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Social organisms at every level of evolutionary complexity live in groups, such as fish schools, locust swarms,
and bird flocks. The complex exchange of multifaceted information across group members may result in a
spectrum of salient spatiotemporal patterns characterizing collective behaviors. While instances of collective
behavior in animal groups are readily identifiable by trained and untrained observers, a working definition to
distinguish these patterns from raw data is not yet established. In this work, we define collective behavior as a
manifestation of low-dimensional manifolds in the group motion and we quantify the complexity of such behaviors
through the dimensionality of these structures. We demonstrate this definition using the ISOMAP algorithm, a
data-driven machine learning algorithm for dimensionality reduction originally formulated in the context of
image processing. We apply the ISOMAP algorithm to data from an interacting self-propelled particle model
with additive noise, whose parameters are selected to exhibit different behavioral modalities, and from a video
of a live fish school. Based on simulations of such model, we find that increasing noise in the system of particles
corresponds to increasing the dimensionality of the structures underlying their motion. These low-dimensional
structures are absent in simulations where particles do not interact. Applying the ISOMAP algorithm to fish
school data, we identify similar low-dimensional structures, which may act as quantitative evidence for order
inherent in collective behavior of animal groups. These results offer an unambiguous method for measuring order
in data from large-scale biological systems and confirm the emergence of collective behavior in an applicable
mathematical model, thus demonstrating that such models are capable of capturing phenomena observed in
animal groups.
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I. INTRODUCTION

Schooling of fish [1], swarming of bacteria [2], and
flocking of birds [3] are all instances of collective behavior
of biological groups [4]. Such groups typically comprise a
large number of individuals, whose motion involves complex
body deformations and harmonious speed changes. In fish
schools, collective behavior is identified by characteristic
spatiotemporal patterns, including relatively small distances
among adjacent individuals, hydrodynamically motivated
staggering of leaders and followers, and sharp delineation
of the group as a whole in space [1,5]. Although every
motivation of fish schooling is not yet identified, members
of a school benefit from many aspects of social life, such as in-
creased predator evasion, foraging capabilities, and swimming
efficiency [6,7].

Fish schools may be extremely varied, bringing together
individuals of different species [8,9], temperaments [10],
knowledge [11–13], and may include widely different cardi-
nalities [14]. Beyond the composition of the animal group,
environmental stimuli, such as perceived predation [15]
and light intensity [16,17], can promote collective versus
individual behavior. One remarkable facet of a fish school
is that its complex structure emerges and is maintained by the
exchange of multifaceted information among peers. In other
words, fish schools persist without the presence of a permanent
leader [11]; instead, the structure is based on local decisions
made by individuals [7].
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Understanding the behaviors driving such patterns is
currently the subject of intensive biology and mathematical
research [18–26]. Besides its clear applications in the bio-
logical disciplines, a fuller comprehension of such complex
systems has the potential to inform the design of cooperative
control algorithms for multivehicle teams [27], data fusion
methods for wireless sensor networks [28], and intelligent
power distribution systems [29]. Even if the data describing
such ubiquitous phenomena across different time scales and
spatial lengths may be huge, recognizing the emergence of
collective behavior is a surprisingly simple task routinely
executed by trained or untrained observers [30]. Motivated by
this ability of human cognition, we consider such simplicity
to be a manifestation of inherently low-dimensional structures
underlying large scale systems. A similar simplification has
been used to characterize the motion of nematodes in [31] by
classifying body attitudes as combinations of a small number
of characteristic postures. In this work, we take a different
approach as we completely remove the human observer and
directly apply a dimensionality reduction algorithm to large
scale data sets.

Specifically, we propose a formal definition of collective
behavior as the existence of a low-dimensional embedding
stable invariant manifold in the full space of the trajectories of
the agents comprising the group. Existence of a stable invariant
manifold usually is due to dissipation in the system. As a
complementary characterization of this notion of collective
behavior, we define the relative dimension of the minimal
embedding manifold as the degree of complexity of the system.
This approach seeks to eliminate ansatz on order parameters
for measuring collective behavior by using exclusively raw
data pertaining to the manifestation of the phenomenon.
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In turn, such objective definition may allow for the direct
validation of order parameters and eventually inform their
formulation.

As a test bed of collectively acting agents, we focus on
so-called Vicsek biological groups modeled as interacting
self-propelled particles in a discrete-time setting [32]. This
modeling framework offers a flexible platform for exploring
different phenomena taking place in animal groups, such as
long-range attraction, short-range repulsion, and perceptual
limitation [3,19,33–36]. With reference to fish schooling,
this model implements a consensus protocol for the indi-
viduals’ headings, from which complex macroscopic behav-
iors emerge. By varying the model parameters, we induce
biologically- relevant behaviors such as highly aligned regular
motion featuring group mates swimming along the same
direction with constant speed and regular milling about a fixed
location in a mobbing-type behavior. Both these maneuvers are
executed by live fish schools [1,37]. As a numerical control
experiment, we also consider the trivial model which prohibits
interaction among agents and thus relegates them to be random
walkers.

We test the working definition of collective behavior
using the recently developed isometric mapping (ISOMAP)
algorithm, which offers a simplified perspective of large
scale data sets by embedding such data on lower-dimensional
manifolds [38–40]. Manifold learning is an established and
rapidly evolving area in the machine learning community for
a wide variety of practical problems which require detecting
low-dimensional structures in very high-dimensional data sets.
For example, it is ideal for the classification and feature
extraction problems of handwritten character recognition
[41], object recognition [42], and facial recognition [42].
There are a multitude of popular algorithms and methods of
manifold learning from data [43]. Among these approaches,
the ISOMAP algorithm offers a viable solution for data-
driven analysis of dynamical systems by characterizing low-
dimensional invariant manifolds therein, as demonstrated in
[44]. This algorithm, originally formulated in the context of
data mining and image processing, approximates an invariant
manifold by an undirected graph whose geodesics coincide
with those of the true nonlinear manifold. This perspective
bears some resemblance in spirit to the literature on the
theory of time delay embedding [45]. However, the ISOMAP
algorithm allows for a global model of an invariant manifold
as an undirected graph which preserves distances along the
manifold. Beyond its technical sophistication, the ISOMAP
algorithm is easy to implement and several software suites are
readily available for use [46].

In this work, we employ the ISOMAP algorithm to illustrate
our working definition of collective behavior using both
simulation data from the self-propelled particle model and
raw image data of a live fish school. As a stand-in for the
human observer, we identify complexity in simulation data
using traditional, behaviorally defined measures of alignment
and cohesion among individuals. Corroborating traditional
measures, we find that increasing complexity in group behavior
corresponds to an increasing dimensionality of the minimal
embedding manifolds. In addition, such low-dimensional
manifolds are entirely absent from the trivial model wherein
agents are random walkers, thus confirming the validity of this
definition of collective behavior.

II. SELF-PROPELLED PARTICLE MODEL

We consider a system of N interacting agents traveling in a
two-dimensional domain at a speed s. We take a square domain
of side length L ∈ R+ and we select reflective boundary
conditions. The two-dimensional position of the agents at time
k ∈ Z+ is given by the vector x(k) ∈ CN , where the real and
imaginary parts of the ith element xi(k) belong to [−L/2,L/2]
for i = 1, . . . ,N . At time k, agent i has heading denoted
θi(k) ∈ [−π,π ], where θi(k) = 0 corresponds to heading along
the positive real axis. The agents have uniformly distributed
random initial conditions for both position and heading.

While agent i maintains a constant speed at any time, it
progressively updates its heading according to the interactions
with neighbors. Specifically, at time k, agent i interacts with
all agents j , for j = 1, . . . ,N , such that ‖xj (k) − xi(k)‖ � r ,
where ‖ · ‖ is the Euclidean norm and r ∈ R+ is constant. We
use the notationNi(k) to identify such neighbors. The presence
of an exogenous stimulus is modeled by including a source at
x0 ∈ CN which, at time k, acts on agent i’s heading update as
a virtual neighbor when ‖x0 − xi(k)‖ � ra for ra ∈ R+. We
refer to N0(k) as the neighbor set of this source at time k.

At successive time steps, agent i updates its heading
according to

θi(k + 1) = θ̂i(k + 1) + P, (1)

with θ̂i(k + 1) being the consensus-driven heading given by

arg

⎛⎝ ∑
j∈{i}∪Ni (k)

exp[ιθj (k)] + indN0(k)(i) exp [ιφi(k)]

⎞⎠ + �θ.

(2)

Here, ι is the imaginary unit, indN0(k)(·) is the indicator function
for N0(k), φi(k) = arg [x0 − xi(k)], and

P =
{
pπ, for θ̂i(k + 1) ∈ (−π/2,0] ∪ (π/2,π ],

−pπ, for θ̂i(k + 1) ∈ (0,π/2] ∪ [−π, − π/2].
(3)

The quantity �θ is a uniformly distributed random variable
which takes values in [−ηπ,ηπ ] and η ∈ [0,1] is the so-called
noise parameter. When η = 0, the agents reach and maintain
a common heading. For η large, the heading of the agents is
random at each time step. The parameter p biases the agents’
headings to preferentially induce motion parallel to the real
axis and, for example, describes fish locomotion parallel to a
flow. Agent i updates its position according to

xi(k + 1) = xi(k) + s exp [ιθi(k + 1)] . (4)

When an agent’s updated position exceeds the boundary of
the spatial domain, its previous position is maintained and the
component of its two-dimensional velocity corresponding to
the coordinate violating the spatial boundary is multiplied by
−1. As a result, an agent’s speed is less than s in instances
when the agent encounters the boundary.

We consider two qualitatively different sets of simulation
parameters to investigate this model. The first parameter set,
which we refer to as “aligned pacing” (AP), uses p = 0.01
and no source, that is N0(k) = ∅ for all times k. Using this
parameter selection, agents are capable of forming an aligned
group which travels along the preferred domain dimension
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FIG. 1. (Color online) Sample model trajectories with AP and
SO parameters and η = 0.005, 0.05, and 0.5. We define N = 40
agents traveling in the complex plane with s = 0.25, L = 5, r = 1,
and ra = 3 and we display the first 75 time steps out of a 10 000
time step simulation of the model. For AP simulation data, p = 0.01.
For SO simulation data, the source position is −2.15 + 2.23ι when
η = 0.005, 1.96 + 2.30ι when η = 0.05, and −1.56 + 1.92ι when
η = 0.5. Horizontal and vertical axes refer to the real and imaginary
parts of x(k), respectively, for different values of k.

depending solely on the noise η. The second parameter set,
which we call “source orbit” (SO), uses p = 0 and a randomly
placed source x0. Setting p = 0 allows the interaction with
the source, neighbors, and additive noise to determine the
agents’ spatial positions with no preferred group orientation.
Simulation data from this model approximate the behavior of
fish schools milling around a common center to avoid predation
or to aggregate near an attracting stimulus [37].

Truncated trajectories of N = 40 agents interacting accord-
ing to this model with both parameter sets and representative
values of η are presented in Fig. 1. We consider agents with
constant speed s = 0.25 interacting for 10 000 time steps after
omitting 1000 initial time steps to eliminate any transient. We
use the simulation parameters L = 5, r = 1, and ra = 3 and
we consider low (η = 0.005), moderate (η = 0.05), and high
(η = 0.5) noise. From the AP trajectories in the top panels of
Fig. 1, we see the degradation of alignment among agents with
increasing noise, accompanied by a preference for travel along
the horizontal axis of the domain in the low noise condition.
The SO trajectories are presented in the bottom panels of
Fig. 1, where the source appears as a black dot. Due to the
relatively wide region of attraction for the source, agents with
low noise align and approach the source together. As the noise
increases, the alignment among agents decreases. However,
the presence of the source induces spatial order among the
agents, which repeatedly move toward it after being deflected
by the boundaries.

As a validation of this model’s ability to foster emergent
behavior among agents, we generate simulation data of N =
40 noninteracting agents (r = 0) affected by neither axial
attraction nor a source. In this case, agents’ trajectories are
independently generated dependent only on random initial
conditions and the noise η. We refer to this parameter selection
as “random walkers”(RW). Figure 2 presents truncated trajec-
tories of N = 40 random walkers subjected to low, moderate,
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FIG. 2. (Color online) Sample simulation trajectories with RW
parameters and η = 0.005, 0.05, and 0.5. We use r = 0 and the same
time steps and other protocol parameter values for N , s, L as in Fig. 1.
Horizontal and vertical axes refer to the real and imaginary parts of
x(k), respectively, for different values of k.

and high noise. Although the low noise condition results in
slightly straighter paths for random walkers, the trajectories
for all RW simulations show no emergent behaviors among
agents such as are evident from the aligned trajectories in the
low and moderate noise simulations in Fig. 1.

To quantify the order in models of collective behavior,
measures based on observed spatiotemporal patterns, such
as members of animal groups maintaining aligned traveling
directions, selecting proximal positions, or milling about a
common center, are typically employed [7].

For example, alignment behavior may be captured as the
polarization [32]

P(k) = 1

N

∥∥∥∥∥
N∑

i=1

exp [ιθi(k)]

∥∥∥∥∥ . (5)

This quantity equals one when all agents have a common
heading and equals zero when the agents can be grouped
into pairs with headings that differ by π . In addition, agents’
proximity can be measured using the cohesion [47]

C(k) = 1

N

N∑
i=1

exp

(−‖x̃i(k)‖
L

)
, (6)

where x̃i(k) is the relative position of agent i at time k with
respect to the center of mass xc.m.(k). That is,

x̃i(k) = xi(k) − xc.m.(k), where xc.m.(k) = 1

N

N∑
i=1

xi(k).

(7)

This quantity equals one when all agents’ positions coincide
on the group center of mass xc.m.(k) and goes to zero as the
individual distances from xc.m.(k) increase. We note that L acts
as a characteristic length scaling the decay of the cohesion as
agents move apart from each other.

For the simulations whose truncated trajectories are shown
in Fig. 1, we calculate the polarization and cohesion to assess
order in these systems via traditional measures. Statistics of
these measures are presented in Table I. Figure 3 presents
the polarization for truncated simulations using AP and SO
parameters and low, moderate, and high noise. The low and
moderate noise conditions maintain polarizations near one for
both parameter sets except for occasional deviations which
correspond to impacts of the boundary. As the noise reaches
its largest value, the polarization drastically decreases as
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TABLE I. Measures of simulation complexity using traditional and proposed methods. Simulations are 10 000 time step trials, which are
shown truncated in Figs. 1 and 2 using N = 40, s = 0.25, and L = 5. Polarization and cohesion are presented as mean ± one standard deviation.
Manifold dimension refers to the embedding manifold identified by the ISOMAP algorithm and the residual variance corresponding to the first
dimension is given in the last column.

Parameters η P C Manifold dimension Residual dimension = 1

AP 0.005 0.98 ± 0.10 0.97 ± 0.01 1 0.0193
AP 0.05 0.96 ± 0.18 0.84 ± 0.03 6 0.3833
AP 0.5 0.40 ± 0.15 0.73 ± 0.04 >10 0.7216
SO 0.005 0.99 ± 0.07 0.99 ± 0.00 1 0.0143
SO 0.05 0.97 ± 0.09 0.97 ± 0.01 2 0.4906
SO 0.5 0.41 ± 0.15 0.73 ± 0.04 >10 0.7474
RW 0.005 0.13 ± 0.07 0.69 ± 0.02 >10 0.9932
RW 0.05 0.13 ± 0.07 0.69 ± 0.02 >10 0.9963
RW 0.5 0.14 ± 0.07 0.69 ± 0.02 >10 0.9949

expected. Similarly, the cohesion of simulations with different
parameter sets offers insight into varying complexity in the
system; see Fig. 4. Specifically, simulations with AP and SO
parameters show uniformly high cohesion in both low and
moderate noise conditions. The high noise condition instead
has markedly smaller values of cohesion, as is verified by the
statistics in Table I.

The emergence of collective behavior in simulations with
AP and SO parameters can be viewed in contrast with the lack
of order in simulations with RW parameters; see Fig. 5. As
measured by the polarization and cohesion, the random walker
simulations show no variations in complexity for different
values of η.

III. THE ISOMAP ALGORITHM

The ISOMAP algorithm is applied to a data set comprising
an array of n d-dimensional data points with the goal of
embedding them on a manifold, assessing the dimensionality
of such manifold, and perhaps finding its dimension to be
less than d. Specifically, for a data set Z = {zi}ni=1 ⊂ Rd ,
we construct a corresponding data set, Y = {yi}ni=1 ⊂ Rd̂ ,
appropriately embedded within an invariant manifold, and
assess if d̂ � d. In the following, we describe Z in the
variables of the ambient space Rd and Y in the intrinsic
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FIG. 3. (Color online) Polarization of simulation trajectories with
AP (top) and SO (bottom) parameters and η = 0.005, 0.05, and 0.5.
We display the first 100 time steps of the 10 000 time step simulations
in Fig. 1.

variables of the manifold, which is locally homeomorphic to
Rd̂ . We embed a point z ∈ Rd into intrinsic variables y of a
d̂-dimensional manifold by representing the manifold in terms
of a parametrization,

� : Y → Z, (8)

where

z = �(y) = [φ1(y1,y2, . . . ,yd̂ ), . . . ,φd (y1,y2, . . . ,yd̂ )] (9)

and yi, i = 1, . . . ,d̂ , are intrinsic variables that can be de-
scribed as directions to any point on the manifold relative to a
base point on the manifold.

The ISOMAP algorithm is a manifold learning algorithm
that builds classical multidimensional scaling method (MDS)
[48] by using approximations of geodesic distances. Rather
than directly applying MDS to the ambient Euclidean space,
ISOMAP uses shortest paths along a discrete graph approxi-
mation of the manifold. There are several steps that are needed
to develop the ISOMAP embedding, that is, to represent
the parameters Y in Eq. (9); see the tutorial in [44]. For
convenience, we concatenate such parameters into a matrix
Y ∈ Rn×d̂ below.

(i) Build a neighbors graph to approximate the embedding
manifold. A graph G = (V,E) consists of the set of vertices

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

 

 

η=0.005 η=0.05 η=0.5

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Time

FIG. 4. (Color online) Cohesion of simulation trajectories with
AP (top) and SO (bottom) parameters and η = 0.005, 0.05, and 0.5.
We display the first 100 time steps of the 10 000 time step simulations
in Fig. 1.
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FIG. 5. (Color online) Polarization (top) and cohesion (bottom)
of simulation trajectories with RW parameters and η = 0.005, 0.05,
and 0.5. We display the first 100 time steps of the 10 000 time step
simulations in Fig. 2.

V = {vi}ni=1 which we assign to match the data points, Z =
{zi}ni=1 and the set of edges E that has elements which are
unordered pairs of vertices present in the graph. We assign
edges to connect vertices which are either ε neighbors or ν-
nearest neighbors. To build a ν-nearest-neighbors graph, we
construct the graph consisting of edges {vi,vj } corresponding
to the ν-closest data points zj ’s to zi , for each i, with respect
to the Euclidean distance in the ambient space, which we
denote dZ(zi,zj ). We let Mn ∈ Rn×n be a matrix encoding the
weighted graph of intrinsic manifold distances corresponding
to the graph G, whose ij th entry is denoted Mn(i,j ). For each
edge {vi,vj } ∈ E , we define the distances Mn(i,j ) ≈ dZ(zi,zj ),
and for all {vi,vj } /∈ E , we associate Mn(i,j ) = ∞ to prevent
jumps between branches of the underlying manifold.

(ii) Compute geodesics of the graph to approximate
geodesics of the manifold. There are popular methods to
compute shortest paths of the graph, including Floyd’s al-
gorithm for small to medium sized data sets [49] or Dijkstra’s
algorithms for small to large data sets [50]. Using Mn, we
compute an approximate geodesic distance matrix DM ∈
Rn×n, whose ij th element consists of the shortest weighted
path length between each vi to vj , thus approximating manifold
geodesic distances.

(iii) Approximate manifold distance by ν-nearest-neighbor
distance. The distance matrix DM from the previous step
is taken to approximate the true geodesic distances of the
manifold between zi and zj by the distance between vi and
vj . This approximation improves as data density increases. If
ν is chosen too large or data density is too low, then some
neighbors may reside on separate branches of the manifold. In
such cases, the approximation is poor due to “illegal” shortcuts
and a poor representation of the manifold.

(iv) Perform an MDS on DM . MDS requires only the matrix
DM in manifold distances as input, which is computed from
the input data Z to form projective variables Y in the intrinsic
variables.

For completeness, we review the classical MDS algorithm
presented in [48]. Given DM , which approximates in manifold
geodesic distances for our purposes, the goal is to form a
matrix of projected d-dimensional data Y to minimize the
residual error defined

E = ‖τ (DM ) − τ (DY )‖L2 . (10)

Here, for A ∈ Rn×n, ‖A‖L2 ≡
√∑n

i=1

∑n
j=1 A(i,j )2 is the

Holder matrix two-norm, see for example [51], τ (A) is a
matrix-valued centered distance function, and the ij th entry
of the matrix DY describes the geodesic distance between yi

and yj in the projective space of intrinsic variables. In other
words, the matrix Y is the result of an optimization problem.
The central distance function when applied to DM is defined
by (see [48])

τ (DM ) = − 1
2HD2

MH, (11)

where H is a centering matrix

H = In − 1

n
1n1T

n, (12)

1n is the n-dimensional column vector of all ones, In is the n-
dimensional identity matrix, and superscript T denotes matrix
transposition. Upon replacing the definition of central distance
function in Eq. (11) into the error in Eq. (10), we find that

min
Y∈Rn×d̂

‖τ (DM ) − τ (DY )‖L2

= min
Y∈Rn×d̂

∥∥ − 1
2H

(
D2

M − D2
Y

)
H

∥∥
L2

= min
Y∈Rn×d̂

‖Z̃TZ̃ − Y TY‖2
L2

= min
Y∈Rn×d̂

[trace(Z̃Z̃T − YY T)]2. (13)

The latter equalities follow from the theorem in [48] that yields
that, for any selection of the matrix DM , there exist a matrix
Z̃ ∈ Rn×d

τ (DM ) = Z̃TZ̃, (14)

and likewise for τ (DY ). The matrix Z̃ can be understood as
centered in such a way that pairwise Euclidean distances are
DM .

A key advantage of the MDS algorithm over the more
common proper orthogonal decomposition algorithm is that
all matrix manipulations to compute an output Y require only
the centered distance matrix τ (DM ), which represents geodesic
distances on the manifold. Therefore, Z̃ is allowed to be in the
manifold appropriate to the geodesic distances DM and Z̃ is
thus distinguished from the original input data Z.

Since τ (DM ) is symmetric and positive semidefinite, the
computation of MDS uses the spectral decomposition,

τ (DM ) = V �V T, (15)

where � ∈ Rn×n is the diagonal matrix composed of the
eigenvalues of DM from the set {λi}ni=1, and V ∈ Rn×n is the
orthogonal matrix whose columns are eigenvectors and

V TV = In and τ (DM )V = �V. (16)

Comparing representations for τ (DM ), Eqs. (11) and (14), to
the spectral decomposition Eq. (15) yields

Z̃ = �
1
2 V T, (17)

where the square matrix of non-negative eigenvalues has a
simple square root � = diag(

√
λi). The MDS solution is then

Y ≡ YMDS = �
1
2
p V T

p , (18)
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where �
1
2
p and Vp use the top p (significant) eigenvalues and

eigenvectors of τ (DM ).
MDS forms the rank-p projection that optimizes the dissim-

ilarity in terms of the intrapoint distances, similarly to principle
component analysis (PCA). Specifically, the variables of the
corresponding projections relate according to

YPCA = �
1
2
PCAYMDS, (19)

where �MDS = �PCA = �p used in Eq. (18). Also, there is a
relationship of the basis vectors,

VPCA = Z̃VMDS, (20)

where similarly VMDS = Vp from Eq. (18). The two algorithms
yield essentially the same result when the distance matrix is
the Euclidean distance, but since we take DM to be discretely
approximated in manifold distance in ISOMAP, the results are
different, as are the steps of computation. The most important
difference in the algorithmic steps between MDS and PCA
is that MDS does not explicitly use Z in its computations.
Since variables to be found are in some unknown nonlinear
manifold, this is a prudent dependency to avoid.

The outputs of MDS, and therefore the ISOMAP algorithm,
are an embedding manifold for the data set and residual
variances quantifying the proportion of data points which do
not lie on such manifold. The density of data points in the
embedding manifold illustrates whether the size of the data
set is sufficient to ascertain low dimensionality with respect
to ν and the residual variances are the percentages of data
points which are not captured by an embedding manifold of a
given dimension. To retrospectively assess whether the data set
is sufficiently dense to perform the ISOMAP algorithm with
ν-nearest neighbors, we examine the embedding manifolds and
ensure that no degenerate low-dimensional structures resulting
from paucity of data or improper selection of ν exist. The
overall procedure is synoptically illustrated in Fig. 6.

To identify the dimensionality of an embedding manifold
which well approximates a data set, we seek an “elbow” in
the curve of residual variances, after which residual variances
do not significantly decrease. The dimension corresponding to
such an elbow gives the reduced dimensionality of the data set
uncovered by the ISOMAP algorithm.

IV. RESULTS

For simulations with AP, SO, and RW parameters, we
acquire the two-dimensional positions of the agents and
implement the ISOMAP algorithm on their distribution in a
discretized spatial domain, where the domain [−L/2,L/2] ×
[−L/2,L/2] is partitioned into a square two-dimensional
grid of 50 × 50 cells. Analogous to an image on a screen
which encompasses multiple pixels, we enlarge the position
of each agent to include 5 cells in both directions so that
each agent resides in an 5 × 5 moving square. This strategy
is employed to discretize the distances between data points
and thus restrict the number of vertices in the graph calculated
by the ISOMAP algorithm. At every time step, the entries of
the 1 × 2500 position distribution vector report the number of
agents residing in a given cell.

FIG. 6. Illustration of the main steps for implementation of the
ISOMAP algorithm.

The ISOMAP algorithm from [46] is executed on the time
trace of this vector by using the number of nearest neighbors
ν = 11 and the number of time steps τ = 10000, correspond-
ing to the whole simulation duration. The algorithm is imple-
mented on the raw data without requiring knowledge about the
number of agents, the interaction rules, the domain size, and
the boundary conditions. The value of ν is selected based on
the expectation of a low-dimensional embedding manifold and
the parameter value of τ is large enough so that artificial low-
dimensional manifolds based on paucity of data are excluded.
For nearly noiseless particles, that is η ∼ 0, many nearly
identical data points may recur within the data set which con-
founds nearest-neighbor selection in the ISOMAP algorithm;
we select the low noise η = 0.005 to prevent this scenario.

The two-dimensional embedding manifolds generated by
the ISOMAP algorithm from model data using AP and
SO parameters and the three considered values for η are
given in Fig. 7. From the density of these two-dimensional
manifolds, we conclude that the size of the data set is
sufficient to perform the ISOMAP algorithm. We notice that
the manifolds, scaled between −1 and 1 in each case, cover
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FIG. 7. (Color online) Downsampled two-dimensional embed-
ding manifolds for model with AP and SO parameters and η = 0.005,
0.05, and 0.5. Simulations are those which are shown truncated in
Fig. 1, here sampled at every other time step, and thus use the same
model parameters.

a higher proportion of the domain as noise in the model
increases. Continuing this trend, the embedding manifolds
from simulations using RW parameters cover the domain
comparably to those corresponding to AP and SO simulations
with high noise; see Fig. 8.

The process of deciding on an appropriate embedding
dimension for the algorithm involves testing progressively
higher-dimensional embedding manifolds. Figure 9 presents
the residual variances varying with increasing embedding
manifold dimensionality and scaled according the residual
variance at dimensions one; numerical results from this
analysis are reported in Table I. We select a decrease of
the residual variance to less than 0.05 as the location of
the elbow. Thus the dimensionality of the AP embedding
manifolds is approximately equal to 1 for low noise, 6 for
moderate noise, and greater than 10 for high noise. For the SO
case, the residual variances yield embedding manifolds with
dimensionality of 1 for low and 2 for moderate noise values and
greater than 10 for high noise. In addition, as noise increases,
both of these parameter cases exhibit a dramatic increase in the
residual variance corresponding to dimension one. In contrast,
simulations with RW parameters exhibit a lack of elbows in
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FIG. 8. (Color online) Downsampled two-dimensional embed-
ding manifolds for model with RW parameters and η = 0.005, 0.05,
and 0.5. Simulations are those which are shown truncated in Fig. 2,
here sampled at every other time step, and thus use the same model
parameters.
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FIG. 9. (Color online) Scaled residual variances for model
with AP, SO, and RW parameters and η = 0.005, 0.05, and 0.5.
Residual variances are scaled with respect to those corresponding to
dimension one.

residual variance curves and large magnitude of the residual
variances corresponding to dimension one for all values of η.

V. DISCUSSION

Based on the presented results, the ISOMAP algorithm is
able to identify complexity inherent in multiagent systems
exhibiting collective behavior. Using traditional measures
of order based on polarization and cohesion of agents, we
corroborate the intuitive notion that increasing random noise
in a system increases its complexity. This trend is evident
in simulations using both AP and SO parameters, which
suggests that the noise acts uniformly on the interacting-
particle model independent of other protocol parameters. In
turn, the ISOMAP algorithm differentiates these cases by re-
porting higher-dimensional embedding manifolds for data sets
corresponding to simulations with higher noise. We comment
that the order parameters of cohesion and polarization are
informed by observations of the group behavior, that is, from
a priori knowledge of the nature of the emergent behavior.
In contrast, the approach proposed in this work, based on
machine learning tools, prescinds from any knowledge of the
underlying phenomena by using only raw data as input.

Moreover, the ISOMAP algorithm easily distinguishes be-
tween simulations with interacting and noninteracting agents,
as can be seen comparing simulations with RW parameters
to AP and SO parameters. When the agents are random
walkers, no emergent behaviors result from their interaction,
as evidenced by the uniformly low values for polarization
and cohesion. Indeed, this disorder is corroborated by the
high residual variances corresponding to dimension one and
embedding manifold dimensionalities given by the ISOMAP
algorithm in these cases.

The ISOMAP algorithm suggests higher-dimensional
embedding manifolds for data pertaining to AP rather than
SO parameters. This hints at different levels of complexity
in these collective behaviors as a result of the interplay of
noisy consensus dynamics, exogenous stimuli, and boundary
effects. Notably, such differences in dimensionality cannot be
discerned from simple inspection of the truncated trajectories
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1s 2s

3s 4s

FIG. 10. (Color online) Images of fish schooling experiment.
Sample frames of a 52 s movie of a fish school making a circuit
of the aquarium.

in Fig. 1 nor from the mean values of polarization and
cohesion in Table I. However, such qualitative differences are
uncovered by a systematic application of the dimensionality
reduction algorithm.

We note that the reflective boundary conditions, in contrast
to the periodic boundaries in [32], hinder the persistence
of agents’ alignment and thus may act as an additional
detriment to low-dimensional structures. Hallmarks of this
boundary condition are the periodic dips in polarization in
Fig. 3, which correspond to the group of agents impacting
the boundary and reorienting their headings identically and
almost simultaneously. Such coordinated reorientations are
absent in the high noise conditions since agents fail to move
as a cohesive unit and thus do not simultaneously encounter
the boundary. If reflective boundary conditions were removed
in favor of periodic ones, intuition would suggest that the
agents’ motion would be well described by a one-dimensional
manifold for a larger range of noise.

To demonstrate the potential impact of this definition of
complexity with experimental animal groups, we execute the
ISOMAP algorithm on image data of a school of live minnows
swimming in synchrony. Snapshots of the fish school used for
this analysis are presented in Fig. 10. The movie in [52] records
a several-hundred-member fish school moving across the tank
approximately five times in 50 s. We apply the ISOMAP
algorithm to 480 × 640 pixel values in the range 1 to 256 for
the gray scale image at each of the 1580 frames using ν = 11
and Fig. 11 displays the results. The resulting two-dimensional
embedding manifold appears dense, thus suggesting enough
data to validate the residual variances computed by the
ISOMAP algorithm. In fact, the scaled residual variances
in the left panel in Fig. 11 show remarkable similarity with
those from the moderate noise model with AP parameters in
Fig. 9, whose agents execute similar maneuvers to the live
fish school. This finding confirms the proposed data-driven
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FIG. 11. (Color online) Data from fish schooling experiment.
Scaled residual variances (left) and two-dimensional embedding
manifold (right) for movie frame data. The residual variances are
scaled with respect to that corresponding to dimension one, which
equals 0.5894. The movie was filmed at 30 frames/s for 1580 frames
and frame size is 480 × 640 pixels.

working definition of collective behavior as the manifestation
of a low-dimensional manifold underlying what an untrained
individual would classify as fish schooling. By using the hard
threshold of 0.05 for the drop in the residual variance, we
find that the embedding manifold dimension is greater than
10. Nevertheless, the considerable reduction to approximately
0.07 for a dimensionality of 6 and the finite size of the data set
suggests the existence of a lower-dimensional embedding.

In conclusion, we have introduced a working definition
of collective behavior based on dimensionality reduction of
large-scale data sets. This definition has been tested against
traditional measures of collective behavior on numerical simu-
lations whose parameters are selected to represent six different
modalities of interaction. Using the ISOMAP algorithm, we
have identified fundamental differences in the embedding
manifolds of these data sets compared to one another and
to the trivial model in which all interactions among agents are
absent, which supports the proposed definition of collective
behavior. This method has then been tested on image data
from a live school, where we have found low-dimensional
structures similar to those observed in the numerical study.
Future work will include applying the ISOMAP algorithm to
larger experimental data sets on animal groups exhibiting a
variety of different behaviors identified by a human observer.
Based on the preservation of geodesics by the ISOMAP
algorithm and this work, we expect such analysis to uncover
the few fundamental parameters which dictate such typical
behaviors.
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