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Optimization of vascular-targeting drugs in a computational model of tumor growth
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A biophysical tool is introduced that seeks to provide a theoretical basis for helping drug design teams assess the
most promising drug targets and design optimal treatment strategies. The tool is grounded in a previously validated
computational model of the feedback that occurs between a growing tumor and the evolving vasculature. In this
paper, the model is particularly used to explore the therapeutic effectiveness of two drugs that target the tumor
vasculature: angiogenesis inhibitors (AIs) and vascular disrupting agents (VDAs). Using sensitivity analyses, the
impact of VDA dosing parameters is explored, as is the effects of administering a VDA with an AI. Further, a
stochastic optimization scheme is utilized to identify an optimal dosing schedule for treatment with an AI and
a chemotherapeutic. The treatment regimen identified can successfully halt simulated tumor growth, even after
the cessation of therapy.
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I. INTRODUCTION

The vascular needs of a solid tumor are maintained through
a combination of tumor co-option of existing host blood
vessels and the process of angiogenesis, the growth of new
blood vessels from existing ones. Angiogenesis is a rapidly
occurring and efficient way for tumors to receive oxygen and
nutrients [1]. However, the rapid nature of the process leaves
angiogenic vessels limited time to mature in the way normal
vessels mature, resulting in an unstable vascular network that
tends to be leaky, highly tortuous, and express a different
range of proteins than the normal vasculature [1,2]. Given the
differences between the normal and angiogenic vasculature,
drug developers have been able to design compounds that
selectively target the angiogenic vasculature and have minimal
impact on the normal tissue vasculature [1,2].

These vascular-targeting compounds fall into two general
categories: the angiogenesis inhibitors (AIs) and the vascular
disrupting agents (VDAs). AIs are compounds designed to
inhibit the tumor-initiated angiogenic process, thereby limiting
the oxygen and nutrient supply of the tumor [2]. Hundreds of
AIs, each with a unique mode of action, have been or are
undergoing clinical trial testing. One AI called bevacizumab
(Avastin) has been approved by the U.S. Food and Drug
Administration for use with other drugs to treat a range of
cancers. The drug has shown to transiently inhibit tumor
growth and increase progression-free survival times, although
tumor regrowth inevitably occurs after several months of
treatment [3].

VDAs are compounds designed to cause the rapid and
selective shutdown of tumor-associated blood vessels [1,2],
thereby causing cancer cell death. VDAs are not as highly
represented in clinical trials as AIs, although there are a
handful of VDAs, including combretastatin A4 phosphate
(CA4P), that are currently undergoing clinical trial testing [4].
Preclinical studies with CA4P and other VDAs have shown
that within 1 h of drug administration, blood flow through
the tumor is reduced to levels less than 5% the starting value,
and this triggers tumor cell death in about 95% of the tumor
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mass [1]. However, a thin rim of cancer cells survive at the
tumor periphery, limiting the antitumor activity of this class of
drugs [1].

Armed with this clinical and preclinical data, Gevertz
tested the ability of a hybrid cellular automaton (HCA)
model to predict the antitumor activity of an AI, an AI
with cytotoxic chemotherapy, and a VDA [5]. Importantly,
all model predictions apply to tumors growing in a well-
vascularized environment like the brain. For tumors growing
in this setting, the biophysical model proved that it can capture
the most important features of vascular-targeting therapies. In
particular, the model predicted that AIs trigger only transient
tumor growth inhibition [5]. It was also found that coupling
an AI with a cytotoxic chemotherapeutic can lead to periods
of significant tumor shrinkage, but the limited amount of time
both the cytotoxic agent and AI can be administered prevents
the therapy from being curative in the long term [5]. Finally, it
was shown that the simulated VDA, administered once every 3
weeks as done in clinical trials, had relatively little antitumor
activity. The HCA model suggested two reasons for VDA
inefficacy: (1) a thin rim of proliferative cells survive at the
tumor periphery and (2) during the 3-week period of no VDA
administration, angiogenesis rapidly occurs and rescues the
suffocating tumor, allowing a period of tumor shrinkage to be
followed by a period of rapid tumor growth [5]. Taken together,
the HCA model proved to accurately predict the qualitative
responses of tumor growth to a range of vascular-targeting
therapies.

In this paper, an exploration of how the validated HCA
model can be used to make novel predictions about cancer
treatment is undertaken. In this regard, the model is being
used to complement the time consuming, expensive, and
risky drug-development process [6,7]. Using the model’s
predictions, drug developers can make informed decisions
about what compounds are worthy of their resources, time,
and money, therefore maximizing the likelihood of success
while minimizing patient risk. The use of mathematical and
computational physics techniques to complement our under-
standing of drug function, action, and dosing is not a novel
one. Pharmacokinetic (PK) models and pharmacodynamic
(PD) models have been utilized for decades to determine the
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relationship between drug dose and response. PK, PD, and
combination PK/PD models are widely used in preclinical
trials to support drug discovery, interpret toxicity data, and
determine optimal dosing strategies [8–13]. More recently,
these models have been used in combination with tumor
growth models to simultaneously study drug dynamics and
tumor response [14,15]. Models have also been used to
further our understanding of therapy efficacy [14,16–20], its
dependence on and interactions with the immune system
[21,22], the transport of chemotherapeutic agents [23–26],
and the development of drug resistance [27–30]. Similarly,
computational physics models have been employed to better
understand radiotherapy. For instance, biophysical models
have explored the effects of oxygen levels [31], optimal
radiation dosing and scheduling [32], and the combined effects
of radiotherapy and chemotherapy [33].

A number of treatment-related models have particularly
focused on one class of vascular-targeting compounds, the
AIs. Pioneering work in this area was done by Agur and
colleagues. Working with a temporal model of tumor cell
proliferation, angiogenesis, and vessel maturation, they mod-
eled the influence of angiogenesis-directed treatments, both
in isolation and in combination with antimaturation drugs.
Simulations suggested that the combination of an AI and an
antimaturation drug has significantly more antitumor activity
than a stand-alone AI [34]. Following this work, several other
researchers began using temporal models to explore the impact
of antiangiogenic therapies, including work by Ergun and col-
leagues [35], d’Onofrio and Gandolfi [36], and Ledzewicz and
Schättler [37]. More recently, spatiotemporal models of cancer
progression have been used to model antiangiogenic therapy.
Kohandel and colleagues developed a reaction-diffusion model
of tumor-vasculature interactions and used this model to study
the effects of radiation, antiangiogenic therapies, and their
combination. Looking at three dosing schedules, they found
the sequence of AI administration followed by radiation to be
the most effective [38]. Panovska, Byrne, and Maini developed
a nonlinear partial differential equation model of healthy
cell, tumor cell, and tumor-vasculature evolution. Numerical
simulations suggested that a drug that targets an angiogenic
stimulant, or the tumor vasculature itself, cannot eliminate the
tumor, although under optimal circumstances, tumor growth
can be retarded. If such drugs are coupled with an antiprolifera-
tive therapy, the tumor can be eliminated [39]. Work by Hinow
and colleages [40] studied tumor treatment with a vascular
endothelial growth factor (VEGF) inhibitor, both in isolation
and with a drug that targets proliferating cells, also using a
partial differential equations model. Unlike the other models,
this model including both the proliferation and motility of
endothelial cells. They discovered that, while antiangiogenic
treatments can reduce the size of a tumor mass and slow down
cancer cell invasion, this outcome is more dependent on the
antiproliferative effects of the drug on endothelial cells than
the antimotility effects [40]. Each of these continuous models
revealed new aspects of antiangiogenesis treatment. Unlike
the other models, the biophysical model presented herein is
a hybrid-discrete model, and focuses on tumor-vasculature
evolution in a well-vascularized growth environment. Fur-
ther, in this work, the effects of both AIs and VDAs are
explored.

In particular, the HCA model previously developed by
Gevertz and colleagues [5,41,42] is utilized herein to explore
the following questions about cancer treatment with vascular-
targeting drugs.

(1) Can a dosing strategy for the VDA be identified that
has more antitumor activity than the suggested protocol of
administering the drug once every 3 weeks?

(2) Are there any advantages of adding a VDA to an AI
treatment protocol? Preclinical trials suggest their may be
some benefit to administering an AI and VDA in tandem,
but clinical trials have not yet yielded conclusive results [2].

(3) Can a novel delivery regimen be identified that achieves
maximal active tumor cell death using a combination of an AI
and cytotoxic chemotherapeutic?

An analysis of the model’s predictions and shortcomings is
followed up by a discussion on how the results can influence
both cancer treatment and the drug-development process.

II. BIOPHYSICAL MODEL AND METHODS

A. Hybrid cellular automaton model of vascular tumor growth

The HCA model utilized in this paper was developed to
simulate the growth of a particular type of brain cancer called
glioblastoma multiforme (GBM), although the model can be
applied to most tumors growing in a vascular environment.
For tumors growing in a vascularized environment such as the
brain, the co-option-regression-growth experimental model of
tumor-vasculature evolution has been proposed [43]. In this
model, as a tumorous mass grows, the cancer cells co-opt the
mature blood vessels of the surrounding tissue. While many
proteins contribute to the mature phenotype of the normal
vasculature, angiopoietin-1 (Ang-1) is one protein that plays
an important role in vessel maturity [44]. As a tumor mass
grows and co-opts the blood vessels of healthy tissue, the
naturally occurring antagonist of Ang-1, angiopoietin-2 (Ang-
2), is thought to be upregulated by both the tumor and the
surrounding microenvironment [43]. Given that Ang-2 is an
antagonist to Ang-1, it competes for binding to the common
receptor Tie-2 and is responsible for the destabilization of the
vasculature [43]. The fate of an unstable blood vessel depends
on the presence of a third protein, VEGF. VEGF functions
as a potent permeability-inducing agent, an EC chemotactic
agent, an EC proliferative factor, and an antiapoptotic signal
for ECs [45].

Figure 1 gives a brief summary of the previously developed
HCA model of tumor growth in a vascular environment. The
first thing the model does is provide the initial conditions for
the system: A discrete grid of automaton cells is generated
to represent the biological cells, and a discrete network of
blood vessels (in particular, the capillaries) is overlaid on
top of the automaton cells in order to provide these cells
with oxygen and nutrients. To set the algorithm in motion,
a single automaton cell is denoted as a proliferative (actively
dividing) cancer cell, and vessel response to the presence of
the cancer cell is determined by solving a system of partial
differential equations (PDEs) that governs the evolution of
Ang-1, Ang-2, VEGF, their receptors, and the ligand-receptor
complexes. For the ligands Ang-1, Ang-2, and VEGF, the
equations account for a production term, linear decay term,
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FIG. 1. (Color online) Summary of the HCA model used in this paper to test the efficacy of several vascular-targeting treatment strategies.
Viable nonmalignant cells are white, nonproliferative/hypoxic tumor cells are yellow (light gray in black and white), and proliferative tumor
cells are blue (dark gray in black and white).

binding of the ligand to its receptor and the breakdown of the
ligand-receptor complex. Further, a diffusion term is included
for VEGF and Ang-2, although not for Ang-1 since it is
thought to act in a paracrine manner [46]. A schematic of
the interactions between the growth factors, receptors, ligands,
ligand-receptor complexes represented in the PDEs is provided
in Fig. 2. The concentration profile of ligands and receptors that
results from numerically solving the PDEs one day forward
in time is input into a set of biologically inspired rules, and
the output is the change in blood vessel configuration. The

FIG. 2. (Color online) Schematic representation of the system of
PDEs detailed in Eqs. (A1)–(A8), showing the interactions between
growth factors, receptors, ligand-receptor complexes, and cell types.
The ligand VEGF is denoted by V , Ang-1 by A1, and Ang-2
by A2. Curved arrows indicate the cell type that produced the
referenced protein (for instance, hypoxic cells produce VEGF and
Ang-2, whereas ECs produce Ang-1 and Ang-2), and straight arrows
indicate the physiological response to ligand-receptor binding (for
instance, VEGF binding to VEGFR-2 induces angiogenesis). Notice
how VEGF and Ang-2 diffuse in the extracellular space, whereas
Ang-1 only acts locally.

configuration of blood vessels determines the oxygen level of
each cell and therefore determines whether each cancerous
automaton cell is proliferative, hypoxic (low-oxygen state), or
necrotic (dead). As the tumor grows, treatment may or may
not be applied on a given day, depending on the protocol
being tested [5]. All simulations were run on a single server
consisting of 2 × 2.8-GHz quad-core processors with 24GB
RAM.

The focus of this work is performing local sensitivity
analyses to dosing levels and schedule and applying optimiza-
tion strategies grounded in computational physics to exploit
the predictive abilities of the HCA model. Therefore, in the
following sections, the details related to these analyses are
explained. Details on the algorithm itself, which have been
published elsewhere [5], have been relegated to the Appendix.

B. Treatment protocols

Three different therapies will be utilized in this paper: an
AI, a VDA, and a cytotoxic chemotherapeutic. These drugs
are administered in the following fashion.

(1) AI administration. A bevacizumab-like AI is simulated
by inhibiting the production of VEGF by a factor of T1,
10 � T1 � 1000. Clinical and experimental data suggest that
one dose of AI allows therapeutic levels to be sustained in
the tissue for a 2-to-3-week period of time [47]. Therefore,
consistent with clinical protocol, the simulated AI will be
administered once every 2 weeks, with therapeutic levels of
the drug remaining in the tumor for a 2-week period of time
following drug administration.

(2) VDA administration. A CA4P-like VDA is simulated
by assuming that during each period of drug administration, a
VDA destroys an angiogenic blood vessel with probability
T3, 0.3 � T3 � 0.9. In Phase I clinical trials, CA4P was
administered intravenously once every 3 weeks [4], and
preclinical trials have shown that maximal vascular shutdown
occurs 4–6 h after exposure, with sustained activity for up to
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24 h [4]. Thus, to initially model VDA administration, the
simulated drug will be given once every 3 weeks, and the drug
will only exert its effects on the vasculature the day that it is
administered.

(3) Cytotoxic chemotherapeutic administration. A
temozolomide-like cytotoxic chemotherapeutic is simulated
by allowing the agent to kill a certain proportion (T2) of
proliferative cancer cells each day the drug is administered.
It has been shown that a continuous administration schedule
for temozolomide can be sustained for 6 to 7 weeks [48].
Therefore, in the model the cytotoxic chemotherapeutic can
be administered for, at maximum, a consecutive 6-week
period of time. Further, using the fractional kill hypothesis
and experimental data, it has been estimated previously that
T2 ≈ 0.34 [5].

The first set of simulations that will be discussed explores
the impact of VDA dosing schedule and the efficacy of a
VDA/AI drug cocktail. This will involve a local sensitivity
analysis on both treatment parameters T1 and T3, as well as
a sensitivity analysis of the dosing schedule for the VDA.
In the second set of simulations, a stochastic algorithm will
search for the optimal dosing schedule of an AI and a
cytotoxic chemotherapeutic. For all sets of parameters tested,
ten simulations will be run and the average tumor response to
the drug will be reported. Each treatment is applied once the
tumor attains a radius of 4 mm.

C. Stochastic optimization of AI plus cytotoxic drug
treatment protocol

In order to identify a treatment protocol that maximizes
active tumor cell death, a simulated annealing method is
utilized. Simulated annealing is a stochastic optimization
method grounded in computational physics that starts with an
initial set of parameters and proceeds to evolve the parameters
until a desired system property is attained. The parameters are
typically evolved using random perturbations, and a scheme
is implemented to determine whether each newly generated
parameter set should be accepted (as important progress in
identifying the optimal solution) or rejected [49]. Putting this
in the context of identifying an optimal treatment protocol, the
simulated annealing algorithm begins with an initial treatment
parameter set. This parameter set specifies the number of
days that each drug of interest is given in isolation or in
combination with another drug. Starting with this parameter
set, the algorithm proceeds to find a new treatment regimen
(defined by its parameter set) that only leaves behind a
specified small number of active (proliferative plus hypoxic)
cancer cells.

To provide more detail, the goal is to minimize the number
of active tumor cells remaining after cancer treatment. A
function �(t) is defined to be the average number of active
tumor automaton cells left after t days of treatment. In the
model, one automaton cell represents approximately seven
biological cells [41]. Ideally, the target number of active tumor
cells left after applying treatment is zero. So, the goal is to
evolve the system from an initial treatment regimen to an
optimal one where zero cancer cells remain after treatment. In
other words, the goal is to minimize the fictitious “energy” E

defined as

E = [�(t) − 0]2 . (1)

Note that given the way the energy function is defined,
minimizing E is equivalent to minimizing �(t):

min [E] ≡ min [�(t)]. (2)

To initialize the simulated annealing scheme, a set of initial
parameters, specifying the number of days different drugs
are maintained at therapeutic levels, must be chosen. The
following 8-week treatment protocol is used as the starting
point for the simulated annealing method.

(1) Days 1–28 of treatment: Maintain therapeutic levels
of AI only (λAI = 28 is the number of days in the 8-week
treatment protocol that therapeutic levels of AI are maintained
in the tissue without administering any other form of therapy).

(2) Days 29–56 of treatment: Therapeutic levels of AI plus
cytotoxic chemotherapy (λAIC = 28 is the number of days in
the 8-week treatment protocol that the AI and chemotherapeu-
tic are simultaneously maintained at therapeutic levels in the
tissue).

A third treatment parameter is also utilized in the algorithm.
This parameter, λC , represents the number of days in the
8-week treatment protocol that only the chemotherapy is
maintained at therapeutic levels in the tissue; initially, λC = 0.
This baseline 8-week treatment regimen (with λAI = 28,
λAIC = 28, and λC = 0) is twice administered to ten growing
tumors, for a total of 112 days of treatment for each of the
ten tumors. From these simulations, the average number of
surviving cancer cells post-treatment is calculated.

The goal of the simulated annealing scheme is to evolve the
three parameters (λAI , λAIC , and λC) until E is minimized. In
this context, we are trying to find a drug dosing schedule that
leaves zero active cancer cells remaining after t = 112 days
of treatment. This parameter evolution occurs by randomly
perturbing λAI by t1 and λAIC by t2:

λAI → λAI + t1, (3)

λAIC → λAIC + t2, (4)

where t1,t2 ∈ {t ∈ Z : −4 � t � 4}. In order to ensure that the
treatment cycle remains 8 weeks long, the value of λC is also
updated:

λC → λC − t1 − t2. (5)

Further, the choice of perturbation parameters t1 and t2 can
only be considered if

λAI ,λAIC,λC � 0, (6)

λAIC + λC � 36. (7)

The first constraint on the perturbation is required because a
drug cannot be administered for a negative number of days.
The second constraint comes from the fact that the cytotoxic
chemotherapeutic being simulated is temozolomide, and this
drug can only be safely tolerated for 6 to 7 weeks at a time
[48]. Thirty-six days was intentionally chosen to be below this
maximum threshold, as the 8-week treatment protocol will be
administered to the patient more than one time.
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Once a new treatment parameter set is generated through
the perturbation process, it is applied to ten growing tumors
for t = 112 days (two iterations of the 8-week cycle) and the
average number of active tumor cells remaining after 112 days
is recorded as �̂(t). The difference between the number of
surviving active cancer cells from the previous parameter set
to the new parameter set is then calculated:

�� = �̂(t) − �(t). (8)

Whether the new parameter set gets accepted or rejected
depends on ��. The probability of acceptance is defined using
the Metropolis acceptance rule [49]:

p(��) =
{

1, �� � 0,

exp(−��/T ), �� > 0,
(9)

where T is a fictitious “temperature” [49]. Equation (9) says
that whenever a new parameter set yields less surviving active
cancer cells than the prior parameter set (�� < 0), the change
in the parameter values is accepted. When the new parameter
set increases the number of surviving cancer cells (�� > 0),
the probability of accepting this parameter set is nonzero.
The reason the algorithm occasionally accepts moves that
increase the number of surviving active tumor cells is to
prevent convergence to a local minimum. However, to ensure
the algorithm does not continually accept these uphill moves,
the temperature T is set to be a monotonically decreasing
function of the annealing step k that satisfies

lim
k→∞

T (k) = 0. (10)

Therefore, as the number of parameter sets (which is equal to
k) tested increases, the likelihood of accepting an uphill move
decreases. The cooling schedule used for T (k) is

T (k) = 51.5(0.94)k. (11)

The treatment parameter set is perturbed using the specified
approach at each annealing step, and the parameter set is
accepted with probability p(��). This process is continued
until the energy of the system [that is, �(t)] approaches its
desired value �(t) = 0, within a specified tolerance. In the
simulations that follow, the simulated annealing scheme is
said to have converged when

�(112) � 2. (12)

In other words, the algorithm has converged when, on
average, there are less than two active cancer automaton
cells (approximately 15 active cancer cells) remaining in the
simulated tumors after two applications of an 8-week treatment
protocol.

III. RESULTS AND DISCUSSION

A. VDA dosing and drug cocktails

Preclinical and clinical data have suggested that adminis-
tering a VDA once every 3 weeks is a relatively ineffective
cancer treatment, at least in comparison to AIs. In Gevertz
[5], the HCA model used herein validated that, in spite of
several simplifications about the vasculature and the mode
of drug delivery, it could predict the relative inefficacy of
VDAs compared to AIs. According to the model, the limited
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FIG. 3. (Color online) Average active tumor area for four VDA
dosing strategies (with T3 = 0.6): daily administration, weekly
administration, administration once every 3 weeks, administration
once every 5 weeks. Tumor growth is compared to the case where no
treatment is administered.

antitumor activity of VDAs is a result of (1) cancer cells
surviving at the tumor periphery and (2) angiogenesis erasing
some of the tumor shrinkage that results from VDA-initiated
vessel collapse. Therefore, it is natural to ask whether this is
a shortcoming of VDAs in general, or if this is a result of the
preclinically recommended dosing procedure in which a VDA
is administered once every 3 weeks. This is a question that is
much quicker, cheaper, and easier to explore in a biophysical
model than in clinical trials.

Therefore, assuming that the simulated VDA has a 60%
chance of destroying an angiogenic vessel (T3 = 0.6), a
comparison of the antitumor activity of a VDA administered
daily, weekly, once every 3 weeks, and once every 5 weeks
is undertaken (Fig. 3). Quite counterintuitively, the model
predicts that the VDA administration schedule has little to
no bearing on treatment efficacy. All VDA protocols tested
compare favorably to using no treatment whatsoever, but
whether the VDA is administered daily or once every 5 weeks
does not seem to significantly influence its antitumor activity
(Fig. 3). On an individual tumor basis, the dosing schedule does
influence the fluctuations in tumor size: the less frequently the
drug is given, the more fluctuations there are in the tumor size
(data not shown). However, this does not lead to a greater tumor
size in the long-term. This result strongly suggests that it is the
survival of cells at the tumor periphery, and not post-VDA
angiogenesis, that is responsible for the overall failure of
VDAs. If post-treatment angiogenesis was responsible for the
limited efficacy of VDAs, applying the VDA over smaller time
intervals would eliminate the progrowth activity encouraged
by angiogenesis. Since the daily administration of the VDA
did not show improved efficacy over the standard once every
3 weeks protocol, the model supports the conclusion that
angiogenesis does not have a key role in VDA failure.

The unfortunate consequence of this conclusion is that the
limited antitumor activity of VDAs is a result of cancer cells
surviving at the tumor periphery. This is not something that
can be remedied by altering the dosing schedule or the strength
of the drug. Therefore, under the simplifying assumptions of
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with a VDA.

the model, one would conclude that for tumors growing in
well-vascularized environments, VDAs will ultimately prove
to be a relatively ineffective stand-alone cancer drug. It is
certainly plausible that the simplifying assumptions about the
vasculature are exaggerating the inefficacy of the VDA in
the model. However, the model has been validated to make
predictions consistent with data using preclinical and clinical
dosing strategies [5]. Therefore, while the quantitative results
cannot be taken too literally, the take-home message is that if a
drug developer was deciding to invest in a limited set of drugs,
the model suggests that AIs would be a wiser investment than
VDAs (Fig. 4).

A potential caveat to this conclusion is that a VDA may
enhance the efficacy of other cancer drugs. If adding a VDA
to another drug protocol could enhance the action of that
drug, then a VDA could still play a significant role in cancer
treatment. In fact, it has been hypothesized that, given their
different modes of action, targeting the tumor vasculature with
AIs and VDAs is complementary rather than redundant [2].
Preclinical evidence has suggested that pairing the VDA CA4P
with an anti-VEGF antibody significantly increases antitumor
activity [50]. A recently completed phase I clinical trial showed
that the administration of CA4P followed by bevacizumab
showed “early evidence of clinical activity” [50]. Therefore,
it is useful to employ the HCA model to study if there are
any additive or emergent effects of administering a VDA in
combination with an AI.

Figure 4 shows the average antitumor activity elicited by
applying an AI every 2 weeks (always maintaining therapeutic
levels) and a VDA every 3 weeks (only maintaining therapeutic
levels the day the drug is given), using parameter values
T1 = 100 and T3 = 0.6. The antitumor activity elicited by this
treatment protocol is compared to previously generated data
in which an AI is applied in isolation and in which a VDA is
applied in isolation [5]. In Fig. 4, it can be observed that little
to no benefit is gained by adding a VDA to an AI regimen.

More insight can be gained by performing a sensitivity
analysis on the treatment parameters. In Fig. 5, the antitumor
activity of the treatment protocol is considered at different
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FIG. 5. (Color online) Sensitivity analysis of the AI plus VDA
treatment regimen. In (a) the AI parameter is T1 = 10, in (b) the AI
parameter is T1 = 100, and in (c) the AI parameter is T1 = 1000, with
the VDA taking on a range of values in each case.

AI efficacy parameters. At the lowest AI parameter tested
(T1 = 10), the VDA does have a noticeable impact on the
average active tumor area [Fig. 5(a)]. This must be occurring
because the AI has not effectively thwarted angiogenesis,
leaving the VDA a substantial number of blood vessel targets.
Compare this to the higher levels of AI efficacy tested
(T1 = 100,1000), where the VDA exerts little to no impact
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FIG. 6. Simulated annealing results. (a) Change in the treatment parameters λAI , λAIC , and λC as a function of accepted annealing step k̄.
k̄ = N represents the N th accepted parameter set. (b) Change in the average number of active cells remaining after 8 weeks of treatment as a
function of accepted annealing step k̄.

on tumor expansion because the AI very effectively inhibits
angiogenesis [Figs. 5(b) and 5(c)].

Taken together, the simulations suggest that independent
of the dosing schedule, VDAs have limited antitumor activity
as a stand-alone drug, and minimal activity as a secondary
drug added to an AI treatment regimen. As with any model
predictions, this prediction is dependent on the assumptions
built into the model. That said, the behavior of both AIs
and VDAs in this model have been previously validated as
stand-alone drugs [5]. Thus, it is certainly plausible that the
biophysical model is yielding a useful conclusion for drug
companies: VDAs may not be the wisest investment of a
drug developer’s time and money. If new data about the
mode of action of VDAs (or VDAs in combination with other
drugs) are uncovered, then the model assumptions will need
to be revisited in this light, which may or may not alter the
predictions of the algorithm.

B. Stochastic optimization of AI plus cytotoxic drug
treatment protocol

A simulated annealing algorithm has been developed to
identify an AI plus cytotoxic drug treatment protocol that
minimizes the number of active tumor cells (proliferative
plus hypoxic) after 16 weeks of treatment. In particular, the
algorithm begins with an 8-week treatment protocol in which
λAI = 28 (meaning therapeutic levels of AI are maintained
for first 28 days) and λAIC = 28 (meaning therapeutic levels
of both the AI and chemotherapeutic are maintained for the
final 28 days). Initially, there is no period of time for which the
cytotoxic drug is administered when the AI is not maintained at
therapeutic levels (λC = 0). The simulated annealing scheme
perturbs these three treatment times at each annealing step k

as it searches for the global minimum. In Fig. 6(a), the change
in the three treatment parameters is shown as a function of the
accepted annealing step k̄. In other words, Fig. 6(a) only shows
those parameter sets that were accepted by the optimization

algorithm; those parameter changes that were rejected are not
shown.

One noticeable feature of the simulation results is that the
treatment evolves toward a strategy in which the AI is not
always maintained at therapeutic levels in the tissue. The
increase in λC , the length of time for which the AI is not
given, comes mostly at the expense of λAIC , the amount of
time both the AI and chemotherapeutic are maintained at
therapeutic levels [Fig. 6(a)]. The optimal treatment identified
is as follows.

(1) Days 1–20: Maintain therapeutic levels of AI only
(λAI = 20).

(2) Days 21–32: Maintain therapeutic levels of AI and
cytotoxic chemotherapy (λAIC = 12).

(3) Days 33–56: Maintain therapeutic levels of cytotoxic
chemotherapy only (λC = 24).

On average, this left only 1.4 active automaton cells
(approximately 10 active cancer cells) remaining after 16
weeks of treatment [Fig. 6(b)]. It took 45 annealing steps, 15
of which were accepted, and 69 h of run time to identify this
optimal treatment parameter set. The majority of the rejected
annealing steps (and hence the run time of the algorithm) were
invested in allowing the treatment strategy to accept an uphill
move and evolve away from the local minimum found at k̄ = 7.

It is necessary to understand why this scheme has proven
to be significantly more effective than the initial treatment
parameter set tested. First consider the previously studied
case in which an AI and chemotherapeutic are simultaneously
administered, with the chemotherapeutic only administered
for the maximal amount of time it can be tolerated. Using
this dosing strategy, the number of proliferative cells in the
simulated tumors is greatly limited [compare no treatment in
Fig. 4 to the non-optimal treatment in Fig. 7(a)], in spite of the
increase in tumor size upon removing the chemotherapeutic.
However, a large number of quiescent hypoxic cells survive
in the tumor mass. Once AI treatment ceases and oxygen
conditions become more favorable, quiescent hypoxic cells
can convert to a proliferative phenotype, which triggers tumor
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FIG. 7. (Color online) Optimal treatment strategy. (a) Comparing
the efficacy of the proposed optimal treatment strategy to the
simultaneous administration of an AI and a chemotherapeutic [5]. (b)
Response of active tumor area to cessation of therapy. The average
time of therapy cessation is denoted by a dashed black vertical line.

regrowth. This suggests that the only way to continue thwarting
tumor regrowth after complete treatment cessation is to design
a treatment that can destroy both proliferative and hypoxic
cancer cells. This is exactly what the identified optimal
treatment protocol accomplishes.

In the optimal treatment protocol identified, the AI levels
in the tissue are “pulsed,” meaning that therapeutic levels are
maintained for a period of time, but that is followed by a
period of time when therapeutic levels of the AI are no longer
maintained in the tissue. By “pulsing” the AI levels in this
manner, temporal bursts of angiogenesis will occur within
the tumor, as there are periods in time when angiogenesis is
not inhibited. These angiogenic bursts have the potential to
turn hypoxic cells into proliferative ones. Since the cytotoxic
agent can only target proliferative cells, this gives the cytotoxic
agent a chance at a pool of cells it may not have had access
to without pulsing the AI. Another way to think of this is
the following: The pulsing strategy increases the access of
the chemotherapeutic to the tumor mass. While the antitumor
activity of an AI is a result of its ability to limit blood flow
to the tumor, a secondary effect is limiting drug access to the

tumor mass. Therefore, by removing the AI at predefined time
intervals, and administering the chemotherapeutic during those
time intervals, the chemotherapeutic has increased access to
the tumor mass.

Two rounds of this optimal 8-week treatment protocol
reduces the average number of proliferative and hypoxic
automaton cells down to only 1.4 cells. Therefore, it is
plausible that if the treatment can be applied for a few more
rounds, the active tumor population can be fully eliminated
by the proposed treatment protocol. In this case, cessation of
treatment should not restimulate tumor growth, meaning the
regrowth of simulated tumors after stopping therapy can be
prevented.

To test this hypothesis, the average tumor area as a function
of time is determined over the course of optimal treatment
administration (Fig. 7). Importantly, while the simulated
annealing scheme was run using the maximal-treatment
parameter set (T1 = 1000, T2 = 0.44) in order to minimize run
time, the results shown here are using a less extreme parameter
set (T1 = 100, T2 = 0.34), which should be more in line with
clinical parameters [5]. First and foremost, it is observed how
much more successful the optimized treatment protocol is at
limiting active tumor growth as compared to simply applying
the AI and chemotherapeutic simultaneously for the maximum
tolerated time frame [Fig. 7(a)] [5]. In and of itself, this is an
important result, as this identified optimal treatment protocol
has significant antitumor activity, as far as the simulated tumors
are concerned.

A very important question can now be posed: What happens
when all drugs stop being administered to the simulated
tumors? As seen in Fig. 7(b), removing treatment after four
cycles of optimal therapy does not restimulate tumor growth.
This occurs because, on average, administering the optimal
three-part treatment protocol for approximately 19 weeks was
sufficient to eliminate the active tumor mass. Therefore, when
the treatment is finally removed after four cycles (32 weeks),
there are no more proliferative or hypoxic cells remaining
in the tumor to reinitiate the growth process. Plainly stated,
the simulated annealing scheme has identified a clinically
attainable treatment protocol that can permanently eradicate
the simulated tumors. While in no way does this suggest that a
cure for cancer has been found, it does suggest that the pulsed
treatment protocol may better thwart cancer progression than
currently utilized dosing strategies.

C. Model shortcomings, other models, and future work

The biophysical model used herein has previously been
validated in the settings of tumor growth and treatment.
In terms of tumor growth, the model has been shown to
quantitatively predict cancer progression when a tumor can
and cannot initiate the angiogenic process [41,42]. As far
as treatment is concerned, the model has been shown to
qualitatively predict the antitumor activity of two vascular-
targeting compounds, both with and without chemotherapy
[5]. These validation studies lend credence to the predictions
made by the model in novel clinical settings. However, any
computational model, including the model utilized herein,
has shortcomings that limit predictability. In this section, a
discussion of these shortcomings is undertaken.
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The underlying structure of the HCA model is the capillary
network. This network is represented using a set of straight
vessels with a fixed radius overlaid on a triangular lattice,
subject to some optimization criterion [41]. Therefore, the
network structure, while having some features of actual
blood vessel networks, is not physiologically precise. Some
excellent work by Welter et al. has been done on modeling the
structure of an arterioveneous blood vessel network and how
co-option of this network by a growing tumor leads to network
remodeling [51,52].

Beyond the structural simplifications, the model assumes
that vessel structure and blood flow are linearly related; in
other words, blood flows through all vessels at the same
rate, and the amount of oxygen a region of the tumor
receives is directly proportional to the density of capillaries
in that region. However, it is well-established that tumor
vessels are dysfunctional, leaky, and highly heterogeneous
[1,2], meaning that areas of high vascular density do not
necessarily correspond to high oxygen levels. This property
of tumor vessels has led to the paradoxical discovery that
antiangiogenesis therapies can normalize the blood vessels,
at least early in therapy, and therefore increase blood flow
to the tumor [53]. As our model assumes that all vessels
are treated equally, it cannot capture this phenomenon. A
number of discrete and continuous models have incorporated
the necessary details to capture this and other vessel-related
phenomenon, including the effects of blood flow, wall shear
stress, mechanical stress, network heterogeneities, vessel
dilation and constriction, and stress-induced collapse of blood
vessels [54–59]. Incorporating all of these details into the
current HCA model should certainly enhance the predictive
abilities of the model, although the trade-off will be a great
increase in complexity. Presumably, given the previously
performed validation studies on the existing model, adding
these details would improve the quantitative accuracy of the
model, but should not greatly alter the qualitative predictions.
This is something that can certainly be explored in future
work.

Another shortcoming that warrants mentioning is that both
angiogenesis and cancer cell phenotype are simplified in this
model. Focusing on angiogenesis first, there is only one
biological pathway that leads to new vessel formation in
the simulated tumors. In reality, there are many angiogenic
pathways (although the VEGF pathway accounted for here is
the dominant one), and treating a tumor with an AI that targets
one pathway can cause a compensatory angiogenic response
in the other pathways [3]. Interestingly enough, qualitative
aspects of tumor response to vascular-targeting therapies can
still be captured by the model without this detail. This perhaps
suggests that compensatory angiogenesis is not a major factor
in drug response. Another possibility is that more quantitative
predictions can be made if multiple angiogenic pathways are
considered in the model. Turning to cancer cell phenotype,
individual tumor cells are highly evolutionary and can rapidly
adapt to environmental changes, including those caused by
alterations in blood flow and chemotherapy [60,61]. Previous
work by Gevertz and Torquato [42] has explored the impact of
the spontaneous evolution of cancer cell phenotype, and in the
future, this work can be extended to study cellular adaptations
induced by blood flow or chemotherapy.

The final aspect of tumor progression absent from the
biophysical model is cancer cell invasion, the process whereby
individual cancer cells break away from the main tumor mass
and invade healthy tissue. Much insight into the invasion
process has been gained using models that account for cell
motility, adhesion, shape, and pressure [62–68]. The invasion
process is thought to partially be driven by the oxygen and
nutrient level of the tumor [69], which is a direct response
to the vascular structure. Further, the invasion of cancer cells
is thought to preferentially proceed along blood vessels [70].
Therefore, the process of vascular remodeling and single-cell
invasion are highly dependent. As potential future work, we
propose incorporating the single-cell invasion process into
the HCA model of tumor growth and vessel evolution. This
future work may also require altering the model to include
a more physiologically accurate representation of the vessel
network, possibly using a model based on the work of Rieger
and colleagues [51,52]. By incorporating invasion into the
biophysical model, we hope to study how the vasculature
influences the invasive pattern, and how the presence of single-
cell invasion influences tumor response to vascular-targeting
treatments, including the optimal treatment protocol identified
herein.

IV. CONCLUSIONS

In this paper, a biophysical tool has been introduced to
provide a theoretical basis for helping drug design teams assess
the most promising drug targets and design optimal treatment
strategies. In particular, the model demonstrates that VDAs
have limited antitumor activity for a wide range of dosing
schedules, even when paired with an AI. While this does
not rule out the possibility that VDAs can have antitumor
effects through pathways not implemented in this model, it
does suggest that, without further information on the action
of VDAs, VDAs may not be the best investment for a drug
developer trying to target tumors growing in well-vascularized
environments.

The HCA model was also exploited to search for an
optimal treatment protocol involving an AI, VDA, and
chemotherapeutic. Given the limited efficacy of VDAs, the
stochastic optimization scheme utilized focused on finding an
optimal dosing strategy for the administration of an AI plus
a cytotoxic chemotherapeutic. Using a simulated annealing
algorithm, the model identified a “pulsed” treatment strategy
that minimizes the number of active tumor cells remaining
after two cycles of treatment. The identified treatment strategy
is “pulsed” in that it requires that therapeutic levels of
the AI are, counterintuitively, not maintained at all times
during treatment. Follow-up simulations demonstrated that
three to four rounds of optimal therapy administration yields
permanent growth inhibition of the simulated tumors, even
after treatment removal. While in no way does this suggest
that a cure for cancer has been found, it does suggest that the
pulsed treatment protocol may better thwart cancer progression
than the currently utilized dosing schedule for an AI and a
chemotherapeutic.

Taken together, these results demonstrate that biophysical,
mathematical, and computational modeling can be used to
complement the drug-development process and improve upon
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current cancer treatments. For instance, our computational
model strongly suggests that VDAs are not as likely to succeed
in a clinical setting as AIs, at least for tumors growing in
a well-vascularized environment. Armed with this sort of
knowledge, drug developers could divert their resources away
from VDAs and instead focus on more promising cancer
therapies like AIs. Further, the model can be used to design
dosing protocols for clinical trial studies. As an example, the
pulsed AI and chemotherapy strategy discovered herein could
be one of the dosing schedules tested in a clinical trial. For these
reasons and others, mathematical and biophysical modeling
holds the promise of changing what drugs are developed, how
these drugs are tested, and how we treat cancer patients.

APPENDIX: BIOPHYSICAL MODEL—THE DETAILS

The algorithm utilized in this paper is a slightly modified
version of the algorithm proposed by Gevertz and Torquato
[41]. Besides these small modifications, which are detailed
below, the algorithm has also been adopted to account for
the administration of a drug at predefined time intervals.
The skeleton framework of the algorithm is summarized in
Algorithm 1.

Algorithm I. HCA model of vascular tumor growth and treatment

INPUT: Cell and vessel location in tissue region
while time < Tmax do
STEP 1: Numerically solve system of PDEs
STEP 2: Determine vessel response to PDE solution
STEP 3: Evolve each automaton cell
STEP 4: Apply treatment (if treatment is given at this time)
end while

(i) Automaton cell generation. A Voronoi tessellation of
random points generated using the nonequilibrium procedure
of random sequential addition of hard disks determines the
underlying lattice for the algorithm [41,71]. Each automaton
cell created via this procedure represents a cluster of biological
cells. Assuming the tumor under consideration is GBM (in
which glial cells have an average diameter of 40 μm [72]),
each automaton cell is chosen to represent a cluster of seven
glial cells. This number is small enough to give an average
automaton cell diameter less than the characteristic diffusion
length of oxygen, but large enough to keep the run time of the
algorithm manageable [41].

(ii) Healthy microvascular network. The blood vessel net-
work which supplies the cells in the tissue region of interest
with oxygen and nutrients must be generated. This is done
using a modification of the Krogh cylinder model; a model
of the capillary network which assumes that capillaries are
straight, parallel, and uniformly spaced [73]. The random
analog proposed by Gevertz and Torquato takes the idea of
using parallel line segments and randomizes it, subject to a
set of biologically inspired constraints. In particular, linear
blood vessels are sequentially attempted to be placed within
the tissue region of interest. A vessel can only be added to the
system, however, if it is not too close to a parallel vessel, if it
does not cause too many vessels to intersect at one site, and if
it vascularizes at least one unvascularized cell [41].

(iii) Initialize tumor. Designate the automaton cell in the
center of the tissue space as a proliferative cancer cell. This is
equivalent to taking the nonmalignant cell in the center of the
tissue and endowing it with a malignant phenotype.

(iv) Tumor growth algorithm. Time is then discretized into
units that represent 1 real day. At each time step:

(a) Solve PDEs. The following previously developed
system of PDEs [41] is numerically solved 1 day forward
in time:

∂v

∂t
= Dv�v + bvhi(h − v2/Kv)

− k0vrv0 + k−0rv − μvv, (A1)

∂a1

∂t
= ba1ei(pi + hi + ni)

(
e0 − a2

1/Ka

)
− k1a1ra0 + k−1ra1 − μa1a1, (A2)

∂a2

∂t
= Da2�a2 + ba2ei(pi + hi + ni)

(
e0 − a2

2/Ka

)
+ b̄a2hi

(
h − a2

2/Ka

)−k2a2ra0+k−2ra2−μa2a2,

(A3)

∂rv0

∂t
= −k0vrv0 + k−0rv, (A4)

∂ra0

∂t
= −k1a1ra0 + k−1ra1 − k2a2ra0 + k−2ra2, (A5)

∂rv

∂t
= k0vrv0 − k−0rv, (A6)

∂ra1

∂t
= k1a1ra0 − k−1ra1, (A7)

∂ra2

∂t
= k2a2ra0 − k−2ra2. (A8)

In these equations, v represents the concentration of
VEGF, rv0 is the concentration of the unbound VEGFR-2,
and rv is the VEGFR-2 receptor bound by VEGF. Further,
the concentration of Ang-1 is given by a1, that of Ang-2 is
given by a2, that of unoccupied Tie-2 is given by ra0, that
of Tie-2 bound by Ang-1 is given by ra1, and that of Tie-2
bound by Ang-2 is given by ra2.

For the three ligands (VEGF, Ang-1, and Ang-2) each
equation indicates that the protein is produced by the
appropriate cell type (with a carrying capacity term [46])
and that there is a linear decay term. Both VEGF and
Ang-2 diffuse, whereas Ang-1 does not. This is because
Ang-1 is produced by ECs and then acts in a paracrine
manner upon these ECs [46]. Further, the source term
of each protein depends on the cell types that produce
the protein. VEGF is produced by hypoxic cells [46] (hi ,
where h stands for hypoxia and the subscript i denotes
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that this is an indicator function), Ang-2 is produced by
ECs associated with malignant tissue (this includes ECs
associated with proliferative cells p, necrotic cells n, and
hypoxic cells) and is also produced by hypoxic cells [46],
and Ang-1 is produced by ECs associated with malignant
tissue.

For each receptor (VEGFR-2 and Tie-2), the equation
represents the association and dissociation of the ligand-
receptor complex. The schematic in Fig. 2 graphically
illustrates the processes being modeled in Eqs. (A1)–(A8).
A complete list of variable and parameter definitions,
along with details on the stable finite difference scheme
used to solve the differential equations can be found
elsewhere [5,41].
(b) Vessel evolution. Check whether each vessel meets
the requirements for regression or growth. Vessels with a
concentration of bound Ang-2 six times greater than that of
bound Ang-1 regress [44], provided that the concentration
of bound VEGF is below its critical value. Vessel tips
with a sufficient amount of bound VEGF sprout along the
VEGF gradient.
(c) Nonmalignant cells. Healthy cells undergo apoptosis if
vessel regression causes its oxygen concentration to drop
below a critical threshold. To simulate this, a characteristic
diffusion length of nutrients in tissue of 250 μm is used
[26,74], and it is assumed that oxygen can only reach
cells within this critical distance from a blood vessel.
Therefore, it is supposed that if the distance of a healthy
cell from a blood vessel exceeds lprolif = 250 μm, then
the oxygen level at that cell is insufficient, and the cell
undergoes apoptosis. Further, nonmalignant cells do not
divide in the model, which is a reasonable assumption for
GBM [75].
(d) Inert cells. Tumorous necrotic cells are inert.
(e) Hypoxic cells. A hypoxic cell turns proliferative if it is
within a distance of lprolif = 250 μm from a blood vessel.
This is equivalent to saying its oxygen level exceeds a
specified threshold [41]. Similarly, a hypoxic cell turns
necrotic if the oxygen level drops below a specified
threshold. This is implemented by converting any hypoxic
cell that is further than a distance of lhyp =1500 μm from
a vessel into a necrotic cell [41].

(f) Proliferative cells.
(1) A proliferative cell turns hypoxic if its oxygen
level drops below a specified threshold; that is, if it is
further than a distance of lprolif = 250 μm from a blood
vessel.
(2) If the oxygen level at a proliferative cell is sufficiently
high, the cell may attempt to divide into the space of
a viable nonmalignant cell. To determine the position
of the daughter cell, an intercellular mechanical stress
growth process is assumed [71]. In this process, the
new proliferative cell is placed in the position of the
dividing cells nearest neighbor. If this cell is occupied
(meaning, if a cancer cell is already located at this nearest
neighbor site), the tumor cells are successively pushed
outward, eventually resulting in the presence of one new
proliferative automaton cell at the tumor periphery.
(3) The probability that a proliferative cell divides, pdiv,
is influenced by the location of the dividing cell from
the tumor center (r), reflecting the effects of mechanical
confinement pressure imposed by the skull. In particular,
assuming a maximum tumor extent of Rmax (taken to be
10 mm in the model), and assuming that mechanical
confinement pressure inhibits tumor growth, gives the
following equation for pdiv:

pdiv = p0

(
1 − r

Rmax

)
. (A9)

The base probability of division, p0, depends on the
distance of the cell to the nearest blood vessel, dvessel. The
average value of p0 was fixed to be 0.192 (corresponding
to a cell doubling time of approximately four days),
with p0 taking on a minimum value pmin = 0.1 and a
maximum value pmax = 0.284 [42]. This means that a
proliferative cell in the model can have a cell doubling
time anywhere in the range of 3 to 7 days. The formula
used to determine p0 is

p0 = pmin − pmax

lprolif
dvessel + pmax, (A10)

where dvessel � 250 since only well-oxygenated cells can
divide. Under this condition, p0 > 0.

(v) Apply treatment (if applicable on a particular day).
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