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Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling
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Conservation equations governed by a nonlocal interaction potential generate aggregates from an initial uniform
distribution of particles. We address the evolution and formation of these aggregating steady states when the
interaction potential has both attractive and repulsive singularities. Currently, no existence theory for such po-
tentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse
method and a discrete stochastic lattice approach, and formally show a connection between the two. Interesting
aggregation patterns involving multiple peaks for a simple doubly singular attractive-repulsive potential are
determined. For a swarming Morse potential, characteristic slow-fast dynamics in the scaled inverse energy
is observed in the evolution to steady state in both the continuous and discrete approaches. The discrete approach
is found to be remarkably robust to modifications in movement rules, related to the potential function. The
comparable evolution dynamics and steady states of the discrete model with the continuum model suggest that
the discrete stochastic approach is a promising way of probing aggregation patterns arising from two- and
three-dimensional nonlocal interaction conservation equations.
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I. INTRODUCTION

Nonlocal interactions of particles or individuals in a fixed
size population are common and arise naturally in many
applications. In a continuum description, such systems give
rise to a conservation law for the spatial-temporal evolution
of a particle density ρ(x,t). In one spatial dimension this law
takes the form of a convolution integral and can be written as

∂ρ

∂t
= ∂

∂x

[
ρ

(∫ +∞

−∞
W ′(x − ξ )ρ(ξ,t)dξ

)]
, (1)

where W (x) = W (−x) is an even interaction potential func-
tion. Since Eq. (1) conserves the total mass (or number of
individuals), we apply the normalization

∫
R ρ(x,t) dx = 1

without any loss of generality. It follows that the scaled density
ρ(x,t) can be interpreted as a probability density.

The conservation equation (1) serves as a model for various
phenomena in biology and physics such as swarming and
flocking, aggregation and collective behavior of cell cultures,
chemotactic or nanotubular collective behavior of cells, mesh
arrangement of filaments and crystallization [1–14].

The behavior of solutions of Eq. (1) is in general dependent
on the regularity and/or singularity of the interaction potential
W (x) at the point x = 0 [15–20]. Hence, potentials can be
classified into four main types:

Regular interaction potentials arise in biomechanical cellu-
lar models [21–23], where W is a locally repulsive double-well
potential like W (x) = x4 − x2, and in animal models of
flocking and swarming, where W is a quadratic Morse potential
W (x) = −Ca e−(x/la )2 + Cr e−(x/lr )2

, where la and lr are length
scales [24]. They are also used in simple granular media
models [25–27]. Analytical results for regular potentials are
established [15,18,19,25,28].

*kerryl@unimelb.edu.au

Interaction potentials with an attractive singularity at x =
0 are used in models of swarms and collective behavior [7,8],
as well as models of chemotaxis phenomena [9,10], where
W (x) = − 1

2π
log |x| in two spatial dimensions recovers the

chemotactic advection of the Keller-Segel model [29]. Note
that it is known that solutions of the Keller-Segel model,
starting from a supercritical initial mass distribution, aggregate
in finite time to Dirac measures despite the presence of a
(Laplacian) diffusion term. Singular attractive-type potentials
have been studied by many authors [10,16,30–33]. Armstrong
et al. [11] proposed an equation similar to Eq. (1) to model
cell-adhesion effects describing cell aggregation patterns (with
generalizations to a nonlinear convolution operator). Such
equations have also been used to model somitogenesis [12],
cellular pattern formation [13], and cell renewal in mosaic
tissues [14].

Interaction potentials with a repulsive singularity at x = 0
are also common in swarming models [24,34,35]. A typical
example is given by the attractive-repulsive Morse potential
W (x) = −Ca e−|x|/la + Cr e−|x|/lr [Fig. 1(a)]. Lennard-Jones
potentials [36] provide another example used in various
physical applications. Results on existence and stability of
stationary states can be found in the literature [18,20].

Doubly singular double-well potentials denote interactions
which combine a repulsive singularity at x = 0 with attractive
singularities at x = ±r . An example is the family of piecewise
linear double-well potentials [Fig. 1(b)]:

Wr,λ,c(x) =

⎧⎪⎨
⎪⎩

−|x|, |x| < r,

λ|x| − r(λ + 1), r < |x| < c,

0, |x| > c,

(2)

where c ∈ (r,∞) describes a cutoff range for the interaction,
and c = ∞ constitutes the case without cutoff. In Eq. (2)
the parameter r > 0 marks the range of repulsive behavior,
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FIG. 1. Examples of interaction potentials W together with their
derivatives W ′ needed in Eq. (1). W left column and W ′ right
column. (a) Morse potential with Ca = 0.5,Cr = 1,la = 15,lr =
10. (b) Doubly singular double-well potential with r = 40,λ = 2,

c = 120.

while λ > 0 measures the relative strength of repulsion versus
attraction.

Under appropriate assumptions on W and the initial data,
the existence and uniqueness of solutions to Eq. (1) with
the first three types of interaction potentials are established
([15,16,18,28] and the references therein). Existence and
uniqueness of measure solutions to Eq. (1) for doubly singular
double-well potentials can be established following the lines
of Carrillo et al. [37]. It is, however, an open problem if
probability measures are required for defining solutions (like
for singular-attractive potentials without repulsive singularities
that exhibit finite time blowup [16]) or if solutions of Eq. (1)
for doubly singular double-well potentials should in fact be
considered in some Sobolev space (as for singular-repulsive
potentials without attractive singularities, where global regular
solutions can be obtained for sufficiently smooth initial
data [18]).

Nevertheless, doubly singular double-well potentials are
of particular interest, as they exhibit nontrivial aggregation
patterns within a continuously distributed population. The first
aim of this paper is to show and discuss these aggregation
patterns.

Second, it is our goal to compare the solutions to the
continuum model described by Eq. (1) with the evolution of
an ensemble of individual agents, which perform a stochastic
random walk on a discrete lattice. In particular, we study
discrete-lattice random walk models where the transition
probabilities are given in terms of the interaction potential W .
By averaging over many realizations and using a mean-field
theory approach, we show that the discrete model converges

in the continuum limit to the continuous conservation law.
Interestingly, there are several possible ways of choosing the
transition probabilities leading to the same limiting continuum
model. Such an approach has been successfully implemented
previously for local discrete agents with excluded volume
[38–41] and without excluded volume [42,43].

We develop a nonlocal discrete agent-based model on a
lattice and show how this can be connected to the continuum
approach. Single realizations of the model, as well as results
averaged over many realizations, are compared with solutions
of Eq. (1) for two types of potentials. In each case we
are interested in the long time behavior, i.e., the resulting
steady states. For doubly singular double-well potentials, the
singularities, the various length scales in W , and the support of
the initial population all influence aggregate formation and a
very good correspondence between the continuum and the
discrete approach is observed. Swarming Morse potentials
exhibit a characteristic slow-fast dynamics in the evolution
of quasistationary aggregates, which quickly merge when they
get too close to each other in both the continuum and stochastic
formulations.

II. DISCRETE STOCHASTIC MODEL AND ITS
CONNECTION WITH THE CONTINUUM MODEL

Let us consider an ensemble of N agents on a one-
dimensional lattice L with spacing �, where multiple agents
can occupy the same site. For each time step of duration τ ,
we make N sequential independent random choices of an
agent [44], so that, on average, each agent is chosen once
per time step. Then, with probability P , an agent attempts
to move at random, but the choice of the attempted move
depends on pair-wise agent interactions via the interaction
potential W .

Let 〈ni(k)〉 be the average number of agents at site i at the
kth time step, averaged over a finite number of statistically
identical realizations. Using this, we define an average relative
occupancy of site i at the kth time step as ρi(k) = 〈ni(k)〉/N ,
so that

∑
i∈L ρi(k) = 1. For each k, we assume that the

occupancies {ni(k),i ∈ L} form a set of independent random
variables. It follows then that {ρi(k),i ∈ L} is also a set of
independent random variables.

The evolution of ρi(k) is determined by the step-to-
right and step-to-left transition probabilities Ri(k) and Li(k),
respectively, which are allowed to depend on all ρj �=i(k).
We shall see that there are several possible choices of
transition probabilities in terms of the interaction poten-
tial W . Therefore we first develop a general approach
in terms of arbitrary nearest-neighbor transitions. We can
express the change in the occupancy at site i after k + 1
time steps in terms of occupancy at site i after k time
steps:

ρi(k + 1) − ρi(k) = P
{
ρi−1(k)Ri−1(k) + ρi+1(k)Li+1(k)

− ρi(k)[Ri(k) + Li(k)]
}
,

where the above assumption of ρi(k) being independent
random variables has been used in multiplying probabilities.
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The expression can be arranged as

ρi(k + 1) − ρi(k)

τ

= −P�

τ

(
ρi(k)Ri(k) − ρi−1(k)Ri−1(k)

�

− ρi+1(k)Li+1(k) − ρi(k)Li(k)

�

)
. (3)

Passing from a discrete to a continuous description, we
choose xi = �i and tk = kτ with no loss of generality and re-
place ρi(k) by a probability density function ρ(x,t) describing
the likelihood of finding an agent between positions a and b as∫ b

a
ρ(x,t)dx. Using the intervals Ii = [xi − �/2,xi + �/2]

and Tk = [(k − 1
2 )τ,(k + 1

2 )τ ], by definition the discrete and
continuous values are connected via the lattice spacing as

ρi(k) ≈ 1

τ

∫
Tk

∫
Ii

ρ(x,t) dx dt ≈ �ρ(xi,tk). (4)

The formal continuum limit of Eq. (3) is obtained by using a
Taylor series expansion at the site xi , and replacing xi with x

and tk with t :

∂ρ(x,t)

∂t
+ O(τ )

= −P�

τ

∂

∂x

{
ρ(x,t)[R(x,t) − L(x,t)]

} + O
(

P�2

τ

)
.

(5)

Taking the limit as � → 0 and τ → 0 jointly, with the product
P�/τ held constant, we obtain an advection equation of the
form

∂ρ(x,t)

∂t
= −K

∂

∂x

{
ρ(x,t)[R(x,t) − L(x,t)]

}
, (6)

where

K = lim
�→0,τ→0

P�

τ
(7)

has the units of velocity as required. Note that for a constant
[R(x,t) − L(x,t)], Eq. (6) reverts to a standard form [45]. In
our case however, [R(x,t) − L(x,t)] involves a convolution of
ρ(x,t) and the interaction force −W ′(x).

It is necessary to determine an appropriate choice of Ri(k)
and Li(k). Consider the following two natural quantities,
which involve the occupancies of all sites j �= i according
to the sign of W ′:

ri(k) =
∑

j �=i:W ′(�j−�i)>0

W ′(�j − �i) ρj (k) � 0, (8)

li(k) =
∑

j �=i:W ′(�j−�i)<0

W ′(�j − �i) ρj (k) � 0. (9)

Note, that ri(k) and li(k) are functions of ρj (k),j �= i, and are
therefore independent of ρi(k). We remark furthermore that
due to the evenness of the interaction potential W , W ′(x) must
be an odd function and therefore W ′(0) = 0. Consequently
we assume for the lattice model that no forces are generated
amongst the agents sitting at the same site [46].

With the quantities (8) and (9), an appropriate choice of the
transition probabilities Ri(k) and Li(k) is given by

Ri(k) = 1

‖W ′‖∞
ri(k), Li(k) = − 1

‖W ′‖∞
li(k). (10)

Here ‖W ′‖∞ is the supremum of W ′ on a ball whose radius
matches the support of ρ, which is uniformly-in-time bounded
for all the examples considered below. From this definition,
Ri(k) ∈ [0,1] and Li(k) ∈ [0,1] and the sum of the two
probabilites L(i) + R(i) ∈ [0,1] as required. If this sum is
strictly less than unity, there is a positive probability of an
agent remaining at site i during a time step. From Eq. (10) we
have

Ri(k) − Li(k) = 1

‖W ′‖∞

∑
j �=i:j∈L

W ′(�j − �i)ρj (k), (11)

where this sum is over both positive and negative values of
W ′. We now require the continuous form of Eq. (11): using
Eq. (4), the Riemann sum in Eq. (11) becomes∑

j �=i:j∈L

W ′(�j − �i)ρj (k)

=
∑
j∈L

W ′(xj − xi) ρ(xj ,tk) �

= −
∑
j∈L

W ′(xi − xj ) ρ(xj ,tk) �, (12)

since W ′ is an odd function. Therefore, in the limit as � → 0,

lim
�→0

∑
j∈L

W ′(xi − xj ) ρ(xj ,tk) � =
∫
R

W ′(xi − ξ )ρ(ξ,tk) dξ.

(13)

Setting xi = x and tk = t and using Eq. (12), we obtain

R(x,t) − L(x,t) = − 1

‖W ′‖∞

∫ ∞

−∞
W ′(x − ξ )ρ(ξ,t) dξ.

(14)

Combining Eqs. (6), (7), and (14), we obtain

∂ρ

∂t
= K

‖W ′‖∞

∂

∂x

[
ρ

(∫ +∞

−∞
W ′(x − ξ )ρ(ξ,t)dξ

)]
.

(15)

If the time variable in the discrete model is rescaled appropri-
ately with the coefficient ‖W ′‖∞/K , then Eq. (15) is identical
to Eq. (1).

We have therefore demonstrated rigorously the connection
between a discrete stochastic model and the continuum model
for a single choice of right and left transition probabilities
[Eqs. (8)–(10)]. Let us remark that this choice is not unique.
It is simple to define other transition probabilities giving the
same value of Ri(k) − Li(k) as in Eq. (11). For example,

Ri(k) = 1

‖W ′‖∞
[ri(k) + li(k)]H [ri(k) + li(k)], (16)

Li(k) = − 1

‖W ′‖∞
[ri(k) + li(k)]

{
1 − H [ri(k) + li(k)]

}
,

(17)
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where H is the Heaviside step function. This choice also
produces the same continuous representation governed by
Eq. (1) in the continuum limit. With this definition, when
ri(k) + li(k) �= 0, then either the right or the left probability
is zero. In general, there is also a nonzero probability that an
agent does not move and this increases the time necessary to
attain the steady state distribution.

III. METHODS

We wish to compare steady state solutions of the continuum
model and the simulation results of the discrete stochastic
process. Methods to generate such solutions are described
and an energy function and Wasserstein norm are used
to determine the time when steady states are effectively
achieved.

A. Continuum method

For regular or singular attractive interaction potentials,
with smooth initial data, Eq. (1) has steady state solutions
which are a sum of discrete aggregates, namely Dirac masses
[16,19,20,28]. This result extends to all C2 potentials [18,19].
Such conclusions are reached by transforming Eq. (1) into
an equation for the pseudoinverse of the probability density
function. We now follow the same technique when solving
Eq. (1) for doubly singular double-well potentials and for
Morse potentials.

We define

u(z,t) = inf

{
x ∈ R :

∫
(−∞,x]

dρ(x,t) > z

}
, ∀z ∈ [0,1).

Then Eq. (1) becomes an integral equation for the nondecreas-
ing function u(z,t) [26,28]:

∂u(z,t)

∂t
=

∫ 1

0
W ′[u(ξ,t) − u(z,t)]dξ, ∀z ∈ [0,1). (18)

Without loss of generality, we exclude z = 1 thereby avoiding
alteration of the above definition of u(z,t) for u(1,t).

A major advantage of using the pseudoinverse u(z,t) and
the integral equation (18) lies in the fact that the mass of
the Dirac δ functions in ρ(x,t) corresponds to the size of
the z interval where u(z,t) is constant. Thus solving the
pseudoinverse equation (18) numerically, by approximating
u by piecewise constants ui on a regular grid, is equivalent
to approximating the probability density ρ(x,t) by a sum of
Dirac measures with masses corresponding to the grid size.
Note that this corresponds to a finite particle approximation of
ρ(x,t). In the numerical scheme, the right hand side of Eq. (18)
becomes a matrix-operator equation. The resulting differential
equation is solved using an explicit-in-time discretization with
adaptive time steps [ensuring a nondecreasing pseudoinverse
u(z,t)].

In the numerical simulations for the doubly singular double-
well potential, both with and without a cutoff, it is necessary to
smooth the attractive singularities and the cutoff. Introducing
a parameter ε > 0, we define

Wr,λ,ε(x) =

⎧⎪⎨
⎪⎩

−|x|, |x| � r − ε,
1
2ε

[x − sgn(x)r]2 − r − ε
2 , r − ε < |x| � r + λε,

λ|x| − r(λ + 1), |x| > r + λε,

(19)

and

Wr,λ,c,ε(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−|x|, |x| � r − ε,
1
2ε

[x − sgn(x)r]2 − r − ε
2 , r − ε < |x| � r + λε,

λ|x| − r(λ + 1) + ε
2 (1 − λ2), r + λε < |x| � c − ε,

λ
ε
[c|x| − 1

2 |x|2 − 1
2 (c2 − ε2)] + Wr,λ,c,ε(c − ε), c − ε < |x| � c,

0, |x| > c.

(20)

The attractive singularities at x = ±r are smoothed for both
cases. As a result, the solutions of Eq. (1) with Eqs. (19)
and (20) are guaranteed by the existence theory of singular
repulsive potentials, which ensures global regular solutions
provided sufficiently regular initial data [18,20]. Note that, for
the cutoff case [Eq. (20)], we also smoothed the derivative
W ′, such that W ′(±c) = 0 at the cutoff positions, to suppress
any numerical instabilities in the evolution to the steady
states. Also, for small ε, the numerical scheme outlined above
becomes stiff and an adaptive time integration scheme has
been employed.

We discuss the convergence of the numerical scheme
and the effect of the smoothing parameter ε (Fig. 2) for

the no cutoff case. As ε becomes smaller [moving from
(a) to (c) in Fig. 2] the computed steady state solutions
appear to converge to a unique stationary state. Generally,
we observe convergence toward three Dirac measures, which
are connected by a continuum of particles. However, we have
not been able to determine a functional expression of this
stationary state, which analytically solves Eq. (1) with the
limiting potential Eq. (2). Nevertheless, these results suggest
the existence of solutions for the doubly singular double-well
potential. Importantly, the convergence depicted in Fig. 2
allows the features of stationary states of the continuum model
with potentials given by Eq. (19) to be compared with the
corresponding stationary states of the stochastic lattice model.
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FIG. 2. Doubly singular double-well potential with no cutoff:
convergence of approximative potential. The convergence of station-
ary states of the continuous model as the potential Wr,λ,ε converges
toward Wr,λ for ε = 0.1,0.01,0.001 in rows (a)–(c), respectively.
Here r = 0.4,λ = 0.5. All plots are calculated using a uniformly
distributed initial mass within the support [−0.5,0.5]. Plots on the left
show u(z,t) at time t = 0 (initial data, bold line) and the numerical
stationary state (solid line). Plots on the right show image plots ρ(x,t)
at the numerical stationary state. Note that the steady states for small
ε feature three sharp peaks, which are connected by a continuum of
particles. Note the different vertical scales between the left and right
plots.

This applies for those properties of the solution that pertain to
scales larger than ε. Similar results are obtained for the doubly
singular double-well potential with cutoff [Eq. (20)].

In the continuum model, an appropriate energy functional
at time t is given by

E(t) = 1

2

∫
R

∫
R

ρ(x,t)ρ(y,t)W (x − y)dxdy. (21)

The scaled inverse of the energy functional is useful in
evaluating the time to attain steady states. We define this as

Ein(t) = E(0)

E(t)
. (22)

Moreover, our numerical examples suggest that the decay
of the Wasserstein W2 norm [this is the L2 norm of the
pseudoinverse u(z); a fuller definition can be found in
Ambrosio et al. [15]] provides an especially useful quantity

as to whether a steady state is reached for Morse potentials,
where the energy exhibits strong slow-fast dynamics.

B. Discrete stochastic simulation method

A single simulation of the discrete model proceeds as
follows. Initial conditions consist of a random arrangement of
the total mass N over a chosen initial support interval, which
is the stochastic equivalent of a uniformly distributed initial
mass within a specified support. In each time step, N agents
are chosen randomly to move either one unit to the left or
right: the direction of motion is determined by the transition
probabilities Ri(k) and Li(k), where i is the position of the
selected agent. Note that in the simulation of the process,
in place of the average occupancies ρi(k), we use the actual
proportions ni(k)/N . Due to the sequential random choice of
agents, some agents may be chosen to move more than once
and others not at all. However, on average, each agent will
have the opportunity to move once each time step. No-flux
boundary conditions are implemented, by aborting any moves
that would push an agent outside of the domain.

In our simulations, we rescale, and therefore simplify, the
transitions probabilities given in Eqs. (16) and (17) to be

Ri(k) = H [ri(k) + li(k)], (23)

Li(k) = −{
1 − H [ri(k) + li(k)]

}
. (24)

This corresponds to a change in the time scale that speeds up
the simulation process, reducing the time to reach the steady
state. As a consequence of Eqs. (23) and (24) sgn[ri(k) +
li(k)] exactly determines whether the agent moves left or
right [if ri(k) + li(k) �= 0]. In particular, with these transition
probabilities the stochastic nature of the discrete model comes
from the initial random placement of agents together with the
sequential random choices of agent made at each time step.
We have also run simulations with alternative forms of Ri(k)
and Li(k) and confirmed that the behavior of the steady state
solutions is qualitatively the same.

Simulation results need to be scaled for comparison with
the continuum model. To do this, we convert length scales
using the relation �M = m, where M and m are particular
length scales (e.g., the size of the initial support, the cutoff
length, the distance to turning points in W ) in the discrete
and continuum models, respectively. This relation defines the
effective lattice spacing �. For example, consider the singular
double-well potential Wr,λ,c with r = 0.4, and c = 1.2. If we
choose R = 40 to be the number of lattice sites from the origin
to the minima of the potential, then � = 0.01. Thus the cutoff
in the discrete model is C = 120 lattice spaces, corresponding
to c = 1.2 in the continuum approach.

For the doubly singular double-well potential with no
cutoff, the results of the discrete model can be averaged over
100 identical simulations with different random initial data,
provided that the center of mass of the distribution is shifted to
x = 0 for each individual simulation. For the doubly singular
double-well potential with cutoff, no such averaging can be
performed, but instead only results of individual simulations
can be investigated. This is due to the complicated interplay
between the parameters r and c in a stochastic simulation
causing the number of aggregates and the spacing between
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them to depend on the initial conditions and stochastic history
(i.e., the random selection of agents).

Finally, for the continuum model, it has been necessary to
smooth the potential at the attractive singularities. However,
there is no need to do this for the discrete model—due to the
finite lattice spacing, the singularities cannot be experienced,
providing a natural smoothing at the order of the lattice
spacing �.

For the discrete model, the energy functional at time step k

is given by

E(k) = 1

2
�2

∑
i

∑
j

ρi(k)ρj (k)W (�i − �j ), (25)

where indices i,j run over all sites. We again use a scaled
inverse of the energy functional for assessing the time to attain
steady states:

Ein(k) = E(0)

E(k)
. (26)

Note that since the discrete model is not a gradient flow, there
is no equivalent of the Wasserstein norm.

IV. RESULTS

We determine steady state solutions of the continuum and
discrete stochastic models first for the doubly singular double-
well potentials and then for Morse potentials.

A. Doubly singular double-well potentials

Consider the double-well potential Wr,λ,c(x) [Eq. (2)]. In
the case where c = ∞ (i.e., no cutoff), we write the function
as Wr,λ(x). This potential features modulus-type singularities
at x = 0 (repulsive), at x = ±r (attractive), and, if c < ∞, at
x = ±c (repulsive).

1. No cutoff

In Wr,λ(x), the parameter λ controls the strength of the
repulsive singularity (at x = 0) relative to the strength of the
attractive singularity (at x = ±r). This follows by considering
the derivative of the potential:

W ′
r,λ(x) =

{−sgn(x) |x| < r,

λ sgn(x) |x| > r.
(27)

When λ < 1, the jump in the derivative at the repulsive
singularity is larger than the jump at the attractive singularity at
x = ±r , and consequently the repulsive singularity dominates.
When λ > 1 the opposite is true, and attraction dominates.

Figure 3 illustrates steady state solutions for a range of
values of λ and compares the steady state solutions from the
continuous pseudoinverse solution method (left column) with
the discrete stochastic method (right column). There are a
number of conclusions that we can draw. First, it is clear that
the qualitative behavior from the two models is the same,
because the number of peaks and their spacing are the same.
Second, both models show similar features depending on the
value of λ: (i) for λ < 1, three peaks are present separated
by distance r on a flat island of support with length 2r;
(ii) for λ = 1, a flat island of support length 2r is observed;
(iii) for λ > 1 two peaks occur separated by distance r on a
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FIG. 3. Doubly singular double-well potential with no cutoff:
continuum and discrete models. A comparison between continuous
(left column) and discrete stochastic (right column) steady states
ρ(x,t) versus x using the potential Wr,λ for r = 0.4 and λ =
0.5,0.9,1.0,1.1,2.0 [rows (a)–(e), respectively]. Initial conditions are
given by a uniformly distributed mass within the support [−0.5,0.5].
For the discrete model, results are averaged at time step k = 5000
over 100 simulations, starting from different random initial data. To
correctly average the discrete results, the center of mass of each
simulation at k = 5000 is placed at x = 0 and then the results are
averaged. Note the different vertical scales between the left and right
plots.

very flat (but nonzero) island. Note that in the discrete case,
each simulation either gives three large peaks or three large
peaks with two smaller peaks somewhere between them. When
such simulations are averaged (as described in Sec. III B), an
island with small but nonzero height is present (Fig. 3, right
column).

There are also some differences between the two sets of
solutions. First, the stochastic effects cause the peaks in the
discrete model to be wider, and correspondingly the peak
heights to be lower, than those in the continuum model. If we
choose a smaller �, the peaks in the discrete model narrow,
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FIG. 4. Doubly singular double-well potential with no cutoff:
continuum model. Scaled inverse energy function Ein for the evolution
of ρ(x,t) for r = 0.4 and λ = 0.5,2 (cf. Fig. 3). Note the different
scales.

but the simulation time increases dramatically. Second, the
continuum solutions have a sharp transition in the steady state
at λ = 1 (from three to two peaks). In contrast, the discrete
model does not experience a change in steady states unless
λ � 1.1 or λ � 0.9. This is due to the stochastic effects
inherent to the discrete model that blur the deterministic
transition at λ = 1.

The time to reach steady state can be estimated from
the evolution of the scaled inverse energy functional, Ein,
for the continuum and discrete models, respectively (Figs. 4
and 5). In the continuum model, the energy decreases to
an asymptotic value attained after t = 10. For the discrete
model, averaging over 100 simulations (Fig. 5, right column)
significantly reduces the fluctuations in Ein(k) that occur in
a single simulation (Fig. 5, left column). For λ = 0.5 and
λ = 2 the steady state is attained within the first 100 time
steps, and afterward Ein(k) remains stable. The time scales to
reach steady state in the discrete and continuum models are not
expected to match. In addition, the steady state energies will
not match, since the asymptotic value of Ein(k) is dependent on
the number of agents—fewer agents produce a larger limiting
value.

2. With cutoff

In Wr,λ,c(x), the parameter λ again controls the strength
of the repulsive singularity (at x = 0) relative to the strength
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FIG. 5. Doubly singular double-well potential with no cutoff:
discrete model. Scaled inverse energy function Ein for the evolution of
ρ(x,t) for r = 0.4 and λ = 0.5,2 (cf. Fig. 3). (a) and (c) show results
for a single realization; (b) and (d) show results averaged over 100
realizations. Ein remains stable from k = 500 onward (not shown).
Note the different scales.

$
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0
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FIG. 6. Doubly singular double-well potential with a cutoff:
continuum model. Steady state ρ(x,t) versus x using the potential
Wr,λ,c for r = 0.4,λ = 0.5,c = 1.2. Scaled inverse energy function
Ein for the evolution of ρ(x,t), using a uniformly distributed initial
mass within the support [−5,5].

of the attractive singularity (at x = ±r). In our examples, the
initial support must be chosen larger than the cutoff, in order
to demonstrate the effect of the latter.

Consider a value λ < 1, where the repulsive singularity
dominates. The value of r is the same as for the no cutoff
case (Fig. 3). In Figs. 6 and 7, the continuum model steady
state and two sample simulations using the discrete model are
shown. Repeated groups of three peaks are obtained. The peaks
within a single group, which we call an aggregate, are always
separated by exactly r units. These three peaks resemble the
steady state for the no cutoff case with the same parameters but
with c = ∞, as in Fig. 3(a). We therefore get several repetitions
of the no cutoff steady state. In the case of the continuum model
there are three repetitions (three aggregates). In contrast, the
discrete model has either two or three aggregates (repetitions).

The repeating pattern is caused by the presence of the cutoff
which isolates the agents from each other: the aggregates
are always separated by more than the cutoff c. For the
continuum model, an initial mass supported uniformly within
the interval [−5,5] always yields three aggregates of three
peaks (Fig. 6). In contrast, the stochastic effects of the random
walk model, as well as the randomly positioned initial agents,
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time k

time k
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FIG. 7. Doubly singular double-well potential with a cutoff:
discrete model. Each row is the result of a single realization. Left
column: ρ versus x using the potential Wr,λ,c for r = 0.4,λ = 0.5,c =
1.2 at time step k = 2000. Right column: the associated scaled inverse
energy function Ein for the evolution of ρ(x,t), using a randomly
distributed initial mass within the support [−5,5].
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FIG. 8. Distance between aggregates in the discrete model with
cut-off. Frequency f of inter-aggregate distance for 20 simulations
with potential Wr,λ,c for r = 0.4,c = 1.2 and (a) λ = 0.5, (b) λ = 2
(c.f. Figs. 7 and 10).

can lead to a different number of aggregates each with three
peaks (Fig. 7). A histogram of the distribution of distances
between aggregates [Fig. 8(a)] shows that the most common
inter-aggregate distance lies in the range [2c,3c]. This agrees
with the continuum model where the aggregates are separated
by a distance larger than 2c. The exact distance of separation,
however, depends on the number of aggregates as well as the
initial mass distribution.

The scaled inverse of the energy functional Ein (Figs. 6 and
7) decays at a uniform rate to attain a nonzero asymptotic value,
indicating that there is a single time scale associated with the
evolution to steady state. As in the case with no cutoff, the
asymptotic value of Ein(k) depends on the number of agents
in the discrete simulation, decreasing as the number of agents
increases. Note that the shape of Ein(k) is qualitatively the same
in the continuous as the discrete case, although the asymptotic
value differs for the reasons noted above.

Now consider a value λ > 1, where the attractive singularity
dominates (Figs. 9 and 10). In this example, we have repeated
groups (aggregates) of two peaks. The two peaks occur
within each aggregate because that is the corresponding steady
state obtained for the no cutoff case [Fig. 3(e)]. There are
three such aggregates for the continuum model, while the
number of aggregates again varies for the discrete case, being
predominantly in the range [2c,3c] [Fig. 8(b)].

In summary, the no cutoff case provides information about
the number of peaks within each aggregate for the cutoff case.
Such aggregates are repeated, with distance between them
greater than 2c, and their number also depends on the initial
support.

0

5

10

-5 0 5
x

ρ

FIG. 9. Doubly singular double-well potential with a cutoff:
continuum model. Steady state ρ(x,t) versus x using the potential
Wr,λ,c for r = 0.4,λ = 2,c = 1.2. The only difference between this
and Fig. 6 is the increased value of λ. Initial conditions are a uniformly
distributed initial mass within the support [−5,5].
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FIG. 10. Doubly singular double-well potential with a cutoff:
discrete model. Three different steady states from three identically
prepared simulations with potential Wr,λ,c for r = 0.4,λ = 2,c = 1.2.
Initial conditions are a randomly distributed initial mass within the
support [−5,5]. The value of λ is increased from that used in Fig. 7.

B. Morse potentials

The first term in the Morse potential represents attraction
with strength F , relative to the repulsive term, and with charac-
teristic length scale L1 > 0, while the second term represents
repulsion with length scale L2 and strength normalized to
unity:

WF,L1,L2 (x) = −FL1 exp

(
−|x|

L1

)
+ L2 exp

(
−|x|

L2

)
,

W ′
F,L1,L2

(x) = −sgn(x)

[
−F exp

(
−|x|

L1

)
+ exp

(
−|x|

L2

)]
.

For swarming applications, where particles are repulsed by
each other at short distances but are attracted at a longer range,
the parameters must satisfy F < 1 and L1 > L2, otherwise W

becomes a single well potential. The Morse potential tends to
zero as |x| → ∞, in contrast to the doubly singular double-
well potential with no cutoff. Note that W ′ is continuous
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FIG. 11. Morse potential: continuum model. Evolution of sta-
tionary states for WF,L1,L2 with F = 0.5, L1 = 0.25, and L2 = 0.1.
Uniform initial support is within [−3,3]. (a) Densities ρ(x,t) at the
three times t = 520, t = 2170, and t = 2509 are depicted. (b) Time
evolution of the scaled inverse energy Ein and the Wasserstein W2

norm.
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FIG. 12. Morse potential: discrete model. Evolution of stationary
states for WF,L1,L2 with F = 0.5,L1 = 0.25,L2 = 0.1. Randomly
distributed initial mass within the support [−3,3]. Each column shows
an identically prepared simulation with a different outcome. The
first three rows give the density ρ at the three time steps k = 200,
k = 1000, and k = 10 000. The last row shows the corresponding
scaled inverse energy functions (insets show the shifts in some detail).
Note that in both simulations Einincreases initially and then decreases
below unity.

everywhere, except at x = 0, where a single jump discontinuity
is present.

Figures 11 and 12 show continuum and discrete results for
a Morse potential with parameters F = 0.5,L1 = 0.25,L2 =
0.1 and initial support within [−3,3]. In the continuum results,
we see that after a period of time, three peaks appear. At a later
time, the distance between the peaks reduces and eventually the
peaks coalesce into one single peak, which is the final steady
state. The time evolution of these states is best described by the
inverse energy Ein and the Wasserstein norm W2: the function
Ein(t) attains a plateau relatively early and remains in that state
for a long period of time. It then rapidly transitions to a lower
constant value as the number of peaks reduces from 3 to 1
[Fig. 11(b)]. In contrast, the W2(t) norm continues to reduce
and only has one plateau which is reached when there is a single
peak some time after t = 2000. A similar slow-fast dynamics
in the energy plot occurs for different Morse potentials, which
feature two aggregates at steady state (plots not shown). Again

the W2(t) norm arrives at a (nonzero) minimum only when
the true steady state is reached. This demonstrates that for
potentials which exhibit slow-fast dynamics, such as the Morse
potential, the energy function alone is an unreliable indicator
of whether the steady state has been reached.

Let us now compare these results with those of the discrete
model. In the discrete model, different outcomes are observed,
depending on the random spread of the initial condition and
the stochastic history of the system. In Fig. 12 the two columns
show the evolution of two different steady states: we cannot
be absolutely sure that the density plots in the right column
remain as two peaks and not jump to a single peak and remain
so for all time, but the state is essentially unchanged from
k = 500 to k = 10 000. The characteristic slow-fast evolution
of the steady state in the left column is demonstrated in the
scaled inverse energy functional which is stable for 9000 time
steps, until it suddenly reduces when the peaks merge.

Changing either F , L1/L2 or the initial support length
modifies the number and width of the peaks at steady state.
For example, if F is increased, the width of the peaks
decreases since there is more attraction. Conversely, if L1/L2

is decreased there is more repulsion and there are a larger
number of wider peaks. If the initial support is increased, then
the number of peaks increases and the time to reach steady
state also grows. In such examples, the Wasserstein norm is a
reliable indicator of whether the steady state has been reached.
We have obtained results where four peaks moved closer to
each other to eventually create a state with two peaks. In
those cases, W2(t) monotonically decreases while there are
four peaks (whereas the inverse energy plateaus) and only
reaches a constant (nonzero) value when there are two peaks
(while the inverse energy shifts to a lower value).

V. DISCUSSION

Previous work by Carrillo et al. [16] rigorously justified
approximating solutions to Eq. (1) by a finite ensemble of
particles (or Dirac masses) for a wide class of regular or
singular attractive interaction potentials. We have developed
two complementary approaches to solve more general poten-
tials in terms of finite ensembles of Dirac masses. Potentials
containing both attractive and repulsive singularities for which
there is no existence theory are particularly interesting. The
first method involves transforming Eq. (1) into an equation for
the pseudoinverse, u(z,t) which is then solved numerically.
The second method is a simulation technique on a discrete
stochastic lattice model.

A formal connection between the lattice model and the
continuum model using a mean field approach has been proved.
Therefore a comparison between the two is justified and allows
us to explore the continuum model for the doubly singular
attractive repulsive potential, for which there is currently no
existence theory.

The simplest potential with both attractive and repulsive
singularities is the doubly singular double-well potential Wr,λ,
which gives rise to interesting two or three peak steady states
depending on the relative strength between the attractive and
repulsive singularities. The separation distance of the peaks
is determined by the repulsive distance of the double-well
potential Wr,λ. Thus the doubly singular double-well potential
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Wr,λ has the advantage of featuring intuitively accessible
steady states. This is in sharp contrast to the C2-double-well
potential, which features highly nonunique steady states with
peak distances that vary and depend in a complicated way
on the nonlocal structure of the smooth double-well potential
function [19].

The same steady states are observed in both the continuum
and discrete approaches: this indicates the robustness of both
approaches and is in line with the fact that the continuum model
requires explicit smoothing at the (attractive) singularities
while the lattice model has indirect smoothing via the nonzero
lattice spacing. The stochastic effects inherent in the lattice
approach cause wider peaks and more pronounced islands but
the general features of the aggregates are identical.

The presence of stochastic effects in the discrete model
also shows that the comparison between the discrete with
the continuum method is robust under a certain amount of
noise. The stochastic effects come from the random selection
of agents and random initial conditions.

We verified the formal connection between the discrete
lattice model and the continuum model for the stochastic rules
Eqs. (16) and (17). However, our discrete model results were
implemented with the Heaviside function rules of movement
given by Eqs. (23) and (24). We did this in order to reduce
the time taken to reach a steady state, since the rules in
Eqs. (23) and (24) always result in a movement, while the
rules Eqs. (16) and (17) may have a probability of staying at
rest. We confirmed this by implementing the simulations for
the doubly singular double-well potential with the stochastic
rules given by Eqs. (16) and (17). While the obtained steady
states are essentially the same, the time taken to steady state is
approximately 50 times longer. Consequently, our observation
that the simpler rules Eqs. (23) and (24) give essentially the
same steady states and, in addition, have inverse energies
with the same qualitative behavior as the continuum model,
provides a very satisfying confirmation of the robustness of
the discrete approach to the continuum model.

The effect of the cutoff in the doubly singular double-well
potential is to isolate agents from each other, and to create,

within a large ensemble, a number of groups resembling
the steady states of the no cutoff case. Also, the groups
are separated from each other by more than the cutoff
distance. Repeating patterns are observed in many biological
phenomena, and it is easy to motivate the use of a potential with
compact support (equivalent to having a cutoff) if we anticipate
that biological and/or physical entities can only read cues in a
finite-sized local region.

The scaled inverse energy functional is a useful measure
of the dynamics of the system as it approaches steady
state. For Morse potentials we see a characteristic slow-
fast dynamics where Ein(t) attains a first minimum and
later rapidly transitions to a lower constant value, as the
number of peaks changes. A similar slow-fast dynamics is
observed in the Keller-Segel model [29]. Note that the cause
of the slow-fast dynamics in the models just discussed is
the repulsive-aggregating behavior of the Morse potential,
in contrast to competition between diffusion and the purely
aggregating interaction potential in the Keller-Segel model
[W (x) = − 1

2π
log |x|].

Finally, results for nonlocal conservation equations in
higher spatial dimensions are beginning to appear [47–51].
However, the pseudoinverse technique for solving nonlocal
conservation equations, used for the one-dimensional case,
cannot be used in two and three spatial dimensions. Given
that our discrete stochastic model reproduces the steady state
features of the one-dimensional continuum model, we propose
that its higher dimensional analog could provide an appropriate
method to study the dynamics and steady state distributions of
nonlocal two- and three-dimensional conservation equations
for the four main types of potential functions we have
discussed.

We illustrate this by implementing a two-dimensional (2D)
analog of the discrete stochastic model using a square lattice
with eight movement directions [generalizing the rules given
by Eqs. (16) and (17)]. Steady state solutions are given for
the radially symmetric 2D version of the doubly singular
double-well potential Wr,λ(|x|) for r = 0.4 and three values
of λ (Fig. 13).
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FIG. 13. (Color online) Two-dimensional doubly singular double-well potential: discrete model. Discrete stochastic steady states with
number of agents n(x,y) in (x,y) ∈ [0,1] × [0,1] using the radially symmetric potential Wr,λ(|x|) for r = 0.4 and λ = 0.5,1.0,2.0 [(a)–(c),
respectively]. The total number of agents N = 1000. Initial conditions are given by a uniformly distributed mass within the support [0,1] × [0,1].
Results are shown at time step k = 100. The color code refers to the number of agents sitting on each lattice point.
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When the repulsive singularity dominates (λ = 0.5), we
obtain a six-symmetric, wheel-like structure of aggregates
around a heavy central aggregate [Fig. 13(a)]. This is an
intuitive 2D analog of the three aggregates seen in one
dimension [compare with Fig. 3(a)].

When the repulsive and attractive singularity balance (λ =
1), a distorted ellipse aligned according to four aggregation
centers with large mass is obtained [Fig. 13(b)]. By random
effects, the two vertical-opposing aggregates contain more
mass than the two horizontally opposing aggregates, which
causes the elongation of the ellipse. The structure of four
centers of mass connected by an ellipse-like ring is robust
and independent of the random effects.

Last, when the attractive singularity dominates (λ = 2), a
distorted ring with three-symmetry occurs, with three aggre-
gates [Fig. 13(c)]; this is just the most natural generalization of
the two aggregates observed in one dimension [compare with
Fig. 3(e)].

Note that while the doubly singular double-well poten-
tial has not yet been studied in two dimensions, similar

steady state structures have been observed for the singular-
repulsive double-well potential [47,48]. The robustness and
versatility of the stochastic discrete lattice models provide
strong encouragement for their usefulness as an alternative
approach to particle methods in understanding the behav-
ior of continuum models for singular interaction potential
problems.
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