In particular, analysis in the
limit of small deformations shows that the area-dilatation
modulus is G5 = GSK (1 4 2C) [15].

The Evans (EV) law [17,21] adds linearly the area dilatation
to the shear deformation,

EV _ GEV )‘% _)‘% CEV(nin 1 5

e [2(/\1A2)2+ (2o )}’ ©)
where GV is the shear modulus associated with this law, while
the dimensionless parameter CEV represents the area-dilatation
modulus of the membrane (scaled with its shear modulus).
Note that this law is also called Evans-Skalak law in some
papers (e.g., [18,22]), probably because it appeared later in the
book of Evans and Skalak [23].

It is of interest to know that the Skalak er al. and
Evans laws are two-dimensional laws, derived to represent
thin elastic membranes. On the other hand, the (original)
Hooke, neo-Hookean, and Yeoh laws are three-dimensional
laws, derived to represent elastic materials. One may apply
these laws to thin elastic membranes by either using the
three-dimensional laws with a very small membrane thickness
and volume incompressibility (i.e., A;jAyA3 = 1) or utilizing
the corresponding two-dimensional laws presented above.
(The derivation of the two-dimensional laws from the original
three-dimensional laws has been described in earlier papers;
e.g., see Sec. 3.3 in Ref. [18] and Sec. 4.7 in Ref. [24].)

Under (mechanically) uniaxial extension or isotropic dilata-
tion of capsules with finite surface area-dilatation resistance,
it was found that the neo-Hookean and Evans laws are strain
softening (i.e., their tensions increase sublinearly with the
strain), while the Skalak er al. law is strain hardening (i.e.,
its tensions grow superlinearly with the strain) [15,18]. (Note
that the linear increase used in these comparisons refers to the
common slope of all laws in the linear regime of deformations.)
The same behavior is observed in the steady-state dynamics of
these capsules in planar extensional flows [25]. The behavior of
the Yeoh law is more complicated; while at small deformations
it behaves like the neo-Hookean law, due to the higher-order
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correction included in the Yeoh law, its nature (strain softening
or strain hardening) and its degree of strain softening vary with
deformation at moderate and large deformations and depend on
the particular choice of its two parameters, C; Eand C 3 E[19].

B. Constitutive laws and local area incompressibility

Erythrocyte continuum models (such as the ones used to
determine the membrane’s shear modulus) commonly treat the
erythrocyte membrane as a locally area-incompressible elastic
solid by either employing a large area-dilatation modulus or
imposing directly the local area-incompressibility constraint
Ay = 1; see, e.g., [6,10,16].

By imposing locally the constraint A 1, = 1, the consti-
tutive laws described earlier are simplified to the following
equations:

_1—vs

GH ;
o= (1 - :—‘%)(A% -1, (©6)
= GNM(A] - 1), (7)
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1
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Y =GHY 12; (A1 =1). (10)
1

Itis interesting to note that several studies (e.g., [5,6,10,12,26])
referred to and/or employed the Evans law under local area
incompressibility in the form

G 1 -7
Y = Tf ()\% - )\—%> , where 1, = sz (11)

In Fig. 1, we plot the principal tension t; (scaled with its
associated shear modulus) as a function of the principal strain
e = ()\% — 1)/2 for all of the laws studied in this paper. Note
that for the Hooke law, we used vy = 1/3, which produces
a practically linear tension-strain dependence up to e; = 1.5
(or &1 = 2) included in this figure, with a slope very close to
the common slope of all laws at small deformations. For the
Yeoh law, we used CS{E = 0and C;E = 1/15,i.e., the value of
these two parameters (according to our notation and definition)
employed in Ref. [10] to match erythrocyte’s force-extension
data from optical tweezers at large strains.

Figure 1 shows that even under local area incompressibility,
the Skalak et al. law is strain hardening, the neo-Hookean and
Evans laws are strain softening, while the Evans law is more
strain softening than the neo-Hookean law. For the particular
choice of the parameters C; Eand C g{ E after the initial strain-
softening behavior at low deformations, the Yeoh law becomes
strain hardening at large strains.

Small-deformation behavior. When local area incompress-
ibility is enforced and the deformation is very small, i.e.,
)\f =1+ ¢, where |e| < 1, all aforementioned constitutive
laws result in the same equation, i.e.,

7 =Gye, where o= H,NH, YE, SK,EV, (12)
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FIG. 1. Principal tension t; (scaled with its associated shear
modulus) as a function of the principal strain e, for the Hooke (HO),
neo-Hookean (NH), Yeoh (YE), Skalak et al. (SK), and Evans (EV)
laws under local area incompressibility, 111, = 1. For the Hooke
law, we used v, = 1/3, while for the Yeoh law, we used Cy® = 0 and
CYE =1/15.

as simple perturbation algebra shows. Thus, under local area
incompressibility and in the small-deformation regime, all
laws produce identical tension-extension behavior for the same
shear modulus, i.e.,

G = G = GYE = G3¢ = GV, (13)

In essence, all constitutive laws behave as the Hooke law due to
the linearization inherent in the regime of small deformations.

Non-small-deformation behavior. In moderate and large
deformations, the different constitutive laws produce different
behavior. Based on the strain-hardening or strain-softening
nature of each law, we expect that for a given deformation, the
more strain-softening law should produce the same tensions
as a less strain-softening law, but for a higher shear modulus.

This behavior has been identified for the deformation
of capsules with moderate area-dilatation resistance. For
example, by matching the force-deformation curves derived
from (mechanical) compression experiments, Carin et al. [27]
showed that the strain-softening Evans law produces an almost
40% higher shear modulus than the Skalak et al. law [27].

In addition, if the matching is not valid over the entire
deformation range, we expect the difference in the predicted
shear moduli to increase with the deformation of matching.
Thus, at small deformations, all laws predict the same shear
modulus; by matching at moderate deformations, the more
strain-softening law should predict a higher shear modulus,
while by matching at large deformations, the more strain-
softening law should predict a much higher shear modulus.

This was shown in Fig. 21(b) of our earlier work [25], where
we plot the steady-state maximum principal tensions t°, as a
function of the capsule extension/length L, for aneo-Hookean
and a Skalak capsule with C = 1 in a planar extensional flow.
(Note that in our earlier work, the tensions were scaled with
the shear modulus of each law, while the capsule length was
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scaled with its equilibrium length.) When L, = 1.5 (extension
50%), matching the maximum tensions of these laws requires
GN/GSK ~ 1.7; the moduli ratio increases to GN/G3K ~
2.5,3.4 for lengths L. = 2,2.5 (or extension 100%, 150%).
To estimate the difference in the predicted shear modulus of
these constitutive laws under local area incompressibility, we
match the local tensions given by each law for the same stretch
ratio. Based on this, the following relationships are derived:

GNH — 2GSk GEV — 2_)‘411 G and
K 1 s s )L% + 1 s
GYE — MG
s PR
1+20Y5 (33 + 55 —2) +3C1E (3 + 5 - 2)
1 1

(14)

To derive an estimation of the relative magnitude for the
shear modulus of these laws, we can approximate the stretch
ratio A, with the ratio of the extension of the deformed
erythrocyte to its extension at the reference (i.e., equilibrium)
shape which occurs in a given experimental system. For
example, if we assume that at moderate deformations in ekta-
cytometry systems or optical tweezers A2 = 2 (or A; ~ 1.41),
then the equations above predict

GM ~ 2G5, GEV ~2.67G%¢, and
GYE ~ 1.90G3¥. (15)

At large deformations (such as in optical tweezer experiments
at large strains), the erythrocyte axial diameter is increased to
almost 100%; in this case, our prediction for A; = 2 gives

GM ~ 4G5%, GV ~ 6.4G5¥, and
GYE ~ 1.99G3K. (16)

The predictions above verify our earlier discussion in this
section that for matching in a specific deformation range, the
more strain-softening law should produce the same tensions as
aless strain-softening law but for a higher shear modulus, while
the difference in the predicted shear moduli should increase
with the deformation range of matching.

In Fig. 2, we plot the shear modulus of the neo-Hookean,
Yeoh, and Evans laws (scaled with the shear modulus of the
Skalak et al. law) as a function of the stretch ratio A;. This
figure shows clearly that owing to its strain hardening at
large strains for the specific choice of the parameters C;E
and CJ', the Yeoh law should produce a good match at large
strains for membranes following the Skalak et al. law. It is of
interest to note that for a stretch ratio A; in the range [1.35,2]
(which almost covers the extensions used in optical tweezer
experiments at large strains [10]), the Yeoh’s shear modulus is
GYE ~ 2G3X with an error of only £10%.

It is of interest to note that the shear resistance of the
erythrocyte membrane results from its spectrin cytoskeleton,
which may undergo local area changes under the constraint
of fixed total area being enclosed beneath the lipid bilayer in
the erythrocyte membrane [13,28,29]. In our present work, we
utilize the assumption of local area incompressibility (so that
we are able to determine the relationship between different
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FIG. 2. Variation of the shear modulus of the neo-Hookean (NH),
Yeoh (YE), and Evans (EV) laws [scaled with the shear modulus of
Skalak et al. (SK) law] with the stretch ratio A; so that all laws produce
the same principal tension ;.

constitutive laws) because this assumption has been employed
by earlier shear modulus finding methodologies, e.g., via
force-extension data from optical tweezers at moderate and
large strains [10,11,30], via micropipette aspiration [6,7,26],
and from electrically induced deformation experiments [16],
as discussed in more detail in Secs. Il and IV.

C. Finding the shear modulus of a membrane

In Sec. II B, we discussed that different constitutive laws
should predict different estimations of the shear modulus of
the erythrocyte membrane, depending on the degree of strain
softening of each law and the deformation range of matching.
Thus, a question naturally arises as to how to determine
accurately the shear modulus of a given membrane and, in
particular, of the erythrocyte. To help answer this question
(which actually constitutes a research interest spanning several
decades), two major statements can be made.

First, if the dynamics of a membrane is known to follow
a given constitutive law in a range of deformations, then the
shear modulus predicted by this law in this deformation range
represents an accurate determination of the shear modulus of
this membrane.

The statement above does not imply that if a constitutive law
matches some experimental findings in a given range (e.g., the
force-deformation curve from compression experiments, the
deformation-shear rate curve from ektacytometry systems, or
the force-extension relationship from optical tweezers at large
strains), then this means that the dynamics of this membrane
follows this law. Due to the bulk (and thus simplistic) nature of
some experimental findings, these can be matched in a given
range or even in the entire range of available deformations via
one or several laws, without the membrane to follow one or
any of these laws.
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For example, obviously the biocompatible alginate capsule,
used in the compression experiments of Carin et al. [27]
mentioned earlier, cannot be at the same time strain hardening
and strain softening since it was found that the strain-hardening
Skalak et al. law as well as the strain-softening Evans law
describe well the capsule’s force-deformation compression
curves. In reality, this capsule may follow one of these two
laws or even none of them. Again this points to the simplistic
nature of some available experimental findings.

Therefore, to find the constitutive law which truly describes
the dynamics of a certain capsule (and thus its real shear
modulus), more detailed (or complicated) experimental data
are needed, i.e., using different experimental data (e.g.,
force-deformation but also deformation-shear rate data) and
probably including information about local properties de-
scribing the capsule dynamics as opposed to the commonly
available bulk-type experimental data (e.g., force-deformation
or deformation-shear rate data).

For example, Lefebvre and Bartheés-Biesel [31] proposed to
flow capsules into a microchannel of comparable dimensions
and observe local details of its interfacial shape as a function of
the flow rate (including the curvature along the capsule profile)
as a way to deduce the membrane shear modulus. Based on
this, alginate capsules were found to show a strain-hardening
dynamics best modeled by the Skalak ez al. law with a small
prestress.

The second major conclusion which can be drawn on this
subject is that to avoid the complications arising from the fact
that different laws predict different values of the membrane
shear modulus, based on experimental findings at moderate and
large deformations, one may consider the membrane dynamics
at small deformations where all laws predict identical value
of the shear modulus. Thus, the membrane moduli are
formally defined by basic deformations in the linear regime of
deformations. In particular, the (surface) Young modulus E;
(which is associated with the shear modulus Gy) is measured
by the membrane response to a uniaxial extension, while the
area-dilatation modulus G, is measured by the membrane
response to an isotropic tension [15,20].

The small-deformation regime offers an additional ad-
vantage to the shear-modulus finding methodologies, which
employ an analytical equation to relate the membrane shear
modulus with the experimental measurements; due to the
linearization inherent in this deformation regime, the required
relationship is, in general, easier to derive than in the
(nonlinear) regime of large deformations.

III. NATURE AND SHEAR MODULUS
OF THE ERYTHROCYTE MEMBRANE

Nature of erythrocyte membrane under strain. Measure-
ments in ektacytometry systems have long shown that the
erythrocyte’s (ektacytometry) deformation increases logarith-
mically with the shear stress in both moderate and large
deformations (see, for example, Fig. 3 in Ref. [14].) This
finding reveals two conclusions: (a) the cell membrane has
a single nature under both moderate and large strains, i.e., it is
either strain hardening or strain softening, and (b) this single
nature is strain hardening since the deformation-shear stress
dependence is logarithmic. In addition, force-extension data
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from optical tweezers show clearly a hard-straining behavior
at large strains, as has been identified in earlier studies; e.g.,
see Fig. 8 in Ref. [10]. The shear resistance of the erythrocyte
membrane results from its elastic network of spectrin [4],
while the strain-hardening nature of the spectrin cytoskeleton
with deformation has also been identified via computational
modeling [11,32].

Our reasoning based on the experimental findings suggests
that the erythrocyte membrane is strain hardening for nonsmall
deformations, i.e., for both moderate and large strains. In this
case, the erythrocyte shear modulus cannot be determined
accurately using strain-softening models (such as the neo-
Hookean and Evans laws) or strain-softening/strain-hardening
models (such as the Yeoh law). In particular, both types of laws
are expected to produce a higher value of the shear modulus,
as discussed in Sec. II B.

Determination of shear modulus at small strains via force-
extension data from optical tweezers. In 1999, Hénon et al. [9],
utilizing optical tweezers at small strains (stretching force
<15 pN), determined the membrane shear modulus to be
Gy = 2.5 1+ 0.4 uN/m. The discotic cell at rest was modeled
by two parallel disks submitted to zero stress at their border.
Owing to the linear regime of deformations, the early study
employed constitutive laws from linear elasticity to relate the
cell’s transverse diameter with the applied force and the shear
modulus.

To support their high value of the membrane shear modulus
found by optical tweezers at large strains, Suresh and cowork-
ers [10] discussed several possible reasons for the low shear
modulus found by Hénon et al. [9], including “idealization
of a biconcave cell as a two-dimensional planar disk” and
“neglecting the effects of the relatively large contact region
between the cell and the beads.” In our opinion, these possible
reasons do not constitute proofs, while so far no study has
actually challenged the findings of Hénon et al. [9] at low
strains, e.g., by proving that either the experiments or the
employed analytical model are erroneous.

It is of interest to note that the earlier theoretical model of
Fischer et al. [8] also suggested a low value of Gy = 2 uN/m
at small strains to explain experiments on red cells whose
membrane shear modulus has been increased by treatment
with diamide. To match the higher value of the shear modulus
at large strains known from micropipette aspiration studies,
the authors proposed a strain-dependent shear modulus [8].

Determination of shear modulus at moderate strains via
deformation-shear rate data from ektacytometry. In our recent
work [13], we developed a cytoskeleton-based continuum
erythrocyte algorithm based on the Skalak et al. law. In
addition, we compared our computational results with the
ektacytometry deformation-shear rate findings reported in
Fig. 3 of Hardeman et al. [14]. Our computational results
capture two important aspects of the relationship between cell
deformation and capillary number (or wall shear stress): (i)
the dependence is logarithmic for the employed range of shear
rates, and (ii) while using a log scale for the capillary number,
our method produces a slope consistent with experimental
results (see Fig. 3 in our earlier paper [13].) In addition, for
G, = 2.4 uN/m, the experimental and computational curves
coincide, suggesting that the sample used in the experimental
measurement had a shear modulus very close to the average
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value found by optical tweezers at low strains, Gy = 2.5 uN/m
[9].

We emphasize that additional comparisons of our computa-
tional results reported in Ref. [13] with ektacytometry findings
from different studies show that the matching shear modulus
falls inside the range for G, valid for most red blood cells at low
strains, i.e., 1.7-3.3 uN/m [9], and rather close to the average
value. In particular, the ektacytometry’s deformation-shear
stress data, included in Table 1 of Wang et al. [33] from
the laser-assisted optical rotational cell analyzer (LORCA)
ektacytometer, correspond to a shear modulus of G; = 2.3; the
ektacytometry data for the control (i.e., normal erythrocytes),
included in Fig. 1 of Alexy et al. [34], correspond to G; = 2;
while new ektacytometry data received from Hardeman [35]
correspond to Gy = 2.1. Therefore, our four comparisons
reveal an average value of the shear modulus of G; = 2.2.

Note that our comparisons involve experimental findings
viathe LORCA ektacytometer, which works at the human body
temperature of 37°, and its measurements show negligible
standard deviation. Since all the remaining methodologies
discussed in this paper determine the shear modulus at room
temperature (near 25 °), we can apply a temperature correction
to our shear modulus determination. In their micropipette
aspiration study, Waugh and Evans [6] reported a 9% decrease
in the shear modulus from 24.8° to 35.3° in their Table 1;
using this correction, our average value of the shear modulus
becomes G; = 2.4. The slightly higher value of G; = 2.64 is
obtained if we use the 20% decrease from 25 ° to 35 © reported
in Fig. 11 in the electrically induced deformation methodology
of Engelhardt and Sackmann [16].

Determination of shear modulus at moderate and large
strains via force-extension data from optical tweezers. In
a series of papers, Suresh and coworkers determined the
shear modulus of the erythrocyte membrane by matching
computational results from continuum and molecular models
with their optical tweezer force-extension data at moderate
and large strains (stretching force 20 to 198 pN); see, e.g.,
[10-12]. The results based on their continuum modeling were
summarized in Ref. [10]. In particular, the authors utilized a
finite-element program to solve for the cell shape deforming
as in the optical tweezer experiments, assuming that the
erythrocyte membrane follows either the neo-Hookean law
(with or without enforcing local area incompressibility) or
the Yeoh law (without enforcing local area incompressibility).
During the deformation, the flow inside the erythrocyte was
not considered; the cytoplasm was treated as an inviscid fluid,
which acts to keep the interior volume constant. (Similar
continuum modeling was employed in later studies from other
groups with similar predictions; e.g., [36].)

As reported in Fig. 7 of the earlier study [10], the neo-
Hookean law is able to describe adequately the cell’s axial
diameter at moderate strains only (stretching force 20 to
88 pN), but fails at higher strains since it cannot describe
the erythrocyte’s hard-straining behavior in this range of
deformations. Without enforcing local area incompressibility,
the shear modulus was found to vary in the range [5.3,11.3]
due to the variation in the experimental data, with an average
value of G = 7.3. The shear modulus under local area
incompressibility is 75% of that without, i.e., it varies in the
range [4,8.5] with an average value of G = 5.5 [10].
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According to our estimation discussed in Sec. IIB,
the corresponding shear modulus for a membrane following
the Skalak et al. law is expected to be about half that of the
neo-Hookean law, i.e., under local area incompressibility it is
expected to vary in the range [2,4.25] with an average value
of GSX = 2.75. This is very close to that found in the linear
regime of deformations, i.e., average value G; = 2.5 and range
[1.7,3.3] [9].

When the Yeoh law was used to described the erythrocyte
membrane, the computations of Suresh and coworkers were
able to describe adequately the cell’s axial diameter at both
moderate and large strains (stretching force 20 to 198 pN), as
seen in Fig. 8 of the earlier study [10], due to the hard-straining
nature of the Yeoh law at large strains (as also shown in our
Fig. 1). Without enforcing local area incompressibility, they
found the same range and average value as for their neo-
Hookean law at moderate strains. (We note that the model was
unable to match the transverse diameter; an optical matching
for the average value of the experimental data suggests an
average value for the shear modulus below 3.)

By using the shear modulus of the Yeoh law which
best matches the erythrocyte axial diameter, and converting
it to the corresponding shear modulus under local area
incompressibility by multiplying with 0.75, as suggested by
the authors (see Ref. [10] and Table 1 in Ref. [12]), we obtain
the same values as for the neo-Hookean law. As shown clearly
in our Fig. 2, for almost the entire range of the strains used in
the work of Suresh and coworkers, the Yeoh’s shear modulus
is GYE ~ 2GSK with an error of only +10%. Thus, again
we obtain the same determination for the shear modulus of
the Skalak er al. law: range [2,4.25] and average value of
Gk =2.75.

It is of interest to note that the recent study of Le
et al. [36], which considered the same membrane modeling
with that of Suresh and coworkers [10] but also solved the
inner viscous flow utilizing their implicit immersed boundary
method, reported a shear modulus range of [4.8,10] and an
average value of GYEF = 7.3, based on matching with the
optical tweezer data for the axial diameter as shown in their Fig.
13. If we account for the missing local area incompressibility
(by multiplying by 0.75) and convert to the Skalak et al. law
(by dividing by 2), we get the range [1.8,3.75] which is very
close to the range [1.7,3.3] found in the linear regime [9].

Therefore, the Skalak ez al. law is the only employed law
which is able to match well both deformation-shear rate data
from ektacytometry and force-extension data from optical
tweezers at moderate and large strains using a value of the
shear modulus very close to that found in the linear regime
of deformations, i.e., Gy = 2.5 uN/m [9]. This reinforces
further our earlier conclusion that the nature of the erythrocyte
membrane is strain hardening at both moderate and large
deformations.

An important conclusion here is that the shear modulus
found by matching a constitutive law with experimental data
in a specific range of deformations is not necessarily the same
as that found in the linear regime of deformations, i.e., the
true shear modulus of the membrane. For example, if the
erythrocyte membrane follows the Skalak ez al. law, then our
understanding is that Suresh and coworkers [10-12] as well
as other groups [36] found the shear modulus that represents
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FIG. 3. Principal tension 7; (scaled with the membrane’s shear
modulus GM) as a function of the principal strain e; for the Yeoh
(YE) and the Skalak et al. (SK) laws having the membrane’s shear
modulus, ie., GYE = GS¥ = GM. Also plotted is the tension-strain
dependence YE2 for the Yeoh law having a shear modulus twice
that of the membrane, GYE = 2 GM. (a) Curve YE2 appears to match
adequately the SK curve in moderate and large strains, while optically
it also appears to produce a good matching at small strains owing to
the large x-axis scale. (b) Working in the linear regime (e.g., plotting
the data only for small strains), it is obvious that curve YE2 cannot
match the common slope (i.e., the membrane’s shear modulus GM)
of the other two curves.

the Yeoh law at large strains but not the true shear modulus
of the erythrocyte membrane, as shown optically in Fig. 3 and
explained in its caption.

Determination of shear modulus from micropipette aspira-
tion. Different research groups have long used micropipette
aspiration experiments to determine the mechanical properties
of the erythrocyte membrane; see, e.g., [5-7,26,37]. These
studies utilized the incompressible Evans law, given by
Eq. (11), and an analytical equation to relate the pipette suction
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pressure with the aspiration length. Based on this methodology,
the shear modulus was found to vary in the range 4—10 with a
typical value of Gy = 6-7 at room temperature [5].

Hénon er al. [9] discussed several possible reasons to
explain the difference between their low shear modulus value
at the linear regime and the high value from the micropipette
aspiration. According to their summary, “the shear modulus is
expected to increase from the small to the finite deformation
regime, and because the elastic modulus measured with
micropipettes is a combination of the shear modulus and area
compressibility [9].”

Our analysis suggests that this difference results from
the constitutive law employed in the micropipette aspiration
studies. Based on our discussion in Sec. IIB, the Evans
incompressible law should overestimate the erythrocyte shear
modulus (based on the Skalak ef al. law) by a factor of 2-3 at
moderate deformations and much more at larger deformations.
To show further the correspondence between the two laws, in
the Appendix we employ Evans analysis for the statics of the
micropipette aspiration, but utilize the incompressible Skalak
et al. law, and show that the moduli ratio GEV/G3¥ should
vary in the range [1.5,3.6] for the aspiration lengths usually
employed in the micropipette studies. Thus the typical value
of Gy = 6.5 found by micropipette aspirations corresponds to
a moduli ratio of GEV/G3¥ = 6.5/2.5 = 2.6, which is rather
well representative of the overestimation of the Evans law
(with respect to the Skalak et al. law) in these experiments.

It is of interest to note that the values of the standard de-
viation found in micropipette aspiration studies are consistent
with the standard deviation of 0.4 found by Hénon et al. [9],
if we scale them with the corresponding moduli ratio. For
example, Waugh and Evans found G, = 6.61 & 1.24; scaling
this standard deviation with 2.5/6.61, we obtain 0.47. We also
obtain the same scaled standard deviation from the study of
Evans et al. [26], who found Gy = 9 £ 1.7. Leliévre et al. [37]
found G; = 4.5 & 0.8, and thus their scaled standard deviation
is 0.44.

In essence, we believe that the (very) strain-softening Evans
law cannot represent well the strain-hardening behavior of
the erythrocyte membrane at nonlinear deformations, and
thus methodologies which employ this law should always
overestimate the shear modulus of the erythrocyte membrane.

IV. REVIEW OF ADDITIONAL METHODOLOGIES
ON THE SHEAR MODULUS OF THE
ERYTHROCYTE MEMBRANE

Cytoskeleton molecular models. A series of papers utilized
spectrin-based molecular algorithms and compared their re-
sults with force-extension measurements via optical tweezers
at moderate and large strains; see, e.g., [11,12,38]. These
studies are based on the molecular algorithm of Suresh
and coworkers, and thus it is not surprising that they pre-
dicted a shear modulus in the high range, Gy, = 8.3 uN/m
[11,12,38], since this spectrin algorithm employs specific
values for the associated molecular parameters that match
the Yeoh continuum law, as discussed in Ref. [12]. Fur-
ther, the shear modulus of the molecular algorithms orig-
inally results from the particular choice of the employed
molecular parameters and not via matching with optical
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tweezer measurements that is used only for verification (see
Sec. 2.4 in Ref. [12] and Sec. 4.3 in Ref. [38]).

It is of interest to note that the molecular algorithms of
Suresh and coworkers [11,12] and Hartmann [38], which do
not account for the local area-incompressibility forces of the
lipid bilayer, produce a practically linear force-extension rela-
tionship which does not match well the hard-straining nature of
the erythrocyte shown in the experimental measurements (e.g.,
see Fig. 8 in Ref. [12] and Fig. 7 in Ref. [38]). By incorporating
the constraint of local area incompressibility in the spectrin
description, Karniadakis and coworkers [30] produced a very
good match with the hard-straining force dependence for the
axial diameter of the erythrocyte.

As discussed in our cytoskeleton-based continuum erythro-
cyte algorithm [13], the local area-incompressibility forces
(i.e., locally isotropic forces) of the lipid bilayer should be
accounted for in any spectrin modeling either continuum or
molecular. However, in our opinion, enforcing a local area
incompressibility on the spectrin membrane appears to be
stricter than necessary, since the cytoskeleton can undergo
local area changes under the constraint of fixed total area
being enclosed beneath the lipid bilayer in the erythrocyte
membrane [13,28,29]. (The main issue here is that the local
area-incompressibility forces of the lipid bilayer produce
incompressibility of the local area on the lipid bilayer, but
not necessarily on the spectrin cytoskeleton.)

The incorporation of the local area-incompressibility con-
straint in the spectrin description [30] reduced the predicted
shear modulus from G; = 8.3 to Gy = 6.3. This reduction
is in agreement with the correction factor of 0.75 suggested
in the earlier studies of Suresh and coworkers [10,11] since
8.3 x 0.75 = 6.2, i.e., in essence the methodology of Karni-
adakis and coworkers [30], corresponds to an incompressible
Yeoh law. Therefore, based on the analysis of this paper, if
the parameters of Karniadakis’ methodology are modified to
match the Skalak et al. law, then we expect the prediction
of the shear modulus to be within the range found by Hénon
etal. [9].

Low-viscosity ektacytometry. Alternative ektacytometry
systems have been developed by Wen and coworkers [39,40]
that involve erythrocytes in the “wheel” orientation in low-
viscosity surrounding liquids at moderate shear rates. Based
on a simple analytical model (which assumes that the
incompressible Evans law applies to the maximum elon-
gation of the cell), the authors predicted a shear modulus
of G; =6.1 via measurements through changes in laser-
diffraction patterns, and a shear modulus of G; = 4.3 via
direct observations of erythrocyte deformation in a flow
chamber.

Recently, MacMeccan et al. [41], utilizing a coupled lattice-
Boltzmann/finite-element method, found good agreement with
the experimental data on deformation versus flow rate in
the flow chamber [39,40]. The numerical method utilizes
the physiological conditions of the human erythrocyte with
G, = 5.7, but it does not enforce local area incompressibility.
Observation of their Fig. 12 shows that a (computational)
line with a smaller slope (i.e., a smaller G) matches better
the experimental results, while the shear modulus is further
reduced (by a factor of 0.75) if we enforce the local area-
incompressibility constraint.
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However, the experimental work of Wen and coworkers
[39,40] used red blood cells from rabbits, which are smaller
than human erythrocytes (i.e., mean diameter 6.5 um)
and thus probably have different properties, including equi-
librium shape, inner viscosity, and shear modulus, while
the effects of osmotic pressure and temperature are un-
clear for these cells. Until these issues are clarified, fur-
ther discussion on these experimental measurements seems
redundant.

Methodologies based on electrically induced deformation
experiments. Engelhardt and Sackmann [16] developed a
method to measure the shear modulus of the erythrocyte
membrane based on the fixation and transient deformation of
cells in a high-frequency electric field. The cell were subjected
to both moderate and large deformations, while the shear
modulus determination was based on moderate deformations
(i.e., elongations less then 3 pum). Owing to the nonlinear
deformations, the authors had to utilize an approximate
sphere-to-ellipsoid deformation model that appears to be
accurate at moderate deformations based on numerical tests
via finite elements that the authors performed [16]. In addition,
Engelhardt and Sackmann employed the incompressible Evans
law and found an average value of the shear modulus of
all cells of Gy =6.1. Our analysis in Sec. IIB suggests
that the incompressible Evans law should overestimate the
erythrocyte shear modulus based on the Skalak ez al. law by
a factor of 2-3 at moderate deformations. Thus their shear
modulus corresponds to a Skalak et al. shear modulus of about
GSK = 6.1/2.5 = 2.44, which is in excellent agreement with
that found in the linear regime [9].

Additional methods. Korin et al. [22] utilized observations
of erythrocytes flowing in microchannels at moderate defor-
mations (relative cell extensions between 10% and 60%) and
determined a shear modulus of G, = 3.7. However, the earlier
study used the incompressible Evans law which, based on our
discussion in Sec. II B, should overestimate the erythrocyte
shear modulus based on the Skalak et al. law by a factor
of 2-3 at these deformations. Most important, to solve the
flow dynamics, the Keller and Skalak model was employed,
which is an approximate model that predicts only qualitatively
the erythrocyte motion [42]. A major source of error in this
model results from the omission of the shape-memory effects
owing to the nonspherical quiescent erythrocyte shape; this is a
phenomenon which has been identified only recently [43,44].
Thus, the Keller and Skalak model predicts with a small error
the erythrocyte inclination, but overpredicts by a factor of
5-6 its tank-treading frequency [45], which is used in the
model of Korin et al. [22] to determine the membrane shear
modulus.

Therefore, the theoretical model of Korin et al. [22] is
very approximate and the fact that its prediction of G; = 3.7
appears to be realistic is because the model contains counter-
balanced approximations, i.e., combined significant overpre-
diction with significant underprediction of the true erythrocyte
dynamics.

V. CONCLUSIONS

Despite research spanning several decades, the exact value
of the shear modulus G, of the erythrocyte membrane is still
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ambiguous, and a wealth of studies, using measurements based
on micropipette aspirations, ektacytometry systems and other
flow chambers, and optical tweezers, as well as application of
different models, have found different average values in the
range 2-10 uN/m.

Our work shows that different methodologies have pre-
dicted the correct shear modulus for the specific membrane
modeling employed, i.e., the variation in the shear modulus
determination results from the specific membrane modeling.
Available experimental findings from ektacytometry systems
and optical tweezers suggest that the dynamics of the erythro-
cyte membrane is strain hardening at both moderate and large
deformations. Thus the erythrocyte shear modulus cannot be
determined accurately using strain-softening models (such as
the neo-Hookean and Evans laws) or strain-softening/strain-
hardening models (such as the Yeoh law), which overestimate
the erythrocyte shear modulus. According to our analysis, the
only available strain-hardening constitutive law, the Skalak
et al. law, is able to match well both deformation-shear rate
data from ektacytometry and force-extension data from optical
tweezers at moderate and large strains, using a value of the
shear modulus of G; = 2.4-2.75 uN/m, i.e., very close to that
found in the linear regime of deformations via force-extension
data from optical tweezers, Gy = 2.5 & 0.4 uN/m [9]. Finally,
our work suggests that this is the accurate value of the
erythrocyte shear modulus and does not vary with strain. The
range of the shear modulus variation (owing to the inherent
differences between erythrocytes within a large population)
appears to be well described with that found by Hénon e al.
[9]; in particular, our analysis suggests that a standard deviation
in G 0f 0.4-0.5 uN/m describes well the findings from optical
tweezers at small and large strains as well as from micropipette
aspirations.

We emphasize that the strain-hardening nature and the true
value of the shear modulus are necessary for the understanding
of experimental findings on erythrocytes dynamics (e.g.,
[8,14]), including their circulation in the blood system. In
addition, the shear modulus is used in the determination
of other properties of the erythrocyte membrane, such as
its bending resistance and surface viscosity [8,17,26,30].
Thus we believe that it may be necessary to reconsider
the determination of the bending modulus and the viscosity
of the erythrocyte membrane from earlier studies, which
utilized strain-softening models and high values for the shear
modulus.

To improve the understanding of the erythrocyte dynamics,
it would be very useful if experimental groups provide non-
bulk-type data on erythrocyte deformation, such as local details
of the interfacial shape of individual cells in basic flows (e.g.,
simple shear flow or planar extensional flow) or in confined
solid geometries (e.g., microfluidic channels). In this case, the
experimental studies should also provide information on the
properties of the individual cells studied, including equilibrium
shape and cytoplasm viscosity.
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APPENDIX: MICROPIPETTE ASPIRATION ANALYSIS
BASED ON THE SKALAK ET AL. LAW

In this Appendix, we employ Evans analysis for the statics
of the micropipette aspiration [46], but utilize the Skalak et al.
law instead of the Evans law so that we can determine the
shear modulus G;Q,‘K of the Skalak et al. law applicable to
micropipette analysis.

As discussed in pages 122-124 in the work of Waugh
and Evans [6], the principal stretch ratio along the meridian
direction at a point outside the pipette entrance is given by

R,\> (2L
A%=1+(—”) (—”-1),
r R,

where R, is the pipette internal radius and L, is the
aspiration length. The pipette suction pressure is determined
by integrating in the plane of the membrane from the pipette

tip outward,
4 [*1
AP = — [ =dr,
Rp RI’ r

where 7; = (11 — 12)/2. Utilizing the incompressible Evans
law for the principal tensions 7, and 7, and thus for t; given
by Eq. (11), the authors found the pipette suction pressure
to be

AP = G 2L, 1 1 2L, A3
—(Rp)[(R—,,—)+n(R—,,)]- (A9

(Note that the same result for AP was also found by Chien
et al. [7], who applied the Evans law but considered the statics
inside the pipette using a spherical cap model.)

Following the same analysis but for the incompressible
Skalak et al. law, given by Eq. (9), we can easily show that

GSK 1 1
SK s 2 2
= M= 1+—=-1),
g 2 <1 A%)(l A3 )

while the pipette suction pressure is now given by

GSSK 2L, L, R, 1
AP = — -1 — 4+ —+=). (AS)
R, R, R, 2L, 2
Combining Eqgs. (A3) and (AS), we find the moduli ratio
for the two laws,

2L, L, , R, | 1
o _ (-1 (% 4+ +1)
GSK 2L, 2L,
S (= 1)+ (%)

Different micropipette aspiration studies have utilized aspi-
ration lengths of about L ,/R, = 1.5-4; e.g., see [6,7,26,37].
In this range of L,/R,, the moduli ratio GEY / G3X increases
practically linearly with the aspiration length and takes on val-
ues of 1.5-3.6. Thus, even based on Evans micropipette anal-
ysis, if one uses Evans law to describe the tensions of a strain-
hardening membrane following the Skalak et al. law, then this
will result in a significant overestimation of the shear modulus.

It is of interest to note that Lelievre et al. [37] reported
that they used the Skalak er al. law and the Evans analysis
in their micropipette aspiration study. However, Lelievre et al.
neglected the last factor for >¥ shown in our Eq. (A4) and thus

(AL)

(A2)

(A4)

(A6)
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found 7, for the Evans law given by our Eq. (11) while they
used the pipette suction pressure valid for the Evans law, i.e.,
Eq. (A3) above. [See Egs. (4) and (5) in the earlier study [37].]
We note that the factor (A% + kl_z — 1) cannot be neglected
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in the nonlinear regime of deformations such as those used
in the micropipette systems. Thus, in essence, Lelievre et al.
[37] utilized the Evans law with Evans micropipette analysis
similarly to earlier studies; see, e.g., [6,46].
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