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Time-varying linear and nonlinear parametric model for Granger causality analysis
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Statistical measures such as coherence, mutual information, or correlation are usually applied to evaluate
the interactions between two or more signals. However, these methods cannot distinguish directions of flow
between two signals. The capability to detect causalities is highly desirable for understanding the cooperative
nature of complex systems. The main objective of this work is to present a linear and nonlinear time-varying
parametric modeling and identification approach that can be used to detect Granger causality, which may change
with time and may not be detected by traditional methods. A numerical example, in which the exact causal
influences relationships, is presented to illustrate the performance of the method for time-varying Granger
causality detection. The approach is applied to EEG signals to track and detect hidden potential causalities. One
advantage of the proposed model, compared with traditional Granger causality, is that the results are easier to
interpret and yield additional insights into the transient directed dynamical Granger causality interactions.
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I. INTRODUCTION

In cognitive neuroscience, as in many other science and
engineering research fields, the investigation of EEG data is
usually carried out by some measures of correlation, coher-
ence, and mutual information [1]. These measures, however,
provide no insight into the directionality of information
flow. A question of great interest is whether there exist
causal relations among a set of measured variables. Several
recent works based on vector autoregressive (VAR) models
have begun to consider this problem [2]. Causal relations
between different components of a multidimensional signal
can be analyzed in the context of multivariate autoregressive
modeling. The most popular approach to deal with the
causal relations is the Granger causality [3]. The major
approach to causality examines whether the prediction of
one series could be improved by incorporating information
from the other, as discussed by Granger. In particular, if
the prediction error of the signal X is reduced by including
measurements from the signal Y in the regressor model, then
the signal Y is said to have a causal influence on the signal
X. Granger causality was originally investigated for linear
systems. Recently, this concept was extended to nonlinear
cases. The application of Granger causality to neuroscience
data has been applied to functional magnetic resonance
imaging (f MRI) [4], Electroencephalography (EEG) [5,6],
and Magnetoencephalography (MEG) experiments [7].

Linear time-varying causality was previously investigated
on scalp EEG [5]. Hesse et al. [5] studied the linear recursive
time-variant estimation of the Granger causality based on
the adaptive recursive fit of a VAR model with time-varying
parameters by means of the recursive least-squares (RLS)
algorithm, where the assumption of stationarity of the signals
can be removed. Recently, the Granger causality definition was
extended to nonlinear bivariate time series [8,9]. Gourevitch
et al. [10] have evaluated the measures of Granger causality
on some linear and nonlinear models, and they have also
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investigated some of the properties and drawbacks for linear
and nonlinear Granger causality.

All traditional Granger causality detection methods are
based on the time-invariant linear autoregressive with ex-
ogenous inputs (ARX) models or time-invariant nonlinear
models. It follows that standard linear VAR models may not
always be able to capture the dynamic behavior of many
nonstationary time series. To the best of our knowledge, results
on time-varying nonlinear Granger causality analysis have
seldom been reported in the literature. In this paper, we will
introduce a nonlinear method that can be used to detect and
track nonlinear dynamical Granger causalities. To illustrate
the performance of the method, two examples are presented:
one for artificial data where the exact causal effect feature
is known, and another for real EEG data where the hidden
causality feature is revealed by the proposed method.

II. METHOD

A. Time-varying linear Granger causality

Granger causality is a fundamental tool for the description
of causal interactions of two time series. We detail the bivariate
case of the Granger causality in this paper.

1. Time-invariant Granger causality

Let X and Y be two signals whose time observations are
denoted x (t) and y (t) , with t = 1,2, . . . ,N. In order to show
the improvement of the prediction of one signal by taking
into consideration the past of the second signal, the univariate
autoregressive (AR) and bivariate ARX models are fitted to
the signals, respectively. If the temporal dynamics of x (t) and
y (t) are suitably represented by a time-varying univariate AR
model of order p, we can obtain

x (t) =
p∑

i=1

a1,ix (t − i) + u1 (t) , (1)

y (t) =
p∑

i=1

b1,iy (t − i) + u2 (t) , (2)

041906-11539-3755/2012/85(4)/041906(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.041906


LI, WEI, BILLINGS, AND LIAO PHYSICAL REVIEW E 85, 041906 (2012)

where the prediction error for a signal depends only on the
past of its own signal. The time- varying bivariate ARX(p,q)
model is represented by

x (t) =
p∑

i=1

a2,ix (t − i) +
q∑

k=1

c2,ky (t − k) + v1 (t) , (3)

y (t) =
p∑

i=1

b2,iy (t − i) +
q∑

k=1

d2,kx (t − k) + v2 (t) , (4)

where the prediction errors v1 and v2 depend on the past of the
signal itself and additionally on the past of the second signal.
The coefficients in the model (1)–(4) are generally estimated
by solving Yule-Walker equations [11], which require the
stationarity of the signals and result in the time-invariant VAR
model analyzed over the course of time.

Let us begin with the bivariate case of causality X → Y.

The reciprocal case is similar. The accuracy of the prediction
in model (1) and (2) may be evaluated by the unbiased variance
of the prediction errors

∑
y|y− , where y− symbolizes y past

∑
y|y− = 1

N − p

N∑
t=1

u2
2 (t) = RRSS

y|y−

N − p
= var (u2) , (5)

where RRSS
y|y− is the residual sum of squares (RSS) in the model

(2). For the bivariate model (3) and (4), we can obtain

∑
y|y−,x− = 1

N − p − q

N∑
t=1

v2
2 (t) = RRSS

y|y−,x−

N − p − q
= var (v2) .

(6)

If the signal X causes the signal Y in the Granger sense,
the variance of the prediction error

∑
y|y−,x− must be smaller

than the prediction error
∑

y|y− . The linear Granger causality
(LGC) X → Y is then defined by [10]

CLGC
x→y = ln

∑
y|y−∑

y|y−,x−
. (7)

Correspondingly, the LGC of Y → X is evaluated by

CLGC
y→x = ln

∑
x|x−∑

x|x−,y−
. (8)

Generally, the most important property of the Granger
causality is the positivity, when a signal X causes a second
signal Y . Equations (7) and (8) represent a simple measure for
the strength of directional interaction.

2. Time-varying causality measure

The time-varying fit of a VAR model is required to detect
the transient directed interactions. Ding et al. [12] investigated
a VAR model fitting algorithm to obtain the time-varying
Granger causality, which requires us to assume that the signals
to be studied are stationary within a short-time window, and
the changes from one window to another are smooth. There
is a limitation in the effectiveness for this approach. First, if
the processes are varying rapidly, a process assumed to be
stationary may be too small to allow for sufficient accuracy in

the estimation of the relevant parameters over the window.
Second, this approach would not easily accommodate the
step changes with the analysis intervals. Third, this solution
imposes an incorrect model on the observal data, that is,
piecewise stationary. Therefore, an adaptive recursive fit of a
VAR model with time-dependent parameters by means of some
adaptive filtering procedures such as recursive-least-squares
(RLS), least-mean-squares (LMS), and Kalman filtering algo-
rithms is proposed to capture the transient Granger causality.
The time-varing VAR model fitting can yield time-varying
autoregressive parameters. Consequently, by contrast with the
model (1)–(4), the time-varying VAR models are represented
by

x (t) =
p∑

i=1

a1,i (t)x (t − i) + u1 (t) , (9)

y (t) =
p∑

i=1

b1,i (t)y (t − i) + u2 (t) , (10)

and

x (t) =
p∑

i=1

a2,i (t)x (t − i) +
q∑

k=1

c2,k (t) y (t − k) + v1 (t) ,

(11)

y (t) =
p∑

i=1

b2,i (t)y (t − i) +
q∑

k=1

d2,k (t) x (t − k) + v2 (t) .

(12)

The time-varying fit of VAR models yields the time-varying
variance of the prediction error. A general recursive variance
computational formula can be defined by

σ 2 (t + 1) = (1 − c) σ 2 (t) + c�2 (t) , (13)

where the constant lies at 0 < c < 1, and � (t) is one
of u1 (t) , u2 (t) , v1 (t) , and v2 (t) , which represent the
time-varying variances of the correspondent prediction errors∑

x|x− (t) ,
∑

y|y− (t) ,
∑

x|x−,y− (t) , and
∑

y|y−,x− (t) .

Therefore, the representation of time-varying LGC is then
evaluated by [10]

CLGC
x→y (t) = ln

∑
y|y− (t)∑

y|y−,x− (t)
, (14)

CLGC
y→x (t) = ln

∑
x|x− (t)∑

x|x−,y− (t)
. (15)

The calculation of the time-varying Granger causalities
in Eqs. (14) and (15) is analogous to Eqs. (7) and (8). The
time-varying strength of interaction may be quantified by the
maximum at each time point from Eqs. (14) and (15).

B. Time-varying nonlinear Granger causality

In this subsection, our main purpose is to find the general
VAR model suitable to evaluate Granger causality, thus
extending the radial basis functions (RBFs) model results
discussed in Ref. [9].
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1. NARX model

The identification problem of a nonlinear dynamical system
is based on the observed input-output data {x (t) ,y (t)}Nt=1,
where x (t) and y (t) are the observations of the system input
and output, respectively [13]. This study considers a class of
discrete stochastic nonlinear systems which can be represented
by the following nonlinear autoregressive with exogenous
inputs (NARX) structure [14–17]:

y(t) = f (y(t − 1), . . . ,y(t − ny),x(t − 1), . . . ,

× x(t − nx),θ ) + e(t), (16)

where f (·) is the unknown system mapping; x (t), y (t) ,

and e (t) are the system input and output variables and the
prediction error, respectively; nx and ny are the maximum
input and output lags, respectively; and the observation noise
e (t) is an uncorrelated zero mean noise sequence providing
that the function f (·) gives a sufficient description of the
system. If the function f (·) is specified as a polynomial
function, model (16) can then be represented by

y (t) = f [ϕ (t)] + e (t) , (17)

where ϕ(t) = [y(t − 1), . . . ,y(t − ny),x(t − 1), . . . ,
x(t − nx)]T is the process regressor vector. The polynomial
NARX model is a special case of the polynomial NARMAX
model [18,19]. The nonlinear mapping f (·) of Eq. (17) can
be constructed using a class of local or global basis functions
including RBFs, kernel functions, neural networks, wavelets,
and different types of polynomials [18–26].

The polynomial bivariate model representation of NARX
is represented by a compact matrix,

y (t) =
M∑

m=1

αm�m (t) + e2 (t) , (18)

where �m (t) = �m [ϕ (t)] are model terms
generated from the regressor vector ϕ(t) =
[y(t − 1), . . . ,y(t − ny),x(t − 1), . . . ,x(t − nx)]T , αm

are unknown parameters, and M is the total number of
potential model terms. Note that the candidate model
terms �m (t) are of the form x

i1
1 (t), . . . ,xid

d , where d

refers to the nonlinear degree of the NARX model (18),
x

ik
k (t) ∈ {y(t − 1), . . . ,y(t − ny),x(t − 1), . . . ,x(t − nx)},

for k = 1, . . . ,d, 0 � ik � d, and 0 � i1 + · · · + id � d. The
maximum lag of the polynomial model (17) is determined by
ny and nx . The number of possible terms could be very large,
and the number of polynomial terms (number of parameters)

is np = (ny+nx+d)!

(ny+nx)!d!
, for example, if ny = 5, nx = 5 and d = 4,

np = 1001. As to the nonlinear degree determination issue,
the experience of practical modeling and identification has
shown that, if the lower degree of the nonlinear degree, for
example d = 1 for maximum lag ny and nx , is insufficient
to represent the original system, then a series of polynomial
models with a higher degree should be fitted to give a
sufficient description of the data set. In particular, if the
nonlinear degree d of the NARX model (18) is reduced to 1,
the NARX model will be simplified to the linear ARX model
described in Eqs. (1) and (2).

The corresponding polynomial univariate NAR model can
also be expressed by

y (t) =
M0∑

m=1

βm	m (t) + e1 (t) , (19)

where 	m (t) = 	m [ϕ∗ (t)] are model terms generated from
the regressor vector ϕ∗ (t) = [y(t − 1),. . . ,y(t − ny)]T , βm

are unknown parameters, and M0 is the total number of
potential model terms.

The prediction error of the bivariate NARX model (18) (we
assume M � ny + nx) can be expressed by

∑
y|y−,x− = 1

M

M∑
m=1

[y (t) − αm�m (t)]2. (20)

We can also consider the univariate NAR model (19) and obtain
the corresponding prediction error

∑
y|y− = 1

M0

M0∑
m=1

[y (t) − βm	m (t)]2. (21)

If the prediction of y improves by incorporating the past
value of x, i.e.,

∑
y|y−,x− is smaller than

∑
y|y− , then x is said

to have a causal influence on y.
Modeling experience has shown that in most cases, the

initial full regression Eq. (18) might be highly redundant.
Some of the regressors or model terms can be removed from the
initial regression equation without any effect on the predictive
capability of the model, and this elimination of the redundant
regressors usually improves the model performance [27]. The
ordinary least-squares algorithm may fail to produce reliable
parametric estimate results for such ill-posed problems. For
most nonlinear dynamical system identification problems,
only a relatively small number of model terms are commonly
required in the regression model. Thus an efficient model term
selection algorithm is highly desirable to detect and select the
most significant regressors.

2. Model structure identification

The well-known orthogonal-least-squares (OLS) type of
algorithms [16,17,19,20,23,24,27–30] have proven to be very
effective to solve multiple dynamical regression problems,
where a great number of candidate model terms or regres-
sors that may be highly correlated include the regressor
model. In the present study, the OLS algorithm discussed in
Ref. [23] is applied to deal with the regression model (18). This
involves a model refinement procedure including the selection
of significant regressor or model terms.

3. Time-varying nonlinear model and parameter estimation

The time-varying (TV) VAR model fitting for the bivariate
NARX and the univariate NAR model yields time-varying
autoregressive parameters. Consequently, after a model
refinement procedure, Eqs. (18) and (19) are modified as
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follows:

y (t) =
M∗∑
m=1

α∗
m (t) �∗

m (t) + e∗
2 (t) for the TVNARX model,

(22)

y (t) =
M∗

0∑
m=1

β∗
m (t) 	∗

m (t) + e∗
1 (t) for the TVNAR model,

(23)

where M∗, M∗
0 are the total number of selections of significant

regressors for the bivariate NARX and the univariate NAR
model, respectively, (M∗,M∗

0 � M), α∗ and β∗ are time-
varying parameters, �∗ and 	∗ are new model terms selected
from the regressors vector ϕ (t) and ϕ (t)∗ , and e∗

2 and e∗
1 are the

time-varying model prediction error, respectively. An online
RLS algorithm is then applied to estimate the time-varying
model parameters. But other online methods, for example a
Kalman filtering algorithm, can also be employed to estimate
the unknown time-varying parameters. While the tracking
ability of RLS is achieved by performing a forgetting factor
operation on the information matrix, the tracking capability
of Kalman filtering is obtained by adding a non-negative
definite matrix to the covariance matrix. The main reason
for employing RLS in the present study is mainly its simple
calculation and good convergence properties.

4. Time-varying nonlinear Granger causality measure

Similar to the definition of linear Granger causality, let us
begin with the bivariate case of causality x → y. For model
(18) and (19), the unbiased variance may be evaluated by
the variance of prediction error described in Eqs. (20) and
(21). The time-varying estimation of the VAR model (22) and
(23) leads to time-varying prediction error. A general time-
varying recursive variance computation is given in Eq. (13).
If x causes y in the Granger causality sense,

∑
y|y−,x− must

then be smaller than
∑

y|y− . Therefore, for the time-varying
model (22) and (23), the calculation of time-varying nonlinear
Granger causality can be evaluated by

CNGC
x→y (t) = ln

∑
y|y− (t)∑

y|y−,x− (t)
, (24)

where
∑

y|y−,x− (t) and
∑

y|y− (t) are the time-varying vari-
ance of the corresponding prediction error for the model (22)
and (23), respectively. Exchanging the two time series, one
may analogously study the time-varying nonlinear Granger
causality influence of y on x. It is worth stressing that, within
the definition of causality, for the time-series data the directed
flow of time plays a key role in making inferences, depending
on the direction. Note that Granger causality was initially
formulated for linear models, which may not be suitable for
causality evaluation for nonlinear time series. Ancona et al. [8]
and Marinazzo et al. [9] extended the definition of Granger
causality to nonlinear bivariate time series, and proposed that
any prediction scheme providing a nonlinear extension of
Granger causality should satisfy the following property: if the
time series {x (t)}Nt=1 is statistically independent of {y (t)}Nt=1,
then

∑
y|y−,x− = ∑

y|y− ; if {y}Nt=1 is statistically independent
{x (t)}Nt=1, then

∑
x|x−,y− = ∑

x|x− . The property holds at
least for M → ∞. The polynomial NARX structure model
is the largest class of nonlinear parametric models suitable to
evaluate causality. Ancona et al. [8] introduced the nonlinear
parametric model to evaluate the causality based on a class of
RBF model as a special case of the polynomial NARX structure
model. It should also be noted that time-varying linear Granger
causality is a special case of the time-varying NARX model
to evaluate the Granger causality where the nonlinear degree
d in the NARX model is equal to 1.

C. Choice of the model order

As to the model order determination issue, this can be
solved by using some model order determination criterion
such as the Akaike information criterion (AIC), the Bayesian
information criterion (BIC) [31], the minimum description
length (MDL) principle [32], the generalized cross-validation
(GCV) criterion [23,30], or the visual fitting quality of the
model [33].

III. SIMULATION EXAMPLE

In this section, we consider a simulation example that
shows the ability of the time-varying Granger causality to
react to changes in the directed influences between two signals.
Consider the following time-varying ARX (2, 2) model:

y (t) = b2,1 (t) y (t − 1) + b2,2 (t) y (t − 2) + d2,1 (t) x (t − 1) + d2,2 (t) x (t − 2) + v2 (t) ,

x (t) = a2,1 (t) x (t − 1) + a2,2 (t) x (t − 2) + c2,1 (t) y (t − 1) + c2,2 (t) y (t − 2) + v1 (t) , (25)

where

a2,1 (t) =
{−0.6, 1 � t < 400,

0.3, 400 � t � 1000,
b2,1 (t) =

{
0.3, 1 � t < 400,

−0.6, 400 � t � 1000,

a2,2 (t) = 0.1, 1 � t � 1000, b2,2 (t) = 0.1, 1 � t � 1000,

c2,1 (t) =
{

0.2, 1 � t � 300,

0, 300 < t � 1000,
d2,1 (t) =

{
0, 1 � t < 700,

0.2, 700 � t � 1000,

c2,2 (t) =
{

0.1, 1 � t � 300,

0, 300 < t � 1000,
d2,2 (t) =

{
0, 1 � t < 700,

0.1, 700 � t � 1000,
(26)
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and v1, v2 are Gaussian white noise processes with zero means and variances

var (v1) =
{

0.9, 1 � t < 600,

2.0, 600 � t � 1000,
var (v2) =

{
2.0, 1 � t < 600,

0.9, 600 � t � 1000,
(27)

respectively. From the construction of the model, we can see,
for the first 300 sample points, that signal y causes signal x

and, beginning with the sample point 700, signal x causes
signal y. From sample point 301 up to sample point 699, there
is no dependence between the two signals x and y. The results
of time-varying Granger causalities are shown in Fig. 1.

From the Fig. 1, the time-limited influence of x → y

beginning with the sample index point 700 is detected by
the positivity of CLGC

x→y (t) [thick blue (upper) curve]. The
time-limited influence of y → x for the first 300 sample
index points is identified by the positivity of CLGC

y→x (t) [black
(lower) curve]. Obviously both Granger causalities are nearly
zero within the time interval (300 < t < 700) without any
dependence between the two signal components. Moreover,
time-varying Granger causalities vary around the estimation
of the corresponding time-invariant Granger causality (for
example, thin black and blue curves) within the stationary time
intervals 0 < t � 300 and 700 � t � 1000. In this simulation
example, the time behavior of time-varying Granger causality
demonstrates the ability to react to changes in directed
dependencies between two signals.

IV. APPLICATION TO THE REAL EEG SIGNAL

A number of studies in the neuroscience literature have
investigated examples of the issue of causal effects in neural
data [5,7,9,12,33]. In this example, we analyze a data set
consisting of an epileptic sample of scalp EEGs recorded by a
clinician at the EEG Laboratory of Neurophysiology, Sheffield
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FIG. 1. (Color online) Time-varying Granger causalities CLGC
x→y(t)

[thick blue (upper) curve] and CLGC
y→x(t) [black (lower) curve] from

model (25) with time-varying parameters given in Eq. (26) are
shown above. The thin blue and black step functions show that the
corresponding estimated time-invariant Granger causalities are CLGC

x→y

and CLGC
y→x .

Teaching Hospitals NHS Foundation Trust, Royal Hallamshire
Hospital.

A. Data acquisition

Scalp EEG signals are synchronous discharges from cere-
bral neurons detected by electrodes attached to the scalp. The
EEG signals analyzed here were recorded by the same 32-
channel amplifier system. A NeuroScan Medical System (Neu-
roSoft Inc., Sterling, VA) with the international 10-20 electrode
coupling system (Rechtschaffen & Kales 1968) was used. The
sampling rate of the device was 250 Hz. An important issue in
EEG data acquisition is the problem of the reference electrode.
There are several ways to define a reference electrode in scalp
EEG recordings, as described in Ref. [34]. However, not every
type is suitable for the Granger causality analysis. For example,
the “common average” reference involves all the channels as
reference, and mixes signals from all of them. Generally, all
operations where part of the signal from one channel appears
in another channel will lead to a spurious connection. In the
present case study, the “bipolar montage” reference was used.
As an example, two bipolar montage channels “C3-T3” and
“C4-T4” of EEG recorded from a patient with absence seizure
epileptic discharge are investigated in this study, where channel
“C3-T3” represents the voltage difference between C3 and T3,
and channel “C4-T4” means the voltage difference between
C4 and T4, respectively. The EEG signals between bipolar
electrode channel “C3-T3” and channel “C4-T4” of 5000 data
point pairs of one seizure, shown in Fig. 2, which are for a sort
of epileptic seizure activity of a patient with a sampling rate of
250 Hz recording during 20 s, were obtained for time-varying
Granger causality analysis. Based upon the advice of our

0 5 10 15 20
−1500

−1000

−500

0

C
4* (u

V
)

Time(s)

0 5 10 15 20
−500

0

500

1000

C
3* (u

V
)

FIG. 2. (Color online) The EEG signals, for a sort of seizure
activity of an epileptic patient, recorded during 20 s, with a sampling
rate of 250 Hz, for both electrode channel C∗

3 (above) and C∗
4 (below).
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clinician, we selected two channels “C3-T3” and “C4-T4” for
the analysis of the causal influence. Here the bipolar channel
“C3-T3” indicates the new electrode channel C∗

3 , and the
channel “C4-T4” denotes the new electrode channel C∗

4 .

B. Time-varying nonlinear Granger causality for EEG signals

Generally, the most significant property of the Granger
causality is its positivity in the case when a signal X causes a
second signal Y . The time-varying NARX modeling approach
under definition (23) is applied to real EEG signals to study
the causal relationship between EEG signals C∗

3 and C∗
4

to demonstrate the behavior of the time-varying Granger
causality. The NARX model with a nonlinear degree d = 2,
maximum lags ny = 5 and nx = 5, and the total number of
potential 66 regressor terms for different model orders was
estimated using the OLS algorithm [23], and both the AIC and
BIC criteria suggested that the model size can be chosen to be 6
from the total number of 66 regressor terms, with the bivariate
case C∗

3 → C∗
4 . Hence the time-varying NARX model and the

univariate NAR model can be represented by, respectively,

y(t) =
3∑

i=1

θ1,i(t)y (t − i) + θ2,1(t)x2 (t − 1)

+ θ2,2(t) x2 (t − 2) + θ2,5(t)x2 (t − 5)

for TVNARX, (28)

y(t) =
3∑

i=1

θ∗
i (t)y (t − i) for TVNAR, (29)

Due to Eqs. (13), (28), and (29), the transient estimations
of time-varying nonlinear Granger causality CNGC

C∗
3 →C∗

4
(t) can

be obtained. Similarly, exchanging the two EEG signals
for bivariate C∗

4 → C∗
3 , the time-varying Granger causality

CNGC
C∗

4 →C∗
3
(t) can also be obtained in both cases for c = 0.005.

Time-varying Granger causality in both directions was
calculated for electrode pairs between C∗

3 and C∗
4 . A directed

influence for a determined time interval is stated. Figure 3
illustrates a typical result for the electrode pair C∗

3/C∗
4 . In

Fig. 3, we depict the directed interactions CNGC
C∗

3 →C∗
4
(t) [blue

(upper) curve, measuring the influence of C∗
3 on C∗

4 ] and
CNGC

C∗
4 →C∗

3
(t) [black (lower) curve, measuring the influence of

C∗
4 on C∗

3 ], as a function of sample time, for a sort of
epileptic seizure activity of a patient. Figure 3 shows the
result of the time-varying Granger causality to react to rapid
changes in the directed influences between the channel C∗

3
and C∗

4 . From Fig. 3, two directed Granger causalities can be
obviously observed. (i) For the chosen electrode pair C∗

3/C∗
4 ,

the interaction is directed from the left central area (C∗
3 ) to the

right central area (C∗
4 ) during all of the time interval course;

the Granger causality CNGC
C∗

3 →C∗
4
(t) is significantly larger in the

whole time interval than CNGC
C∗

4 →C∗
3
(t). Thus, a superior influence

from C∗
3 to C∗

4 is present within this time interval. (ii) During
the period from 10 to 12 s, the Granger causality influence
between both C∗

4 and C∗
3 is weakened, especially around the

time point 20 s, when the interaction is very small. It is worth
noting that these causal relationships for the electrode pair
C∗

3/C∗
4 are not evident in terms of cross-correlation, which is
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FIG. 3. (Color online) The time-varying nonlinear Granger
causality CNGC

C∗
3 →C∗

4
(t) [blue (upper) curve] and CNGC

C∗
4 →C∗

3
(t) [black

(lower) curve] are plotted vs the time courses for EEG signals shown
in Fig. 2.

defined as

c1 (τ ) =
∑

t [x(t − τ ) − x̄][y(t) − ȳ]√∑
t [x(t) − x̄]2

√∑
t [y(t) − ȳ]2

(30)

and

c2 (τ ) =
∑

t [x(t + τ ) − x̄][y(t) − ȳ]√∑
t [x(t) − x̄]2

√∑
t [y(t) − ȳ]2

. (31)

c1 (τ ) and c2 (τ ) for some specific epileptic patient data are
depicted in Fig. 4, which gives no interesting patterns that are
possessed by the proposed time-varying NARX model. These
properties, possessed by the proposed time-varying NARX
model, cannot be obtained using any time-invariant paramet-
ric modeling framework for linear and nonlinear Granger
causality of time series. It should also be stressed that, in
the case of an optimal fit to the true autoregressive parameters
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FIG. 4. (Color online) The cross correlations c1(τ ) and c2(τ ) are
shown vs τ between EEG signals C∗

3 and C∗
4 given in Fig. 2.
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of univariate and bivariate models, Granger causality is a non-
negative value. Compared to the Granger causality analysis of
the occurrence of a negative value due to the main reason of
no optimal models in Ref. [5], our proposed approach in this
study is effective. The results can help clinicians to interpret
EEG signals.

V. CONCLUSIONS

In this paper, we have introduced the polynomial mathe-
matical formalism and studied the question of how to evaluate
time-varying linear and nonlinear Granger causal relations in
neural systems. Demonstrations of the technique have been
carried out on both simulated data, where the patterns of inter-
actions are known, and on real EEG signals. This study mainly
illuminates three essential aspects. First, the proposed method
for time-varying linear estimation of Granger causality permits
the detection of temporal causal interactions. Second, we have
generalized the nonlinear parametric approach to Granger
causality: the proposed model is not limited to being additive
in variables from the two time series and can approximate any
functions of these variables, including RBF, neural networks,
multiresolution wavelet, and different types of polynomials
such as the Chebyshev and Legendre types, still being
suitable to evaluate causality. Finally, temporally directed in-
teractions were detected successfully for electrophysiological

data of epileptic patients on the basis of transient Granger
causality.

This study demonstrates the possibility of detecting and
describing transient directed webs of interactions for the
bivatiate case. In fact, the presented approach can be ex-
tended to the multivariate case and be suitable for the study
of causal interactions between electrophysiological data of
different sites of the scalp, occurring during the cognitive
processes.
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