
PHYSICAL REVIEW E 85, 041911 (2012)

Internal nonlinear dynamics of a short lattice DNA model in terms
of propagating kink-antikink solitons
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We study the internal nonlinear dynamics of an inhomogeneous short lattice DNA model by solving numerically
the governing discrete perturbed sine-Gordon equations under the limits of a uniform and a nonuniform angular
rotation of bases. The internal dynamics is expressed in terms of open-state configurations represented by
kink and antikink solitons with fluctuations. The inhomogeneity in the strands and hydrogen bonds as well
as nonuniformity in the rotation of bases introduce fluctuations in the profile of the solitons without affecting
their robust nature and the propagation. These fluctuations spread into the tail regions of the soliton in the
case of periodic inhomogeneity. However, the localized form of inhomogeneity generates amplified fluctuations
in the profile of the soliton. The fluctuations are expected to enhance the denaturation process in the DNA
molecule.

DOI: 10.1103/PhysRevE.85.041911 PACS number(s): 87.15.−v, 66.90.+r, 05.45.Yv

I. INTRODUCTION

DNA, an important biopolymer, is not only structurally
complex, but also performs important biological functions
such as transcription, replication, and denaturation. For the
occurrence of transcription, the DNA helical strands should
unwind and expose the bases for a chemical reaction, in
particular to help RNA polymerase, an enzymatic protein,
copy genetic information and transport it for protein synthesis
[1,2]. However, unwinding of DNA double helical strands
is a complex process, which can happen in more than one
way. The RNA polymerase may hit a specific site of the
DNA molecule and the molecule may undergo fluctuations
that will lead to large conformational changes. Also, intrinsic
fluctuations of DNA in the form of vibrational energy itself
might be trapped in soliton excitations as a result of a balance
between dispersion and nonlinearity, which leads to localized
base-pair opening. These intrinsic fluctuations act as a source
for DNA denaturation. Hence it is important to probe the role
of nonlinearity in DNA internal dynamics, in particular in the
context of base-pair opening, first by considering continuum
models [3]. The presence of solitons in the DNA chain was
at first discussed by Englander et al. [4]. Yomosa’s dynamic
plane-base rotator model [5,6], which involves rotational
motion of bases, was refined by Takeno and Homma [7–9]
and later extended by Zhang [10] by expressing the interstrand
interaction through hydrogen bonds in terms of a double-well
potential. The well-known Peyrard-Bishop model describes
DNA denaturation through the Morse potential for hydrogen
bonds [11–13]. In the model of Christiansen et al. [14],
transverse and longitudinal displacements of the bases were
represented in terms of the Toda potential. An extended
Peyrard-Bishop model by including the helicoidal structure of
DNA was discussed by Barbi et al. [15,16]. Alexandrov et al.
[17,18] studied the impact of sequence-dependent stacking
using Monte Carlo simulation [17] and gene transcription
via DNA breathing dynamics through Langevin molecular
dynamic simulations [18] by treating an extended Peyrard-
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Bishop-Dauxois model of DNA. The results describe the
melting behavior of homogeneous, periodic sequences and
the sequence dependence of DNA dynamic features. In the
model of Campa [19], the heterogeneous character of DNA
was considered. Krumhansl and Alexander [20] considered
an asymmetric potential for their model and studied DNA
dynamics. Gaeta [21–23] studied soliton dynamics in DNA
via torsional motion. Sataric and Tuszynski [24] examined the
impact of a protein interaction on the breather dynamics of
DNA by extending the model of Peyrard and Bishop, which
is more accurate for the formation of localized oscillations
in terms of breathers and bubbles. Also, the effect of single
nucleotide polymorphism on DNA breathing dynamics was
recently studied by Jablensky et al. [25] using Langevin
molecular dynamic simulations, which stress the importance
of the sequence dependence. In particular, this study is related
to promoter polymorphism in two overlapping 6p25 genes
linked to schizophrenia. The single DNA molecule experiment
is another important tool used to unzip the DNA molecule
through microscopic modeling [26] and an angular trap [27].
Since the DNA molecular chain is sequence or site dependent,
the strands are flexible and the molecule is helical in shape,
recently, Daniel and Vasumathi [28–31] and subsequently
Daniel and Vanitha [32] made a detailed analytical study
of the base-pair opening in an inhomogeneous continuum
DNA chain in terms of perturbed kink-antikink and bubble
solitons, respectively. In these studies the opening of base
pairs is initiated through breaking of hydrogen bonds due to
rotational motion of bases in a plane normal to the helical
axis of the molecule. Inspite of these developments in the
internal dynamics of the DNA molecular chain in terms
of moving soliton, slow moving or static soliton itself was
found to explain the open states in DNA [5,33–38] in the
form of kinks, antikinks, and breathers as solutions of the
static sine-Gordon model. The mechanical denaturation of
DNA in terms of base-pair openings was understood by
studying the stationary solutions of the static sine-Gordon
model in both the continuum and discrete limits based on
the Peyrard-Bishop model [33]. The equilibrium states of
the discrete Peyrard-Bishop Hamiltonian with fixed boundary
conditions was studied by Theodorakopoulos et al. [34] and the
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thermodynamic instabilities in DNA unzipping or denaturation
is understood. The information about the conformation of open
states in the form of static kink-antikink solitons can be found
also in the earlier work of Yomosa [5]. In a different context,
the double helical chain was modeled in terms of a coupled
sine-Gordon equation and the open state was expressed in
terms of static kink-antikink solitons [35]. Even simple rigid
rod models explain the static geometry of DNA segments
[36]. Nevertheless, the dynamical aspects of the open-state
configuration and its relevance to biological processes are of
great interest [37,38].

In spite of the above developments in the nonlinear internal
statics and dynamics of DNA, based on various continuum
models, an accurate model, however, should take into account
the discreteness effect in the base sequence and in this case
the dynamics will be governed by nonlinear differential-
difference equations. Solving these equations by analytical
means is rather difficult; hence the governing dynamical
equations should be solved through numerical integration. In
addition, natural sequences of DNA are of finite length and
its effect cannot be neglected. DNA segments are biologically
important because different regions of the DNA molecule are
associated with different functions (e.g., promoter, terminator,
and coding). These significant regions or segments of the
DNA molecule consist of approximately 10–50 base pairs.
Therefore, the study of internal dynamics of short and
finite-length DNA molecules with a definite number of base
pairs is biologically important. Numerical simulation of the
internal dynamics of DNA provides an impulse for further
investigation and interesting possibilities have been realized in
a series of recent works [15,16,19,39,40]. Techera et al. [40]
discovered two different dynamical regimes in a simplified
DNA dynamical model by solving the governing nonlinear
Schrödinger equation both analytically and numerically. In the
above studies, large-amplitude localized distortions in finite-
length DNA molecular structures were considered. Also the
asymmetry of the base pairs was neglected. However, Salerno
[41,42], introduced a discrete model for DNA promoter
dynamics in T7A1 bacteriophage that takes into account
information about a specific base sequence along the double
helix with reflexive boundary conditions. This study concluded
that the sine-Gordon kinks are set in motion at a certain
region of the DNA sequence. Later, the unit-mass potential
for kinks, which was initially at rest and moving in a slowly
varying background, was derived by Salerno and Kivshar [43].
The effect of inhomogeneity on the dynamics of topological
solitons in an inhomogeneous DNA molecule was studied
numerically in the work by Kovaleva et al. [44]. Dominguez-
Adame et al. [45] investigated the pinning and propagation
of kink solitons along periodic and aperiodic inhomogeneous
DNA lattice systems. Lennholm and Hornquist [46] performed
a genome study of the conjecture made about the promoters
as dynamical active regions and found that the part of the
promoters where the RNA transcription has started is more
active than a random portion of the DNA molecule. Cuenda
and Sanchez [47,48] revisited Salerno’s sine-Gordon model
and claimed that the motion of kinks originates from the bases
at the boundary, which are not part of the genome studied. This
study also claims that the dynamics of kinks has no special
significance with reference to specific regions of the sequence

by disproving the recent work of Lennholm and Hornquist [46]
and Bashford [49]. Nonbreathing compactonlike modes are
considered as a better candidate of nonlinear models for a
locally open state and for feasible attachment of enzymes in
the recent work of Takeno [50]. A simple two-dimensional
discrete model of DNA was proposed by Muto et al. [51,52] to
explain the longitudinal propagation of energy in a circular
DNA model, in which the hydrogen-bond interaction was
represented by the Lennard-Jones potential and the sugar-
phosphate bridge was represented by an anharmonic potential.
This model predicted a significant increase in the lifetime
of the open states of the hydrogen bonds due to the role of
anharmonicity in DNA denaturation. A real DNA molecule is
substantially an inhomogeneous or site or sequence-dependent
dynamical system. Recently, Yakushevich et al. [53] studied
open states in a discrete inhomogeneous DNA double helix
by considering the asymmetric nature of the helix and showed
that the movement of the soliton representing the open state
in the inhomogeneous DNA molecular chain depends on the
sequence of base pairs. The inhomogeneity in DNA in that
study was considered in terms of a random base sequence,
which is not always the case. The breathing behavior of
genomic DNA in terms of a base-pair opening was studied
using a Langevin molecular dynamic simulation [54]. The
higher content of the A-T rich region is also considered as a
more suitable site for the formation of a bubble than a molecule
with a random sequence [55]. There are only limited studies of
soliton propagation in inhomogeneous media, where localized
inhomogeneity has been considered in the form of a potential
barrier, a delta potential, and discontinuities [28,32,56]. Very
recently, Cadoni et al. [57,58] studied the propagation of
solitons in a fully inhomogeneous medium and proved the
possibility of long-lived soliton excitations in the presence of
inhomogeneity in the base masses and interpair interactions.
In this context, in a very recent paper the present authors
studied the impact of localized and periodic inhomogeneities
in both stacking and hydrogen bonds on bubble solitonlike
excitations but in the continuum limit [32]. It was found that the
inhomogeneity does not affect the robust nature of the solitons
but introduces small fluctuations in the tail. Motivated by the
above, in the present paper we numerically study localized
nonlinear molecular excitations through angular rotation of
bases in a discrete short DNA double helical molecule with a
finite number of site or sequence-dependent base pairs.

The paper is structured as follows. Section II describes the
model and dynamical equations for a discrete lattice DNA with
a finite number of base pairs that are site dependent. The results
of the numerical study of the internal nonlinear dynamics of
the short DNA molecule with inhomogeneity under different
limits is presented in Sec. III. The results are summarized in
Sec. IV.

II. MODEL AND DYNAMICAL EQUATIONS
FOR A DISCRETE DNA MOLECULE

We consider a short segment of the B form of a DNA
molecule, consisting of two sequence or site-dependent
strands, containing 50 base pairs with interstrand and in-
trastrand interactions through hydrogen bonds and stacking,
respectively. In the DNA molecule the strength of the
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interaction between complementary bases that occurs through
hydrogen bonds is directly proportional to the distance
between them. Let (θn,φn) denote the angles of rotation of
bases in the xz and xy planes, respectively, and (θ ′

n,φ
′
n) denote

the same in the complementary strand. The helical axis of the
DNA molecule is directed parallel to the z axis. The distance
D2 between the complementary bases can be written using
elementary geometry as [32]

D2 = 2 + 4r2 + 2
[
Sx

nS
′x
n + Sy

nS
′y
n − Sz

nS
z
′n
] − 4r

[
Sx

n + S
′x
n

]
,

(1)

where Sx
n = sinθncosφn, S

y
n = sinθnsinφn, Sz

n = cosθn, S ′x
n =

sinθ ′
ncosφ′

n, S
′y
n = sinθ ′

nsinφ′
n, and S ′z

n = cosθ ′
n.

Interestingly, in the model proposed here we invoke the
analogy of the discrete DNA molecular system with that of
an antiferromagnetically coupled anisotropic ferromagnetic
spin lattice system (or spin ladder) with a finite number of
spin moments. The edges of the coupled spin system are
fixed in terms of periodic-type boundaries as in the DNA
molecule. The z direction, which is parallel to the helical
axis of DNA, is the easy axis of magnetization in the spin
system. The spin-spin exchange interaction is restricted to the
nearest neighbors, similar to the stacking between adjacent
bases in DNA. The above identification leads us to consider
the Heisenberg model of the Hamiltonian for an anisotropic
site-dependent antiferromagnetically coupled ferromagnetic
spin lattice system as the basis for writing the free energy
for the DNA molecular system, as given by [32]

H =
∑

n

{−fn

[
J
(
Sx

nSx
n+1 + Sy

nS
y

n+1

) + JzS
z
nS

z
n+1

+ J ′(S ′x
n S ′x

n+1 + S ′y
n S

′y
n+1

) + J ′
zS

′z
n S ′z

n+1

]
+ gn

[
Jc

(
Sx

nSx
n+1 + Sy

nS
y

n+1

) + J ′
cS

z
nS

′z
n

]
+A

(
Sz

n

)2 + A′(S ′z
n

)2}
. (2)

In the Hamiltonian (2) J and J ′ represent ferromagnetic
exchange integrals due to a nearest-neighbor spin-spin inter-
action in the two lattices, which correspond to the intrastrand
interaction constants of the stacking between the nth base
and its nearest neighbors in the plane normal to the helical
axis. When Jz and J ′

z are not equal to J and J ′, respectively,
anisotropy is introduced in the intrastrand interaction in the lat-
tices. Here fn(f ′

n) introduces site-dependent character, which
indicates that the intrastrand stacking energy between the
bases varies in a specified site-dependent fashion, leading to
sequence-dependent character or inhomogeneity in stacking.
The term gn represents a site- or sequence-dependent character
in hydrogen bonds. It is assumed that the inhomogeneities
in both strands are similar and equal by choosing fn = f ′

n.
In a DNA molecule, inhomogeneity may arise for several
reasons. The presence of different sites along the strands,
such as promoter, terminator, and coding, each of which has a
very specific sequence of bases in a particular fashion, makes
the strands site dependent or inhomogeneous, which makes
them soft [59]. In addition, defects caused by the presence
of additional molecules in specific sites of the sequence or the
presence of abasic sitelike nonpolar imitation of thymine leads
to inhomogeneity [60,61]. In contrast, periodic inhomogeneity
may arise due to periodic repetition of different sites or

simple defects occurring repeatedly along the strands. The
terms proportional to Jc and J ′

c in the Hamiltonian correspond
to the antiferromagnetic spin-spin coupling between the two
lattices, which denote the interstrand interaction or hydrogen
bonds in the DNA molecule. In the Hamiltonian (2), the terms
proportional to A and A′ correspond to anisotropy in the
lattices that assume only positive values, leading to rotation of
the bases restricted to the plane normal to the helical axis of the
DNA molecule. We now express the Hamiltonian (2) in terms
of the rotational angles φn and φ′

n under the plane-base rotator
model (θn = θ ′

n = π
2 ) [5,32]. In DNA, the two strands are

expected to exhibit similar types of macroscopic behavior [62];
hence we assume J = J ′ and Jz = J ′

z. When the anisotropy
energies A and A′ are much larger than the interstrand and
intrastrand interactions, then ∂φn

∂t
= 2Acosθn, ∂φ′

n

∂t
= 2A′cosθ ′

n,
and the Hamiltonian (2) becomes

H =
∑

n

{
1

4A

[(
∂φn

∂t

)2

+
(

∂φ′
n

∂t

)2]

− Jfn[2 − cos(φn+1 − φn) − cos(φ′
n+1 − φ′

n)]

− Jcgn[1 − cos(φn − φ′
n)]

}
. (3)

In the above Hamiltonian, the moments of inertia I = 1
2A

and I ′ = 1
2A′ and we limit our discussion to I = I ′ since the

physical properties of the two strands are similar. The first two
terms in the Hamiltonian (2) represent the kinetic energies of
the rotational motion of the nth nucleotide bases accompanied
by the potential energy associated with the nth nucleotide,
sugar and phosphate and their complementary units.

Having constructed the Hamiltonian for the site-dependent
DNA molecule, the corresponding dynamical equation can be
obtained by deriving the associated Hamiltonian equations of
motion after suitable rescaling of time in the form

∂2φn

∂t2
= J (1 + λ1fn)sin(φn+1 − φn)

− J (1 + λ1fn−1)sin(φn − φn−1)

+ Jc(1 + λ1gn)sin(φn − φ′
n), (4a)

∂2φ′
n

∂t2
= J (1 + λ1fn)sin(φ′

n+1 − φ′
n)

− J (1 + λ1fn−1)sin(φ′
n − φ′

n−1)

+ Jc(1 + λ1gn)sin(φ′
n − φn). (4b)

As the site-dependent character or inhomogeneity along and
between the DNA strands, fn and gn, respectively, are small,
while writing Eqs. (4) we have assumed fn = (1 + λ1fn) and
gn = (1 + λ1gn), where λ1 is a small constant. Equations (4a)
and (4b) describe the dynamics of inhomogeneous bases in
DNA at the discrete level, when rotational motion of bases in
a plane normal to the helical axis is considered. The problem
thus reduces to solving the discrete dynamical equations (4a)
and (4b) to explain the impact of inhomogeneity on the internal
DNA lattice dynamics expressed in terms of soliton modes. A
few methods such as the hyperbolic function method [63], the
hyperbolic tangent method [64], and the exponential function
method [65] are available to solve integrable differential-
difference equations, which will give traveling-wave,
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solitary-wave, and soliton solutions [66,67]. However, the
coupled equations (4a) and (4b) are in general nonintegrable
and therefore we attempt to solve them numerically under
different limiting cases in the following section.

III. NONLINEAR DYNAMICS OF SHORT LATTICE DNA IN
TERMS OF PERTURBED KINK-ANTIKINK SOLITONS

A fourth-order Runge-Kutta method as implemented by
MATLAB, with a variable time step, is used to solve the initial
value problem found in Eqs. (4a) and (4b) with the periodic
boundary conditions φn+N = φn and φ′

n+N = φ′
n, where N

represents the total number of base pairs chosen for the study
here under different limiting cases [68]. This method requires
only the initial data and the data at the preceding time step apart
from the parameters involved. In this numerical scheme, the
spatially discretized ordinary differential equation is passed
directly to the MATLAB ordinary differential equation solver
ode45. Numerical calculations are performed for a lattice of the
DNA molecule composed of 50 base pairs, in which the strands
S and S ′ are composed of even and odd sites, respectively. The
parameters are chosen as J = 0.5, Jc = −0.54, and λ1 = 0.1,
which stem from the values J = 0.005 eV,Jc = −0.0054 eV,
and 1 time unit equal to 10−11 s. We consider the opening
of base pairs through breaking of hydrogen bonds due to the
rotational motion of the bases. The fluctuation will start from
a specific site and the DNA base pairs will open around that
point. At the start of the numerical run, the center of the base-
pair opening is assigned to some position and then the model
is integrated for various time values. During the integration,
the fluctuation will start to move from the initial state and
emerges as large-amplitude fluctuations as time progresses. In
the following we solve Eqs. (4a) and (4b) by numerically
integrating the same using the fourth-order Runge-Kutta
procedure under various limits that explain different physical
situations and obtain the numerical solutions.

A. Homogeneous DNA molecule under uniform,
small angular rotation of bases

First we consider a homogeneous DNA molecule by
assuming λ1 = 0 in Eqs. (4a) and (4b). It is also assumed
that, in the B form of the DNA double helix, the difference
in the angular rotation of bases with respect to neighboring
bases along the strands is small [7,8], so that sin(φn+1 − φn) ≈
(φn+1 − φn), sin(φn − φn−1) ≈ (φn − φn−1), and similarly for
the complementary strand. The resultant equations read

∂2φn

∂t2
= J (φn+1 − 2φn + φn−1) + Jcsin(φn − φ′

n), (5a)

∂2φ′
n

∂t2
= J (φ′

n+1 − 2φ′
n + φ′

n−1) + Jcsin(φ′
n − φn). (5b)

Equations (5a) and (5b) describe the dynamics of DNA
in a plane-base rotator model for the discrete model while
considering the dominant angular rotation of bases in a plane
normal to the helical axis and ignoring all other small motions
of the bases. On adding Eqs. (5a) and (5b), the resultant
equation satisfies identically. By subtracting Eq. (5b) from

Eq. (5a), we obtain

∂2

∂t2
(φn − φ′

n)

= J [(φn+1 + φn−1 − 2φn) − (φ′
n+1 + φ′

n−1 − 2φ′
n)]. (6)

As the two DNA strands are asymmetric in nature, when
an open-state configuration is formed in DNA, the two
complementary bases may rotate in opposite directions [62]
so that φ′

n = −φn. Further, by assuming �n = 2φn, Eq. (6)
becomes

∂2�n

∂t2
= J (�n+1 + �n−1 − 2�n) + Jcsin�n. (7)

Equation (7) is identified as the spatially discretized version of
the completely integrable sine-Gordon equation, which admits
N -soliton solutions in the form of kinks and antikinks [69]. The
term �n corresponds to the rotational angle of the bases in a
plane normal to the helical axis of DNA. The term proportional
to Jc represents the hydrogen-bond interaction between bases
in DNA. The dynamical study of a similar model was proposed
by Salerno [41] to describe the discrete dynamics of a
DNA promoter corresponding to the T7A1-promoter base
sequence. Equation (7) is numerically integrated for the initial
solution

�0 = 4 arctan
exp[(n − n0)a − ct0]√

(1 − c2)

and by choosing the coefficients as J = 0.5 and Jc = −0.54.
The numerical solutions obtained are plotted in Fig. 1. The
plots in Figs. 1(a) and 1(b) are similar to the kink and antikink
one-soliton solutions of the continuum sine-Gordon equation
obtained by solving the equation analytically [69]. The kink
and antikink solitons in the figures represent an open-state
configuration initiated by the angular rotation of bases and
the internal nonlinear dynamics of the DNA molecule. In
Fig. 1(c) a sketch of the open-state configuration in terms of the
combination of kink and antikink solitons of the sine-Gordon
equation (7) is given. The base pairs are found to open locally
in the form of a kink-antikink soliton and the soliton propagates
along the DNA lattice parallel to the helical axis. In an
open-state configuration of similar kind, it was found that at
least 10 base pairs will participate [55].

B. Inhomogeneous DNA molecule under uniform,
small angular rotation of bases

Next we consider an inhomogeneous DNA molecule (λ1 �=
0) whose dynamics is governed by uniform small angular
rotation of bases by assuming sin(φn+1 − φn) ≈ (φn+1 − φn),
sin(φ′

n − φ′
n−1) ≈ (φ′

n − φ′
n−1), φ′

n = −φn, and �n = 2φn in
Eqs. (4a) and (4b) and follow the same steps of the procedure
as in the previous homogeneous case. The resultant equation
reads

∂2�n

∂t2
− J (�n+1 + �n−1 − 2�n) − Jcsin�n

= λ1 [fn(�n+1 − �n) + fn−1(�n − �n−1) + gnsin�n] .

(8)

Equation (8) is a perturbed discrete sine-Gordon equation,
in which terms proportional to λ1 can be treated as a
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FIG. 1. (Color online) (a) Kink and (b) antikink one-soliton solution obtained by solving Eq. (7) numerically for the parameter values
J = 0.5 and Jc = −0.54. (c) Sketch of the kink-antikink soliton representing the open-state configuration in the homogeneous DNA molecule.

perturbation. Thus, when the DNA strands are sequence depen-
dent, the dynamics is governed by an inhomogeneous discrete
perturbed sine-Gordon equation. The effect of inhomogeneity
in stacking (fn and fn−1) as well as in hydrogen bonds (gn)
on soliton excitations is understood by numerically integrating
Eq. (8) for the same initial condition

�0 = 4 arctan
exp[(n − n0)a − ct0]√

(1 − c2)

and for the same set of parameter values J = 0.5 and
Jc = −0.54 and by choosing λ1 = 0.1. The study of soli-
ton propagation through inhomogeneous media including
the kink-impurity interaction and its scattering in the sine-
Gordon model has recently received a great deal of interest
[44,56–58,70,71]. The trinucleotide repeat sequence amplifi-
cation causes formation of bubbles that are stable. The results
of the above study concluded that the expansion of repeats
leads to synchronized DNA breathing behavior, which will
trigger simultaneous opening of base pairs. The presence of
trinucleotide repeat sequences shifts the base pairs, which
will form unstable structures. Here we study the effect of
two different forms of inhomogeneities, namely, localized and
periodic, by choosing them as hyperbolic secant and cosine
functions, respectively.

1. Localized inhomogeneity

To understand the effect of localized inhomogeneity on the
soliton excitations in the DNA molecule, we substitute fn =
A sech na and gn = B sech na, where A and B are constant
amplitudes and n = 1,2, . . . , in Eq. (8) and numerically inte-
grate the resultant equation for the same initial condition and
by choosing the constants as A = B = 0.9 and a = 1.0. The
numerical solutions of Eq. (8) in the form of perturbed kink and
antikink solitons are plotted in Figs. 2(a) and 2(b), respectively.
From the figures it can be observed that fluctuations appear
in both the width and the tails of the kink and antikink
solitons. This radiation may be stressed out into the lattice
of the DNA strands. It is worth comparing the above results
with the recent analytical results on the base-pair opening
in an inhomogeneous continuum DNA molecule obtained
by solving the governing perturbed continuum sine-Gordon
equation analytically using soliton perturbation theory by one
of the present authors [29]. Unlike the present case, in the
continuum limit, fluctuations were found to occur only in the
localized region of the solitons without affecting the tail por-
tion. However, spatial discretization of the model introduces
additional small fluctuations in the tail regions of the kink and
antikink solitons, which in any case do not affect the robust
nature of the kink-antikink soliton and hence the open-state
configuration and base-pair opening. In a different context, in
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FIG. 2. (Color online) Perturbed (a) kink and (b) antikink one-soliton solution of Eq. (8) in the case of the localized inhomogeneity
fn = A sech na and gn = B sech na with J = 0.5, Jc = −0.54, and A = B = 0.9. The localized inhomogeneity in the stacking and hydrogen
bonds introduces small fluctuations in the width and tail regions of the kink and antikink solitons without affecting the robust nature.

the case of an XY spin chain, the model of which identifies
with our plane-base rotator model of DNA, the ansatz sech na

energetically favors the deformation of the spin chain [72].

2. Periodic inhomogeneity

The periodic inhomogeneity that occurs in the DNA
molecule is chosen in the form fn = C cos na and gn =
D cos na, n = 1,2, . . . , where C and D are constants. We
substitute the above forms of inhomogeneity in Eq. (8) and
numerically integrate the resultant equation for the same set
of parameter values and the initial condition as chosen in
the case of localized inhomogeneity and by choosing C =
D = 5.0 and a = 1.0. The numerical results of the perturbed
kink-antikink solitons are then plotted in Figs. 3(a) and 3(b).
Periodic inhomogeneity introduces periodic deformation in
the localized region and adds small fluctuations in the tails
of the kink and antikink solitons. However, now the periodic

fluctuations in the tails get enhanced due to contribution from
the spatial discretization of the governing dynamical equation.
The periodic inhomogeneity is also responsible for broadening
the width of the soliton. In a recent paper Alexandrov et al. [54]
made a similar study to understand the effect of periodic
inhomogeneity through tandem trinucleotide repeat sequences
in DNA using a Langevin molecular dynamic simulation and a
Markov chain Monte Carlo simulation, which also led to coher-
ent DNA openings and local base-pair breathing dynamics. In
addition, this repeated sequence in the DNA has implications
for interpretation of genomic data in health and disease.

C. Homogeneous DNA molecule with uniform,
large angular rotation of bases

We now consider a homogeneous (λ1 = 0) DNA molecule
showing uniform (φ′

n = −φn), large angular rotation of bases.
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FIG. 3. (Color online) Perturbed (a) kink and (b) antikink one soliton solution of Eq. (8) in the case of periodic inhomogeneity in the form
fn = C cos na and gn = D cos na with J = 0.5, Jc = −0.54, and C = D = 5.0. The periodic inhomogeneity causes periodic deformation in
the localized region and adds small fluctuations in the tail regions of the kink and antikink solitons without affecting the robust nature of the
soliton. The enhanced periodic fluctuations in the plots also get a contribution from the spatial discretization of the dynamical equation.
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FIG. 4. (Color online) Perturbed (a) kink and (b) antikink soliton solutions of Eq. (9), in a homogeneous DNA molecule with uniform large
angular rotation of bases. The parameters are chosen as J = 0.5 and Jc = −0.54. Motion of the DNA bases interms of large angular rotation of
bases in the plane normal to the helical axis introduces large scale fluctuations in the profile of the solitons leaving the tail regions unaffected.
The fluctuations resemble the shape of the inhomogeneity.

In this case Eqs. (4a) and (4b) become

∂2φn

∂t2
= J [sin(φn+1 − φn) − sin(φn − φn−1)] + Jcsin2φn.

(9)

Equation (9) is numerically integrated for the same set of
parameters and the initial condition and the results are plotted
in Figs. 4(a) and 4(b). In this case large-amplitude sharp
localized fluctuations are observed strictly within the profile of
the kink and antikink solitons. However, the tail region of the
solitons is completely intact and free from any fluctuation. The
large-scale fluctuations that appear in the profile of the kink and
antikink solitons are due to a large angular rotation of the bases.
A comparison of the results of the present case with those of
the previous inhomogeneous cases leads to the conclusion that
inhomogeneity in the DNA molecule introduces additional
fluctuations in the tail regions of the kink and antikink solitons.
However, since the large-scale fluctuation occurs within a
short period of time, the small fluctuation that may occur in
the tail region of the soliton due to spatial discretization of
the dynamical equation over an extended period of time could
not be observed within this short period.

D. Inhomogeneous DNA molecule with uniform,
large angular rotation of bases

In the case of an inhomogeneous DNA molecule (λ1 �= 0)
exhibiting uniform (φ′

n = −φn), large angular rotation of
bases, the dynamical equations (4a) and (4b) are written as

∂2φn

∂t2
= J [(1 + λ1fn)sin(φn+1 − φn)

+ (1 + λ1fn−1)sin(φn − φn−1)] + Jcsin2φn. (10)

Equation (10) is numerically integrated in the case of localized
and periodic inhomogeneities separately.

1. Localized inhomogeneity

As before, we substitute the localized inhomogeneities
fn = A sech na and gn = B sech na in Eq. (10) and numer-
ically integrate the resultant equation for the same initial
condition and by choosing the parameters as J = 0.5 and
Jc = −0.54 as before and setting λ1 = 0.1, A = B = 0.9, and
a = 1.0. The numerical solutions thus obtained are plotted
in Figs. 5(a) and 5(b). In this case also, large-scale narrow
and sharp pulses occur in the profile of the soliton keeping
the tail regions intact. The inhomogeneity favors the growth
of large-amplitude excitation and resembles the shape of the
inhomogeneity sech na. On comparing the plots in Figs. 4
and 5, it is noted that the sharp amplitude fluctuations generated
in the profile region of the solitons due to large angular
rotation of bases is significantly enhanced by the localized
inhomogeneity. Once again the small fluctuations that will
arise due to spatial discretization could not be observed in the
short span of time. It is clear from the figures that the formation
of large-amplitude excitation due to localized inhomogeneity
reduces the width of the soliton slightly.

2. Periodic inhomogeneity

The periodic inhomogeneity that exists in stacking and
hydrogen bonds is chosen in the form fn = C cos na and
gn = D cos na, where C and D are constant amplitudes. The
above forms of inhomogeneities are substituted in Eq. (10) and
the resultant equation is numerically integrated. The numerical
results are plotted in Figs. 6(a) and 6(b). As found in the
figures, periodic inhomogeneities in stacking and hydrogen
bonds introduce periodic fluctuations in the profile and in the
tail regions of the kink and antikink solitons over a long period
of time. The periodic fluctuations that occur in the solitons in
this case exhibit a high-density profile over a long period. This
is because the source for the generation of periodic fluctuation
is due to the periodic inhomogeneity inserted as well as the
spatial discretization of the governing dynamical equation. It
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FIG. 5. (Color online) Perturbed (a) kink and (b) antikink soliton solutions of Eq. (10) in the case of an inhomogeneous DNA molecule
with localized inhomogeneity in the form fn = A sech na and gn = B sech na with J = 0.5,Jc = −0.54 and A = B = 0.9. The open state
configuration is initiated by uniform (φ′

n = −φn) large angular rotation of bases. The localized inhomogeneity in stacking and hydrogen bonds
brings in large scale, narrow and sharp pulses in the profile of the kink and antikink solitons keeping the tail regions intact.

should be noted that the soliton is widened due to periodic
inhomogeneity as found earlier.

E. Homogeneous DNA molecule with nonuniform,
large angular rotation of bases

Next we consider the internal nonlinear dynamics of a
homogeneous (λ1 = 0) DNA molecule with nonuniform (φ′

n �=
−φn), large angular rotation of bases. In this case, Eqs. (4a)
and (4b) reduce to the set of equations

∂2φn

∂t2
= J sin(φn+1 − φn) − J sin(φn − φn−1)

+ Jcsin(φn − φ′
n), (11a)

∂2φ′
n

∂t2
= J sin(φ′

n+1 − φ′
n) − J sin(φ′

n − φ′
n−1)

+ Jcsin(φ′
n − φn). (11b)

The numerical solutions of Eqs. (11) for the same initial
condition and for the same set of parameter values used in
the previous cases are plotted in Figs. 7(a) and 7(b). From
the figures it is observed that small-amplitude localized but
periodic oscillations occur within the profile region of the
kink and antikink solitons leaving the tail regions intact.
The occurrence of periodic oscillations in the profile region of
the soliton is mainly due to the spatial discretization associated
with the nonlinearity of the governing dynamical equation,
namely, sin(φn+1 − φn) and sin(φn − φn−1).
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FIG. 6. (Color online) Perturbed (a) kink and (b) antikink soliton solutions of Eq. (10) in a periodic inhomogeneous DNA molecule with the
inhomogeneities in the form fn = C cos na and gn = D cos na and the parameters are chosen as J = 0.5, Jc = −0.54, and C = D = 0.9. The
periodic inhomogeneities in stacking and hydrogen bonds add highly dense periodic fluctuations in the entire stretch of the solitons including
the width and tail regions.
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FIG. 7. (Color online) Perturbed (a) kink and (b) antikink soliton solutions of Eqs. (11a) and (11b) in a homogeneous DNA molecule with
nonuniform large angular rotation of bases when J = 0.5, Jc = −0.54. Small amplitude localized but periodic oscillations occur only in the
profile region of the solitons with the tail regions intact.

F. Inhomogeneous DNA molecule with nonuniform,
large angular rotation of bases

This is the most general case and the internal nonlinear
dynamics in this case is governed by the set of discrete coupled
equations (4a) and (4b). These equations are numerically
integrated for the same initial condition and the same set
of parameter values used earlier. To realize the impact of
inhomogeneity on the solitons, as in the earlier cases, we
consider both localized and periodic forms of inhomogeneities.

1. Localized inhomogeneity

The numerical solutions of Eqs. (4a) and (4b) plotted in
Figs. 8(a) and 8(b) correspond to localized inhomogeneities
in the form fn = A sech na and gn = B sech na. In this case
periodic but localized fluctuations appear strictly within the

profile region of the soliton in a profound manner. However,
this radiation does not spread into the tail region of the solitons.
The localization of the periodic fluctuation is because of the
localized form of the inhomogeneity.

2. Periodic inhomogeneity

The numerical solution of Eqs. (4a) and (4b) corresponding
to the periodic form of inhomogeneities fn = C cos na and
gn = D cos na is plotted in Figs. 9(a) and 9(b). The plots show
that periodic inhomogeneity introduces periodic fluctuations
in the width and in the tail regions of the kink and antikink
solitons. The profound nature of fluctuations in the plots is
because of the contributions from the periodic inhomogeneity
and the nonlinear spatial discretization. On comparing the
above results with that of the case where uniform, large angular
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FIG. 8. (Color online) Perturbed (a) kink and (b) antikink soliton solutions of Eqs. (4a) and (4b), in the case of an inhomogeneous DNA
molecule whose internal dynamics is governed by nonuniform large angular rotation of bases, with the localized inhomogeneities in the form
fn = A sech na, gn = A sech na and J = 0.5, Jc = −0.54, A = B = 0.9. Localized and large scale periodic fluctuations are observed within
the width of the kink and antikink solitons alone.
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FIG. 9. (Color online) Perturbed (a) kink and (b) antikink soliton solutions of Eqs. (4a) and (4b) in an inhomogeneous DNA molecule with pe-
riodic inhomogeneities in the form fn = C cos na and gn = D cos na for the parametric choices J = 0.5,Jc = −0.54, and C = D = 5.0 under
nonuniform large angular rotation of bases. Periodic fluctuations are observed in the profile and in the tail regions of the kink and antikink solitons.

rotation of bases is considered [see Figs. 6(a) and 6(b)], it is
found that nonuniform rotation of bases supresses the periodic
character of the fluctuation and hence less pronounced.

IV. CONCLUSION

In this paper the open-state configuration in an inhomo-
geneous short DNA lattice model is investigated by solving
the governing discrete nonlinear dynamical equations nu-
merically. The model considered here to study the internal
dynamics is conceived and adapted from two antiferromagnet-
ically coupled short site-dependent ferromagnetic lattices. The
Hamilton’s equations of motion are constructed for the angular
rotation of bases in a plane normal to the helical axis for both
the strands. The internal dynamics of homogeneous DNA is
then studied by considering uniform and nonuniform small as
well as large angular rotation of bases. Two different types of
inhomogeneities in terms of localized and periodic functions
are considered and their impact on the dynamics, and coherent
rotation of bases under different limits has been studied. In
the case of homogeneous DNA molecule, under uniform,

small angular rotation of bases, the dynamics is governed by
the discrete sine-Gordon equation. When the angular rotation
of bases is large and nonuniform, the governing dynamical
equations become perturbed discrete sine-Gordon equations
under different limits. The above equations were integrated
numerically, with periodic boundary conditions. The base pair
opening or open state configuration under different limits is
represented in the form of kink-antikink solitons and their
perturbations [55]. Summarized in Table I are the results of the
nature of open state configurations in terms of kink-antikink
solitons and their perturbations in the form of fluctuations
in homogeneous and inhomogeneous (localized and periodic)
DNA molecules under uniform and nonuniform as well as
small and large angular rotation of bases. From the results it
is observed that, in the case of homogeneous DNA molecules,
large amplitude angular rotation of bases introduces fluctu-
ations only in the width of the solitons leaving behind the
tail regions intact. In inhomogeneous DNA molecules with
localized inhomogeneity, when the amplitude of the angular
rotation of bases is large, sharp and localized fluctuations are
generated within the profile of the kink-antikink solitons which

TABLE I. Nature of open states in terms of kink-antikink solitons in homogeneous and inhomogeneous DNA molecules under
uniform/nonuniform and small/large angular rotation of bases.

Nature of open states in terms of kink-antikink solitons

Uniform small angular Uniform large angular Nonuniform, large angular
Nature of DNA rotation of bases rotation of bases rotation of bases

Homogeneous Kink-antikink solitons of the
discrete sine-Gordon equation.

Figs. 1(a) and 1(b)

Large scale fluctuations in the
profile of the solitons leaving
the tail regions unaffected.

Small amplitude periodic oscillations
only in the profile region of the
solitons.

Figs. 4(a) and 4(b) Figs. 7(a) and 7(b)

Localized inhomogeneous Small fluctuations in the width
and tail regions of the solitons.

Figs. 2(a) and 2(b)

Large scale, narrow sharp pulse
in the profile of the solitons
solitons.

Localized and large scale periodic
fluctuations in the width of the
kink and antikink solitons.

Figs. 5(a) and 5(b) Figs. 8(a) and 8(b)

Periodic inhomogeneous Periodic deformation in the
localized region and small
fluctuations in the tails of the
solitons.

High density periodic fluctuations
in the entire stretch of the
solitons including the width and
tail regions.

Periodic fluctuations in the profile and
in the tail regions of the kink and
antikink solitons.

Figs. 9(a) and 9(b)
Figs. 3(a) and 3(b) Figs. 6(a) and 6(b)
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do not spread into the tail regions. However, when the angular
rotation of bases is small, the inhomogeneity dominates and
the fluctuations spread into the tail regions of the solitons as
well. On the otherhand, when inhomogeneity exists in the
periodic form, which extends over the entire length of the
molecule, fluctuations appear both in the width and in the tail
regions of the solitons. It is also noted that, when the amplitude
of the angular rotation of bases is large, eventhough uniform,
the small fluctuations that develop in the profile of the
solitons enlarge and sharpen. Further, nonuniform angular
rotation of bases in the DNA molecule generates periodic
oscillations in the profile region of the kink and antikink
solitons. However, the nonuniformity supresses the periodic
fluctuations to some extent. It is concluded from our results
that, inhomogeneity as well as nonuniform and large angular
rotation of bases, introduce only small fluctuations in the
open state configuration represented by kink-antikink solitons
without affecting the robust nature and propagation of the
solitons. We believe that the fluctuations formed in the regions
of the DNA molecule will enhance the denaturation process
in the DNA molecule. From our results it is found that the
localized form of inhomogeneity gives rise to large, stable
and local DNA opening modes. The presence of periodic
fluctuations in the width and tail regions of the soliton is due
to the spatial discretization and periodic inhomogeneity which
can be due to the periodic repetition of base pairs in the DNA
molecule. On comparing our results with the recent results of
Alexandrov et al. [54], related to DNA dynamics with repeat
sequence, it may be concluded that the perturbation due to
inhomogeneity will not affect the DNA breathing dynamics.
However, the periodic perturbation, which is made equivalent

to the repeat sequence may be responsible for the interpretation
of genomic data in health and disease [54]. Also, it has been
found that the large number of repeats may sometimes lead to
the formation of non B-DNA structure conformations which
will influence several diseases in humans [73]. Further, it was
recently shown that the composite models of DNA support
solitonic excitations and are able to travel long distances along
the DNA chain with real inhomogeneities [58]. In a similar
direction, it was earlier found by Dominguez-Adame et al. [45]
that solitons in periodic lattice DNA can propagate always
which is also in confirmation with our results that the robust
nature of the soliton is not affected by the inhomogeneities.
As the soliton propagates along an inhomogeneous DNA
molecule, the emission of phonons may promote penetration
of the soliton into the inhomogeneous region [44].

How, the fluctuations developed in the profile region of
the solitons spread into the tail regions and stressed out into
the lattice generating large amplitude phonons is an important
question to be pursued, and the study is underway, the results
of which will be published elsewhere.
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