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Emergence of robustness against noise: A structural phase transition in evolved models
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We investigate the evolution of Boolean networks subject to a selective pressure which favors robustness
against noise, as a model of evolved genetic regulatory systems. By mapping the evolutionary process into a
statistical ensemble and minimizing its associated free energy, we find the structural properties which emerge as
the selective pressure is increased and identify a phase transition from a random topology to a “segregated-core”
structure, where a smaller and more densely connected subset of the nodes is responsible for most of the regulation
in the network. This segregated structure is very similar qualitatively to what is found in gene regulatory networks,
where only a much smaller subset of genes—those responsible for transcription factors—is responsible for global
regulation. We obtain the full phase diagram of the evolutionary process as a function of selective pressure and
the average number of inputs per node. We compare the theoretical predictions with Monte Carlo simulations of
evolved networks and with empirical data for Saccharomyces cerevisiae and Escherichia coli.
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I. INTRODUCTION

Many large-scale dynamical systems are composed of
elementary units which are noisy, i.e., can behave nonde-
terministically, but nevertheless must behave globally with
some degree of predictability. A paradigmatic example is gene
regulation in the cell, which is a system of many interacting
agents—genes, mRNA, and proteins—which are subject to
stochastic fluctuations. What makes gene regulation particu-
larly interesting is that it is assumed to be under evolutionary
pressure to preserve its dynamic memory against stochastic
fluctuations [1–3]. Many important cellular processes require
such reliability, such as circadian oscillations [2]. Furthermore,
in multicellular organisms, errors in signal transduction can
potentially lead to catastrophic consequences, such as embryo
defects or cancer [1,4]. Since the source of noise cannot
be fully removed [5], a gene regulation system must adopt
characteristics which compensate for the unavoidably noisy
nature of its elements. Since they are a product of natural
selection, these characteristics must emerge from random
mutations and subsequent selection based on fitness. A central
question concerns the nature of the general large-scale features
which are likely to emerge in this scenario that result in
reliable function under noise. In this work, we study the
emergence of robustness against noise in networks of Boolean
elements which are subject to selective pressure, functioning
as a model for evolved gene regulatory systems. We show that
the system undergoes a structural phase transition at a critical
value of selective pressure, from a totally random topology
to a “segregated-core” structure, where a smaller and more
densely connected subset of the network is responsible for the
regulation of most nodes in the network. This characteristic
is present to a significant degree in gene regulatory systems
of organisms such as yeast and Escherichia coli, in which
all the regulation is done by a much smaller (and denser)
subset of the network, comprised of transcription factor
genes.
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Boolean networks (BNs) have been used extensively to
model gene regulation [6–9]. The Boolean value on a given
node represents the level of concentration of proteins encoded
by a gene, which in the simplest approximation can be either
“on” or “off.” The regulation of genes by other genes is
represented by Boolean functions associated with each node,
which depend on the state of other nodes called the inputs of the
function. The dynamics on these networks serve as a model for
the mutual regulation of genes which control the metabolism
of cells in an organism. Gene regulation is composed of
specific steps involving the production of proteins and other
metabolites, which need to be carried out in specific sequences
and under certain conditions. During each of these steps the
dynamics is subject to stochastic fluctuations [2,3,10], since
the number of proteins involved can be very low [2,11], and the
whole process lacks an inherent synchronization mechanism.
In order for the regulation process to work reliably, the
network must possess some degree of robustness against these
perturbations [12]. Indeed, the investigation of real regulatory
networks modeled as BNs, such as the one responsible for
the yeast cell cycle [13], revealed a remarkable degree of
robustness, where most trajectories in state space lead to the
same attractor, regardless of the initial conditions. Similar
results were also obtained for the segment polarity regulatory
network in Drosophila melanogaster [14,15], which showed
that wild-type attractors are significantly robust to different
initial conditions and perturbations, and seem to depend only
on general topological characteristics of the network, instead
of specific functional details. However, the general features
which make BNs robust against different types of perturbation
are still being identified.

Perhaps the simplest form of perturbation one can consider
is a “flip” of a single node in the network, and the propagation
of flips which result from it. This corresponds to the situation
where the stochastic noise is very weak and can be modeled as
a single flip event. After the perturbation, the system has an ar-
bitrary amount of time to recover (if it recovers), and different
perturbations do not build up. Many authors have considered
the robustness against perturbations of this type, including
Kauffmann [6,7] who was the first to propose random Boolean
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networks (RBNs)—networks with fully random topology and
functions—as a model of gene regulation. According to this
type of perturbation, the dynamics of RBNs [9] can belong to
one of two phases, depending on the number of inputs per node
K: A frozen phase (K < 2) where the perturbation propagates
sublinearly in time and eventually dies out; and a “chaotic”
phase (K > 2) where the perturbation grows exponentially
and eventually reaches the entire system. A critical line exists
at K = 2, where the perturbation grows algebraically and
features from both phases are simultaneously observed.

Although RBNs in the frozen phase and on the critical line
show features which can be interpreted as robustness in some
sense, they fall short of being convincing models for gene
regulation. Actual gene regulation networks are not random
and show a high degree of topological [16] and functional
[17] organization which are not present in simple RBNs.
Conceivably, these features arise out of stringent requirements
to perform specific tasks and of types of robustness which
are more demanding than the containment of single-flip
perturbations. As an attempt at producing more complete
models, many authors have investigated the evolution of BN
systems, where the fitness criterion is some form of robustness
against perturbation which is not inherent to RBNs. The
majority of authors assumed single flips as the only type of
noise, but considered different types of response as fitness
criteria [18–25], most of which are related to the capacity
of the network to display the same dynamical pattern after a
single flip. In particular, in [23] it was found that if the fitness
criterion is the ability to return to the same attractor after the
perturbation, the evolved networks always achieve maximum
fitness. Furthermore, these networks with maximum fitness
span a huge portion of configuration space and show a high
degree of variability. This means not only that this type of
robustness can evolve, but also that it is not a very demanding
task for the evolutionary process.

In this work, we consider the arguably more realistic
situation where the perturbations are caused by transcriptional
noise, which can be arbitrarily frequent [26]. In this scenario,
the effects of noise can overlap and build up in time. The ap-
propriate fitness criterion remains whether or not the network
is capable of performing some predefined dynamical pattern,
but this is a task which becomes much more complicated. In
fact, it can be shown that for networks which are sparse, i.e.,
the average number of inputs per node is some finite number,
perfect robustness can never be achieved, and some amount
of deviations, or “errors,” in the dynamics are always going to
exist [27,28]. Instead, one measures robustness not only by the
amount of existing errors, but also by the ability of the system
to not be overtaken by them and consequently lose all memory
of its dynamical past—i.e., to become ergodic. This type of
robustness is much stronger than, and not necessarily related
to, the ability of the system to contain single-flip perturbations.
This was shown in [29] for RBNs subject to transcriptional
noise, for which neither phase (chaotic or frozen) is robust and
both display ergodic behavior, for any nonzero value of noise.

Furthermore, unlike [18–21,23,24], in this work we also
consider the cost which is associated with different levels of
robustness. It is generally the case that improved robustness
can be obtained by introducing redundancy or some other
mechanism that counteracts the effect of noise, which increases

the overhead in the system. This added overhead can impact
negatively on the fitness of the organism, which needs to spend
more energy or more time to perform the same task. Therefore
the trade-off between overhead and robustness is also driven
by the evolutionary process. In this work, this overhead is con-
trolled by fixing the average in-degree during the evolutionary
process, which becomes an external parameter. By selecting
the appropriate value, one automatically determines a selective
pressure that yields the corresponding trade-off.

Our main result is that under transcriptional noise, the
selective pressure can have a very noticeable effect on
large-scale properties of the system: If it is large enough, it
triggers a structural phase transition, where networks change
from a random topology to a segregated-core structure, with
most nodes being regulated by a smaller and denser subset
of the network. This observed segregated-core topology is
strikingly similar (even if qualitatively so) to what is observed
in most real gene regulation networks; namely, genes are
separated into two classes: target genes, and those which
regulate transcription factors. Only transcription factor genes
are responsible for regulation of other genes, and they are
usually orders of magnitude smaller in number than target
genes [30].

This work is divided as follows. We begin in Sec. II by
presenting the model, and in Sec. III we define the evolutionary
process and map it into an equivalent Gibbs ensemble. We then
parametrize the topological characteristics of the system as a
stochastic blockmodel in Sec. IV, and obtain an expression
for its entropy. In Sec. V we describe the technique used
to minimize the free energy. We follow in Sec. VI with the
characterization of the existing phase transition and obtain the
phase diagram. We perform comparisons with Monte Carlo
simulations in Sec. VII and with the gene regulatory networks
of yeast and E. coli in Sec. VIII. Finally, we conclude with a
discussion.

II. THE MODEL

A Boolean network [6,9] is a directed graph of N nodes
representing Boolean variables σ ∈ {1,0}N , which are subject
to a deterministic update rule,

σi(t + 1) = fi(σ (t)), (1)

where fi is the update function assigned to node i, which
depends exclusively on the states of its inputs. At a given time
step all nodes are updated in parallel.

We include noise in the model by introducing the prob-
ability P that at each time step a given input has its value
flipped: σj → 1 − σj , before the output is computed [29].
This probability is independent for all inputs in the network,
and many values may be flipped simultaneously. The functions
on all nodes are taken to be the majority function, defined as

fi({σj }) =
{

1 if
∑

j σj > ki/2,

0 otherwise,
(2)

where ki is the number of inputs of node i. It is assumed
throughout the paper that the values of ki are always odd [31].
This is so chosen because odd-valued majority functions are
optimal, since no other function performs better against noise
[32]. By using Eq. (2), we essentially remove the choice of

041908-2



EMERGENCE OF ROBUSTNESS AGAINST NOISE: A . . . PHYSICAL REVIEW E 85, 041908 (2012)

functions from the evolutionary process and concentrate solely
on topological aspects.

Starting from an initial configuration, the dynamics of the
system evolves and eventually reaches a dynamically stable
regime, where the average fraction bt of nodes with value 1
no longer changes, except for stochastic fluctuations which
vanish for a large system size [28,33]. In the absence of
noise (P = 0) there are only two possible attractors (if the
network is sufficiently well connected) where all nodes have
the same value, which can be either 0 or 1. We will consider
these homogeneous attractors as representing the “correct”
dynamics, and denote the deviations from them as “errors.”
More specifically, and without loss of generality, we will name
the value of 1 as an error and the value of bt as the average
error on the system.

The steady-state fraction of errors b∗ ≡ limt→∞ bt (for
b0 = 0) will increase with P . For any network with a finite
average in-degree there will be a critical value of noise P ∗ for
which the dynamics undergoes a phase transition, and the value
of b∗ reaches 1/2 and remains at this value for P > P ∗ [27].
The value b∗ = 1/2 is special, since it means that the dynamics
lost the memory of its initial state, since any other initial value
of b0 (including b0 > 1/2) would lead eventually to this same
value of b∗. Therefore, the value of P ∗ marks the transition
from a nonergodic to an ergodic dynamics. Robustness against
noise is synonymous with nonergodicity, since only in this
regime are dynamical correlations not destroyed over time.

BNs with majority functions serve as a paradigmatic model
for networks robust against noise, since they are composed
of optimal elements, and they show a minimal dynamical
behavior in the absence of noise, namely, two homogeneous
attractors with {σi} = 0 or 1. If robustness cannot be attained
for such a system, it is much less likely to be possible for a
different system with another choice of Boolean functions or
displaying a more elaborate dynamical pattern [28].

In this work we will consider the value of the steady-state
average error b∗ as the main fitness criterion governing the
survival probability of an organism, since it directly measures
the deviation from the situation without noise. Although the
phenotype itself, i.e., the dynamics without noise, does not
change during the evolutionary process considered here, its
stability, as measured by b∗, does. This translates into an actual
fitness criterion, since it is not enough for phenotypes to exist;
they must also be stable against perturbations. If they are not,
they are not viable in practice, and thus should not be observed.

III. EVOLUTIONARY DYNAMICS

We suppose that a given BN represents the genotype of a full
organism, which can self-replicate and belongs to a population
that is subject to an evolutionary pressure. The number of
individuals in the population is assumed to be sufficiently large
and constant. Individuals replicate a given number of times
with a constant rate. Parents die the moment they replicate.
The offspring are always initially identical to their parents,
but are individually subject to point mutations represented by
the matrix μij , which defines the probability of mutating from
genotype (i.e., network) i to j . The offspring survive with

probability ai , given by the Boltzmann selection criterion

ai ∝ eβfi , (3)

where fi is the fitness of genotype i. The parameter β controls
the selective pressure: For large values of β only the very best
networks survive, whereas for smaller values most networks
do. As mentioned previously, the fitness of a network will be
given by the fraction of 1’s (errors) after a sufficiently long
time b∗

(i) ≡ limt→∞ b
(i)
t , for b

(i)
0 = 0, as

fi = −Nb∗
(i). (4)

Thus, the largest fitness a network can have is fi = 0, which
should be possible only if there is no noise (P = 0).

We suppose that the global offspring mortality rate is such
that the size of the population always remains constant. If we
consider that the dynamics occurs in discrete time steps, we
can write the probability πi(t) of finding an individual in the
population with genotype i at time t as a Markov chain,

πi(t) = ai

∑
j

πj (t − 1)μji. (5)

The mutation probabilities μji have a decisive effect on what
topologies emerge. Mutations in actual biological systems may
result in topological bias, such as gene duplications, which
are not reversible and result in networks with broad degree
distributions [34,35]. However, the central aim here it to obtain
the most likely topology that arises due to the selective pressure
alone. For this reason we are more interested in mutations
which will lead to all possible networks with equal probability
in the absence of selective pressure (i.e., ergodicity). A simple
and conventional choice is reversible mutations μij = μji , for
which the steady state πi ≡ limt→∞ πi(t) obeys the detailed
balance condition πiμij aj = πjμjiai . This is a sufficient
condition for the desired ergodicity property, but it is not
strictly necessary, since other types of mutations may also
fulfill it. However, from this condition we easily obtain that the
steady-state probability of finding an individual with genotype
i is given by its survival probability,

πi = ai = eβfi /Z, (6)

where Z = ∑
i e

βfi = ∑
i e

−βNb∗
(i) . This corresponds exactly

to a Gibbs ensemble of all possible genotypes, with a
partition function given by Z , where Nb∗

(i) plays the role of
the “microstate energy” and β is the “inverse temperature”
(these are of course only mathematical analogies, since these
quantities do not actually represent a physical energy and
temperature, respectively). The average intensive “energy” in
the ensemble is thus

b∗ =
∑

i

b∗
(i)e

−βNb∗
(i)/Z, (7)

and the canonical entropy is

S = −
∑

i

πi ln πi = lnZ + βNb∗. (8)

The objective is to obtain not only b∗ for a given β, but
also the network topologies which characterize the ensemble.
Instead of considering all microstates individually (i.e., all
possible networks) and computing Eqs. (7) and (8) directly, we
may parametrize the whole ensemble via some macroscopic
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variables {xj } which sufficiently describe its topological
properties. These variables must be chosen so that it is possible
to write both b∗({xj }) and S({xj }) as functions of these
variables alone. The entropy can, for instance, be obtained
via the microcanonical formulation

S({xj }) = ln �({xj }), (9)

where �({xj }) is the number of different networks given a
macroscopic parametrization {xj }. The values of {xj } which
correspond to thermodynamic equilibrium [i.e., the steady
state of Eq. (5)] can be obtained by minimizing the “free
energy”

F({xj }) = Nb∗({xj }) − S({xj })/β (10)

with respect to {xj }. This stems from the principles of
maximum entropy and minimum energy, for closed systems
with fixed energy and entropy, respectively, which need to
hold in thermodynamic equilibrium [36]. It should again be
emphasized that the theory so far is only a mathematical
tool, which, although exact, says nothing about the actual
physical thermodynamical properties of the evolved systems,
i.e., they have no relation to an actual measurable energy or
temperature. Instead, the minimization of Eq. (10) is entirely
analogous to obtaining the steady state of Eq. (5) by any other
means. However, this approach, together with an appropriate
topological parametrization, allows us to obtain the outcome
of the evolutionary process on the population, without having
to actually implement any dynamics. As will be described in
detail in the next section, we will parametrize the ensemble as
a general stochastic blockmodel, which allows for a wide range
of topological configurations while at the same time allowing
for a tractable computation of b∗ and S, which then can be
used to minimize F .

It should also be mentioned at this point that we are
interested in the properties of typical networks in the ensemble
when the selective pressure β is varied, under the restriction
that the average number of inputs per node (the average
in-degree) 〈k〉 is always the same. As mentioned in the
Introduction, this restriction originates from the assumption
that a larger number of inputs increases the putative cost
for the organism of realizing a regulatory mechanism which
depends on more elements. Thus, the value of 〈k〉 should on
its own impact the fitness of the organism and should also be
subject to natural selection. For simplicity, we do not describe
the fitness landscape which depends on 〈k〉 and its evolution,
in order to emphasize the effects of robustness against noise
alone. Instead, we consider 〈k〉 as an external parameter, which
essentially means that the fitness pressure on 〈k〉 supersedes
that of the other parameters, such that it cannot change during
evolution. In this way, we are implicitly considering the cost
associated with the robustness achieved by increasing 〈k〉: the
smaller is the value of 〈k〉 chosen, the larger is the implied
fitness penalty of having more connections.

IV. STOCHASTIC BLOCKMODEL

Simultaneous consideration of all possible networks with a
given 〈k〉 is a tremendous task, due to the gigantic number
of diverse configurations which are possible. For arbitrary
networks the computation of b∗ according to Eq. (1) may

FIG. 1. (Color online) Example of a network corresponding to a
blockmodel with five blocks. The vertices of each block are labeled
with the same color.

be very cumbersome, since it may depend on many degrees
of freedom. Therefore, we narrow down the allowed subset of
possible network topologies to those which can be accommo-
dated in a stochastic blockmodel [37–40]. As will become clear
in the following, we do so without sacrificing the generality of
the approach, since we can progressively add to this model as
many degrees of freedom as we desire and in this way obtain
arbitrarily elaborate structures in a controlled fashion.

A stochastic blockmodel assumes that the nodes in the
network can be partitioned into discrete blocks, such that every
node belonging to the same block has (on average) the same
characteristics. Hence, for very large systems, we need only
describe the degrees of freedom associated with the individual
blocks (see Fig. 1). By considering a system composed of many
blocks, we can describe a wide array of possible topological
configurations.

More precisely, a (degree-corrected [39]) stochastic block-
model is a system of n blocks, where wi is the fraction of nodes
in the network which belong to block i (we have therefore that∑

i wi = 1), and pi
k is the in-degree distribution of block i.

Thus, the average in-degree is given by 〈k〉 = ∑
k,i kp

i
kwi .

The matrix wj→i describes the fraction of the inputs of block
i which belong to block j (we have therefore that

∑
j wj→i =

1). Since the out-degrees are not explicitly required to describe
the dynamics [see Eq. (11) below], they will be assumed to be
randomly distributed, subject only to the restrictions imposed
by wi and wj→i .

We note that, although we have diminished the class
of networks which will be accessible by the evolutionary
algorithm, we still allow a very large array of possible
configurations, which can in principle incorporate arbitrary
in-degree distributions, degree correlations [41], assortative
or disassortative mixing [42], and community structure [43],
to name only a few properties. As will become clear in the
following section, this blockmodel is sufficient to characterize
the most important topological property that is relevant for
robustness against noise, which is the formation of densely
connected central subgraphs.

A. The value of b∗ for a blockmodel

Supposing that the number of vertices Nwi belonging to
each block i is arbitrarily large, we can compute the value of b∗
using a heterogeneous version of the annealed approximation
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[44], by supposing that at each time step the inputs of each
function are randomly chosen, such that the specified block
structure given by wi→j is always preserved [28]. If the number
of vertices in each block is large enough, we can expect this
approximation to become an exact description for quenched
networks as well. We can then write the average value of bi

for each block over time as

bi(t + 1) =
∑

k

pi
kmk

⎛⎝(1 − 2P )
∑

j

wj→ibj (t) + P

⎞⎠ ,

(11)

which is a system of n coupled maps, where mk(b) is the
probability that the output of a majority function will be 1, if
the inputs are 1 with probability b, and is given by

mk(b) =
k∑

i=
k/2�

(
k

i

)
bi(1 − b)k−i . (12)

A fixed point of Eq. (11) represents the solution of a
polynomial system of arbitrary order, and therefore cannot
be written in closed form. However, it can be obtained
numerically by starting the system at bi = 0, and iterating
Eq. (11) until a fixed point {b∗

i } is reached. The value of b∗ can
then be obtained as b∗ = ∑

i wib
∗
i .

B. Blockmodel entropy

We obtain the entropy of the stochastic blockmodel ensem-
ble [45,46] by enumerating all possible networks which are
compatible with a given choice of wi , pi

k , and wi→j . To make
the counting simpler, we ignore the difficulty of forbidding
parallel edges and consider the ensemble of configurations,
since the occurrence of parallel edges should vanish for large
network sizes (see [46] for more details). Later we compare
the results obtained with Monte Carlo simulations with parallel
edges forbidden, and we find very good agreement.

We begin by enumerating all possible in-degree sequences
of each block which correspond to the prescribed in-degree
distributions,

�d =
∏

i

(Nwi)!∏
k

(
Nwip

i
k

)
!
. (13)

For a given block i with a fixed in-degree sequence, we can
count the number of different input choices as

�i
e = Ei!∏

j Ej→i!

∏
j

(Nwj )Ej→i , (14)

where Ei = Nwiki is the total number of inputs belonging to
block i and Ej→i = wj→iEi is the total number of inputs from
block i which belong to block j . Since the set of inputs of each
function is unordered, we still need to divide the whole number
of input combinations by

∏
k(k!)Nk , where Nk = N

∑
i,k wip

i
k

is the total number of vertices with in-degree k. Putting it all
together, we have

� = �d

∏
i �

i
e∏

k(k!)Nk
. (15)

Taking the logarithm of this expression and the limit N � 1
and using Stirling’s approximation, we obtain the full entropy

(up to a trivial constant term, which is not relevant to the
minimization of the free energy),

S/N = 〈k〉 ln N +
∑

i

wiSk
i

−
∑

i

wiki

∑
j

wj→i ln

(
wj→i

wj

)
, (16)

where Sk
i is an entropy term associated with the degree

distribution of block i, and is given by

Sk
i = −

∑
k

pi
k

(
ln pi

k + ln k!
)
. (17)

C. Choice of single-block in-degree distribution

We want to constrain the number of degrees of freedom in
the model, such that only the average in-degree ki of each
block is specified, not the entire distribution. In this way,
graphs with many different global in-degree distributions are
still possible by composing different blocks with different ki’s,
but we have a finite number of degrees of freedom per block.
In order to obtain the in-degree distribution of the individual
blocks, we maximize the entropy S, with the restriction that
the average in-degrees are fixed. For that, we construct the
Lagrangian

� = S −
∑

i

λ′
i

(∑
k

kpi
k − ki

)
−

∑
i

μi

(∑
k

pi
k − 1

)
,

(18)

where {λi} and {μi} are Lagrange multipliers which keep
the averages and the normalizations constant. We note that
the sum over k is made only over odd values of k, due to the
imposed restrictions on the majority function. Obtaining
the critical point ({ ∂�

∂pi
k

},{ ∂�
∂λ′

i

},{ ∂�
∂μi

}) = 0 and solving for {pi
k},

one obtains

pi
k = 1

sinh λi

λk
i

k!
, (19)

where ki = λi/ tanh λi . Equation (19) is a Poisson distribution,
which is defined and normalized only for odd values of k.

This choice of pi
k is not necessarily the optimal one. In

fact, it is possible to show that single-valued distributions with
zero variance tend to provide the best error resilience [28].
Nevertheless, the improvement over a Poisson distribution is
very small, and the definition of Eq. (19) allows for the average
ki to be continuously varied, which is very practical for the
optimization of the free energy.

D. Block splitting, decrease of entropy, and the necessary
number of blocks

For the blockmodel defined in this section, there are 2n + n2

variables which define the topology, where n is the number
of blocks. In order for arbitrary topologies to be faithfully
represented by the model, one would need to make n → ∞,
which would render this approach impractical. However, we
will show that for the purpose at hand, only a minimal number
of two blocks is sufficient to fully characterize the evolutionary
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process, without relying on any approximations. This is due
the following two facts: (1) Any possible value of b∗ can be
obtained with only two blocks; (2) any other topology with the
same b∗ will invariably have a lower entropy and thus a larger
free energy. Thus the minimum of the free energy will always
lie on a two-block structure.

The first fact can be shown by construction: Consider a
system of two blocks, where one of them (the “core”) is
smaller and much denser, and the remaining block has an
average in-degree close to the global average. The inputs of
the core block belong mostly to the core itself, as well as
the inputs of the remaining block. By changing the density
of the core block, as well as the degree of input segregation,
it can be shown [28] that any possible value of b∗ can be
achieved [47].

The second fact can be shown by considering a system of
many blocks and selecting any two blocks l and m. If all other
blocks are kept intact, it can be shown that the entropy will
always be larger if these two blocks are merged into an effective
single block. This can be shown by partially maximizing the
entropy S via the Lagrangian

� = S − μ

(∑
i

kiwi − 〈k〉
)

−
∑

i

γi

⎛⎝∑
j

wj→i − 1

⎞⎠ ,

(20)

where μ and {γi} are Lagrange multipliers which
keep the average in-degree and the normalization of
wj→i fixed, respectively. Obtaining the critical point
( ∂�
∂wl\m

, ∂�
∂kl\m

,{ ∂�
∂wl\m→j

},{ ∂�
∂wj→l\m

}) = 0 and solving for
wl\m,kl\m,{wj→l\m},{wl\m→j }, one obtains

kl = km, (21)

wl→j

wl

= wm→j

wm

, (22)

wj→l = wj→m. (23)

This corresponds to the situation where the nodes from blocks
l and m are topologically indistinguishable, i.e., the outgoing
and incoming edges are randomly distributed among the nodes
of both blocks. Since any arbitrary many-block structure can
be converted into a single block by successive block merges, it
follows directly that any arbitrary many-block structure can be
constructed by starting from a single block and successively
splitting blocks. Thus, since the merging of blocks always
increases entropy and the splitting decreases it, the entropy of
the final structure must be smaller than that of both the initial
single block and the succeeding two-block network.

In order for a many-block structure to have a lower free
energy than the two-block structure with the same value of b∗,
it needs to have a larger entropy. But according to the above
argument, networks with a larger number of blocks tend to have
smaller entropy. Networks with larger entropy and number of
blocks would have to be more randomized than the two-block
structure, which would invariably result in a larger value of
b∗. We can therefore conclude that the global minimum of the
free energy always occurs for a two-block structure, and thus
we need to deal with only eight variables [48].

V. MINIMIZATION OF THE FREE ENERGY

Although we have an analytical expression for the entropy
S, the value of b∗ cannot be obtained in closed form, and thus
the same is true for F . Therefore we must resort to a numerical
computation of b∗, via the iteration of Eq. (11), and minimize
F with a gradient descent algorithm, using finite differences.
Many of these methods work only for unconstrained optimiza-
tion problems, and we need to impose several constraints: The
average in-degree must be fixed, and the wi and wj→i distribu-
tions must be normalized. However, we can make the problem
unconstrained by using the following transformations:

wi = ew̃i∑
j ew̃j

, (24)

wj→i = ew̃j→i∑
l e

w̃l→i
, (25)

where w̃i and w̃j→i are unconstrained real variables. Likewise
we can transform λi as

k̃i = eλ̃i

tanh eλ̃i

, (26)

ki = c̃ki + γ, (27)

λi = ki tanh λi, (28)

where λ̃i is also an unconstrained real variable. To obtain λi

from Eq. (28) it is simply iterated until it converges to the
correct value, within some desired precision. The values of c

and γ are chosen to force ki � 1 and the average in-degree to
a prescribed value 〈k〉,

c = 〈k〉∑
i k̃iwi

, γ = 0 if k̃m � 1,

(29)

c = 〈k〉 − 1∑
i k̃iwi − k̃m

, γ = 1 − c̃km otherwise,

where k̃m = min({̃ki}). Thus we have obtained an
unconstrained minimization problem of function F with
respect to the variables {w̃i}, {w̃j→i}, and {̃λi}.

In order to find the minimum of Eq. (10), we employed
the L-BFGS quasi-Newton algorithm [49], with the gradient
computed by finite differences.

VI. STRUCTURAL PHASE TRANSITION

The minimization of the free energy leads to one of two
possible structures (see Fig. 2): (1) For low values of β the
topology is a fully random graph; (2) For larger values of β

Random topology

increasing β−−−−−−−→

Segregated core

FIG. 2. (Color online) Structural phase transition observed when
the selective pressure β is varied, as described in the text.
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FIG. 3. (Color online) The order parameter φ as a function of the

selective pressure β, for different noise levels P and for 〈k〉 = 5. The
left panel shows curves for P < P ∗

r , where P ∗
r is the critical value of

noise for a fully random network, and the right panel shows curves for
P > P ∗

r . The curves on the left panel are shown in order of increasing
P from right to left, and on the right panel, from left to right.

there is the emergence of a segregated-core structure, where
one of the blocks has a larger in-degree density and is more
responsible for the regulation of the whole network.

In order to precisely characterize the phase transition, we
define the following order parameter:

φ = b∗ − br

bmin − br

, (30)

where br is the value of b∗ for a fully random network, and
bmin is the smallest possible value of b∗ for a given 〈k〉 [28],
given by

bmin =
∑

k

pkmk(P ), (31)

where pk is given by Eq. (19) with ki = 〈k〉. We have therefore
that φ ∈ [0,1] and if φ = 0 the network ensemble must be fully
random and if φ = 1 it has the largest possible value of fitness.

As can be seen in Fig. 3, there is a second-order phase
transition at a critical value β∗, which depends on the noise
level P . The dependence of β∗ on P divides the β × P phase
diagram into an upper and lower branch, as can be seen in
Fig. 4. The branches are divided at a value of P = P ∗

r , which
is the critical value of noise of a fully random network (see [28]
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FIG. 4. (Color online) The order parameter φ as a function of the
selective pressure β and noise P , for different values of 〈k〉.
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FIG. 5. (Color online) Left: Value of the steady-state average
error b∗ as a function of the selective pressure β and noise P , for
〈k〉 = 5. Right: Maximum tolerable noise P ∗, as a function of the
selective pressure β and noise P , for 〈k〉 = 5.

for an exact calculation of P ∗
r ). At this value of noise, a

random network undergoes a dynamic phase transition, where
the steady-state error fraction reaches the maximum level
b∗ = 1/2 and the dynamics becomes ergodic, as was described
previously. For P < P ∗

r , random networks are intrinsically
robust, since b∗ < 1/2, and the critical value β∗ becomes
larger with smaller P . In other words, the smaller is the value
of noise P , the better is the behavior of fully random networks,
such that the entropic cost of providing further improvement
by creating a segregated core becomes larger, which therefore
occurs only at larger values of selective pressure. The situation
changes for P > P ∗

r . Since random networks are no longer
resilient, and have collapsed onto b∗ = 1/2 (see Fig. 5), a
segregated core provides a significant improvement, for a
relatively low entropic cost. This cost increases with P , since
the core needs to be either denser, smaller, or more isolated to
provide the same benefit under larger noise. Thus the value
of β∗ also increases with P . Interestingly, in the vicinity
of P = P ∗

r , the value of β∗ tends to zero. For this value
of noise, the dynamics of the fully random topology lies
exactly at the critical point where b∗ = 1/2, and even the
smallest (structural) perturbation can move the fixed point
appreciably. Since such small structural perturbations have
negligible entropic cost, the value of β∗ vanishes to zero.
Thus, networks with 〈k〉 such that P ∗

r = P are the most easily
evolvable.

The value of b∗ itself can be seen in Fig. 5. The upper branch
P > P ∗

r corresponds to transitions from b∗ = 1/2 (ergodic
dynamics) to b∗ < 1/2 (nonergodic dynamics), whereas the
lower branch P < P ∗

r shows b∗ < 1/2 for both phases.
The topological properties of each phase can be seen in

detail in Fig. 6, where are shown the average in-degrees {ki},
block sizes {wi}, and the total fraction of inputs which lead
to the segregated core, Ec = ∑

j wc→jwjkj /〈k〉, where c is
the core block. The core block emerges at β = β∗, with an
infinitesimal size, but with a value of ki which is usually
significantly above average. For P > P ∗

r the segregated core
usually has a significantly larger average in-degree than for
P < P ∗

r . The dominance and segregation of the core block
increase continuously with β, reaching values close to Ec = 1
for larger values of β, especially for values of P > P ∗

r .
Each network on the evolved ensemble has a critical value

of noise P ∗ (different from the value of P for which it was
evolved), for which its dynamics undergoes the aforemen-
tioned ergodicity transition and which represents the maximum
tolerable noise (see [28] for an exact calculation of P ∗ for
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FIG. 6. (Color online) Block average in-degrees {ki}, block sizes
{wi}, and total fraction Ec of inputs originating from the core block,
as functions of selective pressure β, for 〈k〉 = 5. The left panels show
curves for P < P ∗

r , where P ∗
r is the critical value of noise for a fully

random network, and the right panels show curves for P > P ∗
r . All

curves on the left panels are shown in order of increasing P from
right to left, and on the right panel, from left to right.

arbitrary blockmodels). Interestingly, the evolution of b∗ does
not automatically result in larger values of P ∗, as is shown in
Fig. 5: Some ensembles evolved under larger selective pressure
possess a lower value of P ∗ than others evolved under lower
selective pressure (for the same value of P under evolution).
This means the evolution is reasonably specialized for the
level of noise it is under, and the behavior of the networks
under larger values of noise for which they were evolved
is not automatically better than that of other networks with
smaller fitness. However, despite these deviations, the general
tendency is that, for larger values of β, b∗ and P ∗ are decreased
and increased, respectively.

VII. MONTE CARLO SIMULATIONS

We have also performed Monte Carlo simulations to
observe the phase transition obtained in the previous section.
We employed the Metropolis-Hastings [50,51] algorithm,
starting from a random network with N vertices, with a given
average in-degree 〈k〉 and a partition into n blocks, represented
by assigning block labels to each vertex (which is initially
randomly chosen). At each iteration, one of the following
moves is attempted with equal probability:

(1) Block label move: A random vertex v is chosen, and its
block label is randomly chosen among all n possible values.

(2) Input move: A vertex v is chosen with probability p ∝
k(k − 1), where k is the in-degree of v. Another vertex u is

randomly chosen with uniform probability. Two random inputs
from v are deleted and moved to u.

(3) Source move: A random vertex v is chosen. A random
input from v is deleted and replaced by a randomly chosen
one.

A move is rejected if it generates parallel edges or self-
loops. The difference �b∗ of the values of b∗ after and before
the move is computed. The move is then accepted with a
probability pa given by

pa =
{

1 if �b∗ � 0,

e−βN�b∗
otherwise.

(32)

The probability p ∝ k(k − 1) in move (VII) is chosen to
correspond to two independent single-edge moves affecting
the same vertices v and u, where in each move a random edge
is chosen, and its target is moved to a randomly chosen vertex.
This guarantees that there is no topological bias, and that the
in-degrees are always odd.

The value of b∗ is computed by obtaining the values of
{wi}, {wj→i}, and {ki}, and iterating Eq. (11). This is much
faster than actually measuring the error level on the network
and produces deterministic values [52].

Since we have employed the block label move (VII), which
tends to partition the network evenly into n blocks of equal
sizes, we have included an entropic cost associated with the
size of a block, which did not exist in the original blockmodel
above. In the original model, the partitions themselves are not
relevant, and only the resulting graph topology contributes
to the entropy. However, move (VII) makes the algorithm
very efficient and easy to implement, and it should not
fundamentally change the results. But in order to compare
with the theory, we need to include the following correction in
the number of possible networks:

�′ = �
N !∏

i(Nwi)!
, (33)

which leads to the slightly modified entropy

S ′/N = S/N −
∑

i

wi ln wi. (34)

In Fig. 7 we can see the same phase transition observed pre-
viously, which matches very well the theoretical predictions.
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FIG. 7. (Color online) Average order parameter 〈φ〉 and steady-
state error level b∗ as functions of the selective pressure β, for
different values of noise P and 〈k〉 = 5, obtained with Monte Carlo
simulations, for network sizes shown in the legend. On the right
plot, the red star symbols (�) correspond to empirical values of b∗

as obtained with Eq. (1). The solid gray lines are theoretical values
obtained by minimizing the free energy.
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FIG. 8. (Color online) Block average in-degrees {ki} and sizes
{wi} as functions of selective pressure β, for 〈k〉 = 5, obtained with
Monte Carlo simulations, for network sizes shown in the legend. The
solid gray lines are theoretical values obtained by minimizing the free
energy.

In Fig. 8 the topology can be assessed more closely, and the
emergence of the segregated core is clear. Due to the partition
entropy introduced in Eq. (34), the core does not vanish at the
transition; it merges continuously with the other block instead.
However, the critical value β∗ is identical with the nonmodified
model.

The inclusion of the partition entropy also introduces the
fact that different solutions are obtained for different numbers
of blocks, since this has a direct effect on the preferred sizes of
the blocks (see Fig. 9, left). However, this does not change the
fact that for any number of blocks the preferred topology will
always be an effective two-block structure. This follows from
the argumentation presented previously based on the reduction
of entropy resulting from block splits, and can be observed in
simulations with many blocks, as shown in Fig. 8, which shows
a comparison between the topologies obtained with two and
three blocks, as well as the outcome of a typical simulation
with 20 blocks, which shows the eventual collapse into an
effective two-block structure.

VIII. GENE REGULATORY NETWORKS

Here we make a comparison with some features observed
in actual gene regulatory networks. We consider the networks
for Saccharomyces cerevisiae (yeast) and Escherichia coli,
extracted from the YEASTRACT [53] and RegulonDB [54]
databases, respectively. We are interested in extracting the
“functional core” of the network, i.e., those nodes which are
solely responsible for global regulation, like those belonging
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FIG. 9. (Color online) Left: Block average in-degrees {ki} as a
function of selective pressure β, for 〈k〉 = 5, and obtained with Monte
Carlo simulations, for N = 10 000 and different numbers of blocks.
The solid gray lines are theoretical values obtained by minimizing
the free energy. Right: Evolution in time of the average in-degrees
{ki} in a Monte Carlo simulation with n = 20 blocks, N = 10 000,
and β = 103, showing the eventual merging into only two blocks.

to the segregated core which emerges in the phase transition
observed in the evolutionary process above. We will char-
acterize the core nodes in two ways: (1) nodes which have
an out-degree larger than zero; (2) nodes which belong to
a strongly connected component (SCC) of the graph (i.e.,
the maximal set of nodes which can directly or indirectly
regulate each other). The first criterion is a necessary condition,
since if the out-degree is zero, then a node is not a regulator.
The second criterion is stronger, since even if a node is a
regulator, it can have its dynamics completely enslaved by
other nodes. The nodes in the SCC are exactly those which
are not necessarily enslaved and can mutually regulate each
other. Without a least one SCC in the network, an autonomous
behavior with dynamical attractors other than simple fixed
points is not possible.

The yeast network is composed of N = 6402 nodes, with an
average in-degree of 〈k〉 ≈ 7.51. The E. coli network is smaller
and sparser, with N = 1658 and 〈k〉 ≈ 2.32. In both networks
the number of transcription factor (TF) genes is much smaller
than the total number: NTF = 182 in yeast, and NTF = 154 in
E. coli. These are core genes according to the first criterion,
since they have an out-degree larger than zero, as can be seen
in Fig. 10.

In yeast, the average in-degree of the core nodes is higher
than average, 〈k〉c ≈ 10.03, as observed in the segregated-
core phase of the evolved networks obtained. For the SCC,
the number of nodes decreases slightly to NSCC = 146, and
the average in-degree changes negligibly, 〈k〉cc ≈ 10.48 (if
one counts only edges between vertices of the SCC, this value
is virtually identical, 〈k〉cc ≈ 10.42). This is similar to what
was found previously in [16] for the yeast network (using an
older and less complete data set with only 837 genes). They
have also found that the TF genes have different connection
patterns, and those with the largest out-degree tend to regulate
genes with lower than average in-degree. However, they did
not find that the TF genes form a denser subgraph, with a
larger than average in-degree, which is most likely due to the
incompleteness of the data set used. Very similar numbers
to those presented here were obtained more recently in [55],
using a more complete data set (which is not identical to the
one used in this work).

FIG. 10. (Color online) Gene regulatory networks for S. cere-
visiae (left) and E. coli (right), extracted from the YEASTRACT [53]
and RegulonDB [54] databases, respectively. The nodes in purple
(toward the middle) are transcription factor genes and are the only
ones with out-degree larger than zero.
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For E. coli the situation changes somewhat: The average
in-degree of the transcription factor nodes is 〈k〉c ≈ 1.97,
which is in fact lower than the global average. However,
if one extracts the largest SCC, the number of nodes drops
dramatically to NSCC = 8. These nodes are responsible for
the regulation of 411 genes. A majority of 1093 genes are
instead enslaved to the dynamics of SCC with only two
mutually regulating nodes. Although the largest SCC does
have an average in-degree 〈k〉cc = 6, the core topology seems
significantly more sparse than for yeast and the evolved
networks, at least with the data currently available [56].
Arguably, such a sparse regulating core is suspect from the
point of view of data set completeness, since it would mean
that the range of dynamical behavior for the regulatory network
is very restricted. As previously mentioned, an older and
less complete data set for yeast also did not reveal a denser
regulating core [16]. Nevertheless, one should also consider
that such real networks are simultaneously under different,
possibly competing, selective pressures which also influence
the resulting topology, robustness against noise being only one
of them. These other factors, which are neglected in the model,
could be one reason for such a discrepancy. We emphasize,
however, that although apparently it is not denser, a regulating
core certainly exists in the measured E. coli network, which is
at least in partial qualitative agreement with what is observed
in the model.

There are other factors that may contribute to this observed
segregation which are not in principle related to noise
resilience. For instance, nonregulating genes exist mostly to
transcribe proteins which have some specific metabolic or
structural function in the cell, and it may be difficult for
these proteins to have a dual role as transcription factors
and therefore become specialized (although nonspecialized
proteins are not impossible, since a protein can in principle
bind both to DNA and to other proteins). Nevertheless, there
are good reasons to consider robustness to noise as a very
plausible driving force toward this type of topology. This is
corroborated, for instance, by evidence that core TF genes tend
to be less noisy [57,58], and that the vast majority of TF genes
in yeast are not vital for the survival of the cell if repressed
in isolation [59]. This is fully compatible with the idea of a
highly redundant functional core, which provides robustness
for the rest of the network.

Another feature which is commonly investigated in em-
pirical networks is the in- and out-degree distributions. The
in-degree distribution is often narrow, while the out-degree
distribution is broader and as some suggest [16], compatible
with a power law. The model considered in this work is
parametrized as a stochastic blockmodel, where each block
has in- and out-degrees that are Poisson distributed. When
the segregated core emerges, the system is composed of only
two blocks; thus both the in- and out-degree distributions are
bimodal. The in-degree distribution is indeed narrower, since
the difference between the average in-degree of the two blocks
is not very large for most networks obtained. The out-degree
distribution is also much broader, since the average out-degree
of the noncore block tends to zero, while for the core block
it tends very rapidly to infinity, when the selective pressure is
increased. However, the homogeneous and seemingly scale-
free properties of the empirical distributions are not reproduced

by the model. This implies that these features are not a
direct result of evolved robustness against noise, and may,
for instance, be due simply to mutational bias caused by gene
duplication, which is known to qualitatively reproduce these
types of in- and out-degree distributions [34,35].

IX. CONCLUSION

We have investigated the effect of selective pressure
favoring robustness against noise on the structural evolution
of Boolean networks with optimal majority functions, func-
tioning as a conceptual model for gene regulation. We have
mapped the evolutionary process onto a Gibbs ensemble and
obtained its outcome by minimizing the associated free energy.
We showed that the structural properties of the system undergo
a phase transition at a critical value of selective pressure, from
a random topology to a segregated-core structure, where a
smaller fraction of the nodes form an isolated core, which
is denser than the rest of the network and is responsible for
most of the regulation. Since the core is denser, its nodes
can profit from more regulatory redundancy, which greatly
diminishes the effect of noise. This robustness is propagated
to the rest of the network, which relies on the core for most of
the regulation. The segregated core becomes denser, smaller,
and more isolated as the selective pressure increases. We
have compared the theoretical predictions with Monte Carlo
simulations of actual networks and found perfect agreement.

We have also shown that this segregated-core structure
is present in the gene regulatory network of yeast and
E. coli. Both networks are composed of a much smaller
fraction of transcription factor genes which are responsible
for all regulation. In yeast, the existing core structure is
very similar qualitatively to the outcome of the evolutionary
process considered, with transcription factor genes forming a
denser subgraph, with an average in-degree above the average
for the whole network. In E. coli the isolated transcription
factor core is composed of few very small regulating cores
(strongly connected components), the largest of which has
only eight nodes. We conjecture that such a sparse regulating
core is possibly due to data set incompleteness, since it would
severely restrict the range of possible dynamical behavior for
the network. A less complete data set for yeast also did not
show a denser regulating-core structure [16], although it is
clearly seen with more up-to-date data sets including more
genes and interactions [55]. However, one should not rule
out other selection criteria which are not incorporated in the
model.

It should also be noted that regulating cores of transcription
factors are a common feature of other organisms, such as
Mycobacterium tuberculosis [60]. Additionally, a similar (but
not identical) “bowtie” structure was also observed in the
mammalian signal transduction network [61,62], where most
pathways are funneled through a central core.

It is possible to formulate other reasons for the existence of
such a core structure, such as a forced specialization of genes
into either transcription factors or target genes. Furthermore
one should mention that the effects of noise are not always
detrimental, and can in some circumstances even be beneficial
[11,63]. Nevertheless there is compelling evidence that the
core genes provide a degree of robustness to the cell. Not only
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are the best-connected TF nodes less noisy [57,58], they are
usually found—if removed individually—not to be vital for
cell survival [59]. This corroborates the idea that one of the
major functions of the regulating core is to provide robustness
via redundancy.

Furthermore, aside from the direct applicability to gene
regulation, we have identified a fundamental mechanism

of robustness against noise, which emerges naturally when
networks are randomly selected for that purpose [64]. Al-
though most interesting systems require more than just
robustness for their functioning, it is reasonable to conclude
that the emergence of regulating cores is to be expected
when there is enough selective pressure favoring noise
resilience.
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