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Experimental assessment of the contribution of electrodynamic interactions to long-distance
recruitment of biomolecular partners: Theoretical basis
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Highly specific spatiotemporal interactions between cognate molecular partners essentially sustain all
biochemical transactions in living matter. That such an exquisite level of accuracy may result from encountering
forces solely driven by thermal diffusive processes is unlikely. Here we propose a yet unexplored strategy to
experimentally tackle the long-standing question of a possibly active recruitment at a distance of cognate partners
of biomolecular reactions via the action of resonant electrodynamic interactions. We considered two simplified
models for a preliminary feasibility investigation of the devised methodology. By taking advantage of advanced
experimental techniques nowadays available, we propose to measure the characteristic encounter time scales of
dually interacting biopartners and to compare them with theoretical predictions worked out in both the presence
and absence of putative long-range electromagnetic forces.
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I. INTRODUCTION

Living matter hosts a huge number of molecular players
(e.g., proteins, nucleic acids) involved in simultaneous yet
specific chemical reactions, despite an apparent lack of
systematic spatial order. A phenomenological description of
these biomolecular machineries at work often makes use of
the concept of “recruitment,” leaving usually unclear how
biomolecules partners encounter or move toward their specific
targets and sites of action. On this point significative progress
has been made about DNA-protein interaction at a short
distance. This followed the puzzling problem posed by the
E. coli lac repressor-operator protein, which was found
to locate its specific DNA-binding site several orders of
magnitude faster than the upper limit estimated for a diffusion-
controlled process [1,2]. A widely accepted approach to
tackle this problem is the so-called facilitated diffusion, on
which a vast literature exists (see, for instance, Refs. [3–6]
and citations therein). On the other hand, for DNA-protein
interactions and, more generally, for any dually interacting
biomolecules, the mutual approach from a long distance is
called three-dimensional (3D) bulk diffusion and has not
been further studied (by “long distance” is meant: much
larger than the Debye screening length). Actually, at first
inspection, the mutual approach of cognate partners might well
be driven by Brownian motion only, as at living temperatures
the ubiquitously distributed water molecules move chaotically
in space, colliding with larger or heavier fluid components.
For the latter, the total outcome of many simultaneous hits
are forces of both random intensity and direction. Hence, by
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displacing themselves in a diffusive way through the inner
cellular space, large molecules sooner or later will encounter
their targets.

A complementary proposal, which remains hitherto largely
unexplored, is the possibility for molecules to interact at
a distance via an electromagnetic field [7,8]. In particular,
electromagnetic attractive forces acting on a long range might,
in specific conditions, facilitate the encounters of cognate
partners, so that specific biomolecular reactions would occur
more effectively than if dependent on stochastic motion only.
Exploring this possibility, it should be stressed that the static
dielectric constant εs of water is particularly high, εs � 80,
at physiological temperatures. In addition to this dielectric
screening, freely moving ions in the cellular medium tend to
make the environment electrically neutral; accordingly, the
Debye length in a biological environment is found to be
smaller than �10 Å, as was estimated on the basis of typical
ionic strength of the cytosol [6,9]. Electrostatic interactions
between electrically charged molecules at a distance larger
than the Debye length are very unlikely. Conversely this is not
necessarily the case for electrodynamic interactions [10,11]
since the dielectric constant depends on the frequency of
the electric waves under consideration. Among the latter, the
interactions occurring between oscillating electric dipoles are
of a particular interest since in many cases the long-range
nature of the interaction potential is essentially “activated” by
the proximity of the dipole frequencies (resonance). In other
words, two molecules whose dipole moments oscillate at the
same frequency may undergo a so-called resonant interaction
[12,13], which is described by the potential U (r) ∝ −1/r3

with r the intermolecular distance (see Appendix). On the other
hand, an off-resonance situation would produce a standard van
der Waals-like potential, i.e., U (r) ∝ −1/r6, typically a short-
range interaction (see Appendix). Such a frequency-selective
interaction, when applied to a biological context, might be of
utmost relevance during the approach of a molecule toward its
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specific cognate partner(s). To the best of our knowledge this
proposition dates back to Jordan, who advanced the idea that
resonant interactions within a quantum framework could play
a significant role in autocatalytic reactions or influence the
process of biological synthesis in such a way that replicas of
molecules present in the cell are formed [14]. His theory was
questioned by Pauling [15], who estimated that such forces,
supposed to occur only between identical molecules, could not
be large enough to cause a specific attraction between proteins
under the thermal conditions of excitation and perturbation
prevailing in living organisms. Other attempts to explain
biological selectivity have been made later on the basis of usual
van der Waals forces [16,17]. In parallel, in 1968 H. Fröhlich
proposed a dynamical model [18] to account for the capacity
of biological systems to self-regulate, emphasizing that, under
specific conditions of energy supply to these systems, part
of this supply would not be totally thermalized but would be
used to create order in response to environmental perturba-
tions [19]. In particular, the normal polarization modes of a
macromolecule (or of a part of it) may undergo a condensation
phenomenon, characterized by the emerging of the mode of
lowest frequency containing nearly all the energy supply [18].
Then, relying on this model, Fröhlich suggested [20–22]
that, when occurring between two biomolecules, such dipole
oscillations could be excited enough to overcome thermal noise
leading to the above mentioned frequency-dependent forces.
Fröhlich’s seminal work has stimulated many theoretical
investigations until the present day (see, for example, Refs.
[8,23–25]). Moreover, a vast literature is available about
the experimental observation of low-frequency modes in the
Raman and far-infrared (THz) spectra of proteins [26] and
DNA [27]. These spectral features are attributed to collective
oscillation modes of the whole molecule (protein or DNA) or
of a substantial fraction of its atoms. A priori these collective
oscillations of the molecular electric dipole moment could
activate the mentioned long-distance attractive and selective
recruitment interactions. However, a clear-cut experimental
confirmation of the existence of the latter ones within a
biological context at the molecular level is still lacking.

In the present paper we consider a yet unexplored strategy
to experimentally test, at least in simplified systems, whether
these long-range recruitment forces are actually at work
between typical actors of the broad variety of biomolecular
reactions in living matter. On the basis of theoretical compu-
tations resorting to elementary and standard methods in the
theory of stochastic processes on the one hand, and recent
progress on experimental methods on the other hand, we make
a first step toward the design of experiments to test whether
such forces are actually at work in living matter.

In Sec. II we use two dynamical models to highlight
qualitative and quantitative changes between Brownian and
non-Brownian encounters of the macromolecular partners of
a generic biochemical reaction. In Sec. III we apply our
models to the case of attractive electrodynamic potential
U (r) ∝ −1/r3 expected to have effects at long distance, and
then we report the numerical results that have been obtained
with realistic parameters. Finally, in Sec. IV we discuss how
our findings can be used to design an experiment, and we con-
clude that fluorescence cross-correlation spectroscopy (FCCS)
is an appropriate experimental tool to perform real-time

measurements of the association kinetics of dually interacting
biopartners. It thus seems experimentally feasible to address
the issues formulated above by comparing the outcomes of
the prospected experiments versus the theoretically predicted
curves at different concentrations of the reactants.

II. FIRST-PASSAGE TIME MODELS

A. Generalities

Our idea is in principle a natural one: Different kinds
of forces must have different dynamical effects. Thus we
attempted to devise an experimental protocol in order to dis-
criminate between the dynamics of purely random encounters
between reaction partners versus encounters driven by both a
stochastic force plus a deterministic long-range force. Then,
by experiments resorting to available techniques, we wondered
whether it could be possible to discriminate between these
different dynamical regimes.

A natural way to proceed from the theoretical standpoint
that may be closely related to experimental as well as phys-
iological conditions is to consider an aqueous environment,
initially containing NA particles of a species A and NB particles
of a species B. Each molecule A is expected to interact with
each molecule B in two ways:

(1) As soon as the distance between A and B diminishes
below a threshold δ, a biochemical reaction instantaneously
takes place, so that the two molecules are not functional
anymore and are considered as out of the system.

(2) The particle A and the particle B interact at a distance
via a two-body potential U (r) of an electrodynamic type,
as long as the two molecules do not get closer than the
distance δ.

From a general point of view, the equations describing the
dynamics of the system include both random and deterministic
forces, and therefore may be given in the form

mA

d2rA,i

dt2
= −γA

drA,i

dt
−

NB∑
j=1

∇AU (|rA,i − rB,j |)

+
√

2γAkT ξA,i(t),

mB

d2rB,j

dt2
= −γB

drB,j

dt
−

NA∑
i=1

∇BU (|rA,i − rB,j |) (1)

+
√

2γBkT ξB,j (t),

i = 1, . . . ,NA, and j = 1, . . . ,NB.

Here mA, mB correspond to the masses, rA,i , rB,j to
the positions, and γA, γB to the friction coefficients of the
constituents of each species. T stands for the temperature
in the solution, and k is the Boltzmann constant. ξ (t) is
the random process modeling the fluctuating force due to
the collisions with water molecules, usually represented as
a Gaussian white-noise process for which 〈ξα

A,i(t)ξ
β

A,k(t ′)〉 =
δαβδikδ(t − t ′), where α,β = 1, 2, 3 are related to each
component of ξA,i . The same relation is valid also for ξB,j .

A priori, Eqs. (1) describe a very complex dynamics,
even in the absence of randomness. For example, assuming
that the potential is, for each pair of molecules, of the
form U (r) = c1/rm − c2/rn, with c1,c2 constants, m,n ∈ N,
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m > n and n � d (long-range condition if d is the spatial
dimension), the Hamiltonian subset of this system is actually
a nonlinear classical N -body system whose phase space is
entirely filled with chaotic trajectories [28]. At this stage, the
addition of random forces may imply that the representative
point of the system nontrivially wanders in phase space, despite
the presence of dissipative terms, which, in principle, would
generate trivial attractors. Indeed, in the overdamped limit,
when the acceleration terms can be neglected, one is dealing
with a randomly perturbed first-order nonlinear dynamical
system which, as integrability is exceptional, is expected to
display a complex (chaotic) dynamics. Nevertheless, instead of
undertaking the numerical integration of Eqs. (1), we decided
to look, as a first step, for some analytic result that can be
obtained at the cost of simplification of the system.

Because the reaction between two particles A and B occurs
the first time they come sufficiently close together, we will
have to focus on first passage times of a simplified version
of system (1). Generally, first passage or first return time
statistics are difficult to examine in dynamical systems, then
leading one to model the system under study by keeping
only its salient characteristics, in either a deterministic or
stochastic manner [29,30]. Here we choose to still work
with Eqs. (1), but to reduce drastically the dimensionality
of the system, then leading us to keep in the model under
study its salient characteristics only. This was achieved by
noting that Eqs. (1) describe the mutual interaction between
the two sets of particles, A and B, but neither the A nor
the B particles interact among themselves. The trajectories
of the A particles are indirectly coupled only through the
dynamics of the B particles. Thus, as a first simplifying
hypothesis, we assumed that the B particles are fixed, and
as a consequence the dynamical behaviors of the different A

particles are independent.
This leads to the decoupling of the individual equations in

(1) and hence to the introduction of a one-dimensional model
representative of the generic dynamics of a single A particle.
This model is considered below according to two different
versions and solved according to standard methods [31].

B. Model 1: Absorbing plus reflecting boundaries

Let us consider one fixed molecule B located at the position
z = 0 and one molecule A, initially located at z = x (see
Fig. 1). We first suppose that if A reaches the boundary z = L

of the domain, it is reflected back to z < L; whereas when
A reaches the position z = δ for the first time, it is absorbed.
The random trajectory z(t) of the molecule A may be given,

FIG. 1. (Color online) A generic initial condition of Model 1
(t = 0). Here x is the initial distance between A and B; δ is the
distance at which A and B react, and L is the position of the reflecting
barrier for A and the position of B is fixed.

as previously, in the form

dz

dt
= v,

(2)

m
dv

dt
= −γ v + F (z) +

√
2γ kT ξ (t).

For times much larger than the characteristic time m/γ ,
Eqs. (2) will then relax to a state in which dv/dt → 0. This
approximation is justified by the fact that the biomolecules
involved in reactions of interest (protein-protein or DNA-
protein) typically weigh thousands of Daltons, and thus the
characteristic relaxation times in aqueous medium are very
short. Therefore, Eqs. (2) for the A particle can be simplified as

dz

dt
= F (z)

γ
+

√
2kT

γ
ξ (t). (3)

As is well known, the one-dimensional Langevin initial value
problem [31]

dz

dt
= a(z,t) + b(z,t)ξ (t), z(t0) = x,

is equivalent to the Fokker-Planck equation (FPE) for a
probability p(z,t |x,t0) of finding the particle at z at time t ,
given it was at x at t0 � t

∂

∂t
p(z,t |x,t0) = − ∂

∂z
[a(z,t)p(z,t |x,t0)]

+ 1

2

∂2

∂z2
[b(z,t)2p(z,t |x,t0)]. (4)

From (3), one thus obtains

∂

∂t
p(z,t |x,t0) = − 1

γ

∂

∂z
[F (z)p(z,t |x,t0)]

+ kT

γ

∂2

∂z2
p(z,t |x,t0), (5)

which is also known as the Smoluchovski equation.
We now look at the time T at which the reaction between

A and B occurs, that is, the first time when particle A reaches
z = δ. Since we are considering an absorbing barrier at z = δ

and a reflecting barrier at z = L, the probability P (T � t) and
the one that the particle would still be in the interval [δ,L] at
time t are the same:

P (T � t) =
∫ L

δ

dz p(z,t |x,0) := G(x,t).

In addition, as F (z) and kT do not explicitly depend on t ,
p(z,t |x,0), and thus G(x,t), are homogeneous processes, such
that

G(x,t) =
∫ L

δ

dz p(z,0|x, − t), (6)

this implies that G(x,t) satisfies the same partial differential
equation of p(z,0|x, − t) for z fixed, that is, a backward
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Fokker-Planck equation

∂

∂(−t)
p(z,0|x, − t) = − 1

γ
F (x)

∂

∂x
p(z,0|x, − t)

− kT

γ

∂2

∂x2
p(z,0|x, − t),

leading to

∂

∂t
G(x,t) = 1

γ

{
F (x)

∂

∂x
G(x,t) + kT

∂2

∂x2
G(x,t)

}
. (7)

Here the initial condition p(z,0|x,0) = δ(x − z) (here δ is the
Dirac functional) clearly gives

G(x,0) = 1, if δ � x � L; and G(x,0) = 0, if not,

(8)

whereas the absorbing condition at δ and the reflecting
boundary condition at L allow us to write, respectively,

G(δ,t) = 0 and
∂

∂x
G(x,t)

∣∣∣∣
x=L

= 0, ∀t > 0. (9)

If one focuses on the mean first-passage time τ (x), which
represents a characteristic time scale of the reaction, one has
by definition

τ (x) =
∫ ∞

0
t

∂

∂t
P (T < t) dt

= −
∫ ∞

0
t

∂

∂t
G(x,t) dt =

∫ ∞

0
G(x,t) dt, (10)

after integration by parts. Then, by integrating Eq. (7) between
t = 0 and t = ∞, and using the fact that G(x,0) = 1 and
G(x,∞) = 0, we find that τ (x) must satisfy the following
ordinary differential equation:

−1 = 1

γ

{
F (x)

dτ (x)

dx
+ kT

d2τ (x)

dx2

}

with boundary conditions τ (δ) = ∂τ (x)/∂x|x=L = 0, as fol-
lows from Eqs. (9) and (10). The solution is found to be [31]

τ (x) =
∫ x

δ

dy
1

ψ(y)

∫ L

y

dz
γ

kT
ψ(z),

with

ψ(x) = exp

[∫ x

δ

F (s)

kT
ds

]
= exp

{
− U (x) − U (δ)

kT

}
, (11)

since F (x) = −∂U (x)/∂x. This gives for τ (x):

τ (x) = γ

kT

∫ x

δ

dy exp

[
U (y)

kT

] ∫ L

y

dz exp

[
−U (z)

kT

]
. (12)

It can easily be checked that the mean first-passage time in the
presence of an attracting deterministic potential, generically
written as U (x) ∝ −x−n with a given n > 0, is smaller than

FIG. 2. (Color online) A generic initial condition of Model 2
(t = 0). Two molecules B are fixed at the boundaries x = 0 and
x = l; x and l − x are the initial distances between A and the B’s and
δ is the distance at which A and B react.

the mean first-passage time with Brownian motion only, i.e.,
when U = 0. Since exp(x−n) is a decreasing function of
x, we can find an upper limit for the second integral and
thus get

τ (x) <
γ

kT

∫ x

δ

dy exp

(
− 1

kT yn

)∫ L

y

dz exp

(
1

kT yn

)

= γ

kT

∫ x

δ

dy

∫ L

y

dz := τ (x)Bwn.

More explicitly,

τ (x)Bwn = γ

2kT
[(L − δ)2 − (L − x)2]

= γ

2kT
(x − δ)(2L − δ − x). (13)

C. Model 2: Two absorbing boundaries

Let us now consider the alternative model where two
particles B are fixed at positions z = 0 and z = l, so that the
particle A, initially located at z = x (see Fig. 2), is absorbed
as soon as it reaches z = δ or z = l − δ. Such a model is
mathematically similar to the previous one.

Simply the deterministic force and the boundary conditions
have to be modified. Consequently Eq. (7) is to be replaced by

∂

∂t
G(x,t)

= 1

γ

{
[F (x) − F (l − x)]

∂

∂x
G(x,t) + kT

∂2

∂x2
G(x,t)

}
;

(14)

now G(x,t) is defined as G(x,t) = ∫ l−δ

δ
dz p(z,t |x,0). The

initial condition p(z,0|x,0) = δ(x − z) gives

G(x,0) = 1, if δ � x � l − δ and G(x,0) = 0, if not,

(15)

and the absorbing boundary conditions give

G(δ,t) = 0 and G(l − δ,t) = 0, ∀t > 0. (16)

The mean first-passage time τ (x) defined above then satisfies
the ordinary differential equation

−1 = 1

γ

{
[F (x) − F (l − x)]

dτ (x)

dx
+ kT

d2τ (x)

dx2

}
,

with boundary conditions

τ (δ) = τ (l − δ) = 0.
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The solution is found to be [31]

τ (x) =
{∫ l−δ

δ

dy
1

ψ(y)

}−1

×
{∫ x

δ

dy
1

ψ(y)

∫ l−δ

x

dw
1

ψ(w)

∫ w

δ

dz
γ

kT
ψ(z)

−
∫ l−δ

x

dy
1

ψ(y)

∫ x

δ

dw
1

ψ(w)

∫ w

δ

dz
γ

kT
ψ(z)

}
with

ψ(x) = exp

{∫ x

δ

F (s) − F (l − s)

kT
ds

}

= exp

{
−U (x) + U (l − x) − U (δ) −U (l − δ)

kT

}
(17)

since F (x) = −∂U (x)/∂x. After simplification, one has

τ (x) = γ

kT

{∫ l−δ

δ

dy φ(y)

}−1

×
∫ x

δ

dy

∫ l−δ

x

dw

∫ w

y

dz
φ(y)φ(w)

φ(z)
(18)

where

φ(s) = exp

{
U (s) + U (l − s)

kT

}
.

Similarly to Model 1, the expression for the mean reaction
time with Brownian motion only (U = 0), is particularly
simple:

τ (x)Bwn = γ

2kT
(x − δ)(l − δ − x). (19)

To summarize, in this section we have obtained the general
form of the mean first-passage time τ (x), that is the average
time needed by molecule A to reach the molecule B (or one
molecule B in the case of Model 2), as a function of the initial
intermolecular distance x and temperature T , for both Model 1
[Eq. (12)] and Model 2 [Eq. (18)], respectively. The same
function is given for randomly driven encounters between the
reaction partners in Eq. (13) for Model 1 and in Eq. (19) for
Model 2.

III. QUANTITATIVE THEORETICAL PREDICTIONS

In order to answer the question of whether it would be
feasible to experimentally detect the possible existence of
a deterministic attractive force through which the cognate
partners of biochemical reactions interact at long distance, we
first have to delimit the physical context, choose the domain
of physical parameters, and provide the analytic form of the
two-body interaction potential. In what follows, a long-range
resonant potential potential U (x) = −C/x3 is considered. As
discussed in the Introduction, this kind of interaction can have
sizable effects at long distances at variance with London–Van
der Waals 1/x6 interactions (see also Appendix). Following
Fröhlich [22], a lower bound for the coefficient of this potential
is given by C � h̄e2(ZAZB)1/2/2Mω0ε

′(ω0), where ZA and
ZB denote the number of charges of averaged mass M and
charge e contributing to the dipole moment of the molecules
A and B, respectively, whereas ω0 stands for their oscillation

frequency; ε′(ω0) is the real part of the dielectric constant
of the interposed medium. In particular, it is interesting to
remark that in the expected range of oscillation frequencies for
the setup of collective dipole oscillations in macromolecules
(that Fröhlich estimated to be ω0 � 1011–1012Hz) the value of
ε′(ω0) drops down to a few units [32], thus allowing a much
smaller screening of the interactions with respect to the static
case. In this context, we use ZA = ZB = 1000 (see Ref. [8])
and the proton mass for M . A convenient unit system remains
to be chosen. For the numerical tabulations of τ (x), instead
of c.g.s. units we use μm, kDa, and μs, with the following
definitions: 1 μm =10−4 cm, 1 kDa ≈ 10−21 g, and 1 μs =
10−6 s.

In this system of units we evaluate the lower bound of C,
which is found to be C � 10−30erg cm3 = 0.1 kDa μm5 μs−2.
Henceforth, we shall consider C varying from 0.1 to
10 kDa μm5 μs−2. These values are given with a degree of
arbitrariness that can be reduced by considering that C = 10
corresponds to the physical situation where U (x) � kT at
x ∼ 0.1 μm. Hence the choice C ∈ [0.1,10] is a very cautious
estimate with respect to those existing in the literature about
a possibly larger range of action [it has been surmised by
Fröhlich and others that U (x) might become comparable with
kT at x ∼ 1 μm or more [8,23,24]]. Among other constants
appearing in Eqs. (12) and (18), the friction coefficient γ of
the molecule A has been estimated according to Stokes’ law
γ = 6πη(T )R, where η(T ) corresponds to the viscosity of
water at temperature T and R stands for the hydrodynamic
radius of the molecule. The value of R has been set equal to
5 × 10−3 μm, which is the typical diameter of a biomolecule
with a mass in the interval 50–100 kDa (proteins and DNA
fragments); the same value has been fixed for the reaction
radius δ introduced in both models: R = δ = 5 × 10−3 μm.

All the computations of τ (x) have been performed by
means of MATLAB programs. Also, as MATLAB does not
allow us to perform direct integrations over nonrectangular
domains, integrals with variable limits in Eqs. (12) and (18)
have been first “vectorized” [33] for each x to calculate τ (x)
with a recursive adaptive Simpson quadrature (MATLAB quadl
function). Further checks on the reliability of the method have
been done through direct numerical integration of the Langevin
equation (3) by means of a standard Euler-Heun algorithm
and by averaging over 104 different realizations of the random
walk. Minor precision problems, especially when x ∼ δ, have
been thus detected and corrected in what follows.

A. Model 1

We have computed τ (x) and τ (x)Bwn by means of Eqs. (12)
and (13), respectively, where we have set R = δ = 5 ×
10−3 μm and U (x) = −C/x3, as detailed above. The position
L of the reflecting barrier characteristic of Model 1 has been
fixed so as x � L for all x. In particular, L = 10 μm, and a
maximal value for x equal to 1μm have been used. Figure 3
displays the numerically found shapes of both functions τ (x)
and τ (x)Bwn computed at T = 300 K and for different values
of the attractive potential coefficient C. A first check on the
reliability of the plotted results is done by observing that
τ (x) < τ (x)Bwn for all the x values while both curves merge
at large x values, as expected when the resonant attraction
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FIG. 3. (Color online) Model 1: Mean encounter time τ between
two molecules A and B, initially placed at a distance x one from the
other. Dotted lines are asymptotic behaviors. Dashed line refers to
purely random encounters. Solid line refers to the combined effect of
a random force plus a deterministic one derived from the potential
U (x) = −C/x3. Panel (a) refers to C = 0.1. Panel (b) refers to
C = 10.

is wiped out by thermal noise. In particular, as we always
considered x � L, the asymptotic behavior of τ (x)Bwn is then
proportional to x as required by Eq. (13). On the contrary,
at smaller x, τ (x)Bwn bends downward to slightly smaller
values with respect to the extrapolated linear dependence (this
happens when x is no longer much larger than δ). At variance,
the pattern of τ (x) has two asymptotic limiting behaviors: At
large x values it joins the Brownian curve τ (x)Bwn, and at
small x values it is τ (x) ∼ x5 (a power law characteristic of
the 1/x3 form of the potential); the latter might be anticipated
on the basis of simple dimensional arguments since the
left-hand side of Eq. (3) has the dimensions [dz/dt] = lt−1

while the right-hand side leads to [C/x4] = [C]l−4 in a purely
deterministic regime. By combining the two, for a generic time
scale [τ ] = t associated with a displacement length x we get
τ ∼ [x]5 [34]. The two limiting behaviors are bridged by a
steep transition pattern, which moves rightward or leftward
according to the value of C, as shown in Fig. 3; the stronger
the potential the larger the x values at which τ (x) displays
the knee joining the x5 functional dependence. The transition
pattern of τ (x) is steep since the reflecting barrier is located
far from the only molecule B.

FIG. 4. (Color) Model 1: Temperature dependence of τ (x) for
C = 1.0. Red solid and dashed curves refer to T = 200 K, green
dashed and solid curves refer to T = 300 K, blue dashed and solid
curves refer to T = 400 K.

In any case, τ (x)Bwn is found to exceed τ (x) by a factor
of, e.g., 10 at definitely larger x values and, what is more
relevant, at longer values of first encounter time: With C = 0.1,
such a difference occurs at x � 300 Å where τBwn � 6 ms and
τ � 600 μs, while with C = 1.0, it occurs at x � 640 Å, where
τBwn � 10 ms and τ � 1 ms, and with C = 10 at x � 1400 Å,
where τBwn � 20 ms and τ � 2 ms. As we shall see in the
next section, should we interpret x as the average distance
between any two reacting molecules in three dimensions,
this range of x values (between a few hundred angstroms
and 1 μm) is easily attained by varying the concentrations
of the reactants between a few micromoles down to one
nanomole. Notably, the encounter times belong to an interval
of values easily accessible by means of optical detection
methods.

A priori, further qualitative indications on the possible
presence of attractive deterministic forces between cognate
partners could be observed by modifying the temperature of
the system. As shown in Fig. 4, τ (x) and τ (x)Bwn plotted for
three different values of T confirm that the x5 functional de-
pendence is purely deterministic as T has no influence within
this domain. On the contrary, τ (x)Bwn displays the same depen-
dence on T for all values of x. Surprisingly, the steep transition
pattern of τ (x) at intermediate values of x is characterized by
a temperature dependence which is inverted compared to the
Brownian case: In the presence of an intermolecular potential,
the higher the temperature, the larger the first-passage time
of A at x = δ. Finally note that the temperature range
considered in Fig. 4 is a broad one (T = 200, 300, and
400 K). Nevertheless, as the physiological temperature range
corresponds only to a few percent around 300 K, it is likely
that variations of the first passage time at different temperatures
are too weak to be experimentally detectable within such an
interval. In particular, computations performed for temperature
differences of 10 K (typically 290, 300, 310 K) with the
Model 1 show variations of τ less than 5% of its value in
the Brownian case as well as in the case of Brownian plus
deterministic force.
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FIG. 5. (Color online) Model 2: Mean encounter time τ between
two molecules A and B, initially placed at a distance x from each
other. Dotted lines are asymptotic behaviors. Dashed line refers to
purely random encounters. Solid line refers to the combined effect of
a random force plus a deterministic one derived from the potential
U (x) = −C/x3. Panel (a) refers to C = 0.1. Panel (b) refers to
C = 10.

B. Model 2

We have also plotted τ (x) and τ (x)Bwn computed according
to Eqs. (18) and (19), respectively, where R = δ = 5 ×
10−3 μm, l = 2x, and U (x) = −C/x3 as in the case of Model
1. Figure 5 displays the numerically found shapes of both
functions τ (x) and τ (x)Bwn computed again at T = 300 K and
for different values of the attractive potential coefficient C.

At first check, the characteristics of τ (x) prevailing for
Model 1 [i.e., the x5 functional dependence at small x, and
the tendency of τ (x) to join τ (x)Bwn at large x] also apply
here. Nevertheless, asymptotic x dependence of τ (x)Bwn is
now proportional to x2 as obtained from Eq. (19) by replacing
l by 2x when x � δ. On the other hand, the absence of a
reflecting barrier makes the steep transition feature for τ (x)
disappear and be replaced by a mild crossover at intermediate
values of x. This steeper pattern for the first passage time as a
function of x, in the case of purely Brownian diffusion, entails a
less pronounced separation between τ (x) and τ (x)Bwn. In fact,
a separation between these two curves by a factor of 10 (to
make the same kind of comparison that we did for Model 1)
occurs for C = 0.1 at x � 200 Å for which τBwn � 1.1 μs
and τ � 0.1 μs; while for C = 1.0 this happens at x � 600 Å

FIG. 6. (Color) Model 2: Temperature dependence of τ (x) for
C = 0.1. Red solid and dashed curves refer to T = 200 K, green
dashed and solid curves refer to T = 300 K, blue dashed and solid
curves refer to T = 400 K.

for which τBwn � 30 μs and τ � 3 μs; and, finally, for C =
10 at x � 1170 Å for which τBwn � 120 μs and τ � 12 μs.
Therefore, we can see that Model 2 is more constraining than
Model 1, in the sense that, at equal values of C (that is, at equal
strength of the long-range interaction), smaller intermolecular
distances and a much faster tracking of the dynamics of the
reactants are needed to discriminate with the same degree of
confidence (arbitrarily set as a factor of 10) between random
and nonrandom encounters of the reactant molecules.

The temperature dependence of both τ (x)Bwn and τ (x) is
reported in Fig. 6. The main features of τ (x) in Model 1 are
likewise present in Model 2. In addition, we can see that the
inversion in the temperature dependence with respect to the
Brownian case (which was characteristic of the steep transition
pattern of Model 1) is no longer there. Thus, the peculiar
temperature dependence of this steep transition pattern could
be mostly attributed to the presence of the reflecting barrier
characteristic of Model 1. Likewise in Model 1, we used
again T = 200, 300, and 400 K, even though computations
carried out at physiological temperature again yield too weak
variations of τ (x) to be experimentally detectable.

IV. DISCUSSION AND CONCLUDING REMARKS

The numerical results reported in the preceding section are
in favor of a positive answer to the main question addressed
by the present work. In fact, the numerical study of Models 1
and 2 revealed qualitative differences in the mean first-passage
time τ between the case of a pure Brownian diffusion of the
molecule A (see Sec. II) and the case in which an attractive
(resonant) potential U is added to a random force. In particular,
in the latter case, the functional dependence of τ on the initial
distance x between the molecule A and its target [molecule(s)
B] demonstrates the existence of different patterns in the two
models depending on the range of the x values considered:

(1) A deterministic pattern at small x values (small initial
separations), characterized by a power law representative of
the potential under consideration (x5 for the resonant potential
used, xp+2 for a general potential of the form U (x) ∝ x−p)
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(2) A Brownian pattern at large initial separations, propor-
tional to x or to x2 depending upon the symmetry of the system
(x for an asymmetric situation as described by Model 1, and
x2 for a symmetric one as described by Model 2)

(3) A steep transition pattern joining the two asymptotic
ones in the case of Model 1, and a smooth crossover joining
the two asymptotic ones in the case of Model 2.

Although complementary computations revealed some
interesting features in the temperature dependence of τ , the
corresponding degree of variation in a laboratory accessible
interval of temperature is too weak to be experimentally
detectable.

In any case it is obvious that x must constitute an
experimentally accessible control parameter so that the results
mentioned above may be used to predict the possible role
of long-range intermolecular forces in biological processes.
Notably, such an approach is not very usual. Indeed, most of
the attempts made hitherto in this direction have resulted in
experimental measurements of association constants ka (char-
acteristic of a reaction medium), which are predictable from
the Smoluchowski theory also when intermolecular forces are
considered [35,36]. The focus of Smoluchovski theory is on
the association constant ka , which represents the probability
for two molecules to react per time unit, irrespective of their
position. In the case of Brownian encounters, this is given
by [4] kB

a = 4πRD ≡ 4πδkT /γ , where R is the reaction
radius that can be approximated to δ from the current study, and
D is the sum of the diffusion coefficients of the two cognate
partners. In the presence of some interaction potential U , one
has k∗

a = 4πR∗D, where R has been replaced by [4,35,36]
R∗ = R(

∫ ∞
R

r−2e−U (r)/kT dr)−1. Now, if ka is experimentally
measured for some reaction and it turns out that kB

a < ka ,
then this would indicate that some deterministic force is in
action, but one can hardly determine the law of the interaction
potential because after integration over r there is no one-to-one
correspondence between R∗ (thus k∗

a ) and the functional form
of U (r) [24]. On the other hand, in measuring ka < kB

a , we
cannot be sure that the reaction is simply diffusion driven
because, in this case, chemical times could be long enough to
make ka smaller than the corresponding Brownian value. The
advantage of our dynamical approach is that our models still
apply by choosing δ as the distance at which A and B get in
contact without reacting, and with the experimental technique
discussed below (FCCS) we can make a distinction between
the association time and the chemical times.

In the present situation x values might to some extent
be considered in three dimensions as the average distance
between two molecular partners, A and B, while this quantity
can be easily controlled in laboratory experiments by varying
the concentrations of the reactants. Given the concentrations
CA = NA/VA and CB = NB/VB (with VA,B = the initial vol-
umes and NA,B = the number of molecules of the two species,
respectively; note that these numbers are controlled through
the molarity, i.e., a definite fraction of the Avogadro number),
we get the estimate x = C

−1/3
av for the average intermolecular

distance from the average concentration Cav = (NA + NB)/V ,
where the reaction volume V = VA + VB . In practice, as an
example, with Cav = 1 nM we have x � 1 μm as the average
distance between any two molecules, while with Cav = 1 μM
we have x � 1000 Å. By working at equimolarity, that is,

CA = CB , then C
−1/3
av is a good estimate of the average

distance between one A and one B molecule. Working with
nanomoles of DNA and proteins (enzymes, transcription
factors) is quite standard in molecular biology experiments.
With such concentrations of reactants, both models (1 and 2)
predict that the first passage time, which can be interpreted
as the average encounter time between one A and one B

molecule initially located at intermolecular distances of a
few thousands of angstroms, varies in the interval between
a few tens of microseconds to about 1μs in the presence of an
attractive deterministic force that would sum up to the random
force. On the contrary, in the very same conditions, random
only driven encounters would exceed the above mentioned
encounter times by one or two orders of magnitude. Again,
the distance at which sizable differences could be observed
may vary significantly depending on the actual value of the
resonant potential parameter C. On the other hand, estimates
in literature [8,23,24] suggest that these long-range resonance
interactions could be effective up to distances in the order of
1 μm (the action range is estimated by computing the distance
at which the resonance interaction energy equals the level of
thermal noise kT ). In this respect, in the preceding section we
have limited ourselves to cautious estimates for the parameter
C, focusing on conservative assumptions for average encounter
time varying in the interval 10−5–10−3 s, which can be
readily detected with the aid of fluorescence cross-correlation
spectroscopy (FCCS) technology. This is a powerful technique
which is being increasingly applied to the study of diffusion
and chemical reaction rates in complex biological systems
using fluorescently labeled macromolecules [37–39]. FCCS
measures the spontaneous fluctuations of fluorescences δF1(t)
and δF2(t) that arise from the diffusion of fluorescently labeled
molecules of type 1 and 2, respectively, illuminated by two
laser light beams of different colors, into or out of an open
sampling volume. Even though the size of the detection
volume is diffraction limited, the autocorrelation functions of
δF1,2(t) and the cross-correlation function 〈δF1(t)δF2(t)〉 can
be altered by processes occurring on smaller spatial scales.
These correlation functions provide information on diffusion
properties of fluorescent molecules.

Of course, we are well aware of the fact that the models
studied here are simplified descriptions of the reality. Indeed,
protein-protein and protein-nucleic acid interactions in vivo
generally take place within complex structural scaffolds such
as the membrane cytoskeleton or the chromatin envelope,
which are themselves the subject of highly dynamical reg-
ulations (e.g., Refs. [40,41]) and may also possibly interfere
with the spatiotemporal control of the given reactions (e.g.,
Refs. [42,43]). Should resonant electrodynamic interactions
be involved within such an intricate context, it seems illusory
at this stage to assess realistic C values simply based on
the proposed experiments. In fact, regarding protein-DNA in
vivo (physiological) interactions, for instance, it may well
be that the putative values fluctuate depending on a host
of variables, possibly including, in a nonmutually exclusive
way, charges on proteins and DNA, the effect of surrounding
electrolytes, the nucleic- or amino-acid compositions, the
length of accessible DNA, etc. However, we stress here that
our initial goal, as described in this article, is to merely probe
whether or not biological partners also can take advantage,
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besides thermic diffusion, of long-distance (0.1–1 μm) forces
of electrodynamic origin to eventually interact. If established,
this novel concept would then in turn open new avenues
of research to investigate long-standing biological issues,
e.g., on the precise definition of which variables exactly
pertain on protein-DNA interactions, and how a diffusing
protein particle may actually recognize the particular cognate
DNA site among many other locations also available. Since
we do not expect dramatic qualitative changes out of the
numerical simulations of Eqs. (1) in three dimensions [44],
an experimental setup providing a practical realisation of what
has been investigated in the present work could be devised
by resorting, as experimental probes, to three broad classes of
interactions: protein-DNA, protein-RNA, and protein-protein
(ligand-receptor). As DNA and RNA molecules do not have
a preassigned length, it is implicitly understood that only
short fragments are to be considered (some tens or a few
hundreds of base pairs, that is, oligonucleotides or plasmides,
respectively). The proteins interacting with DNA or RNA
can be processing enzymes (helicases, polymerases, recom-
binases) or transcription factors normally bound at promoters,
enhancers, insulators, or silencers. Thus, for example, one
could choose two molecular species consisting, respectively,
of a short double-stranded DNA molecule (for example, a
synthetic oligonucteotide of ∼100 base pairs or even less)
and a protein with a site-specific affinity for the chosen
DNA molecule (i.e., a transcription factor). By labeling the
DNA molecules and proteins with standard fluorophores their
dynamical behavior can be followed by means of FCCS
microscopy at different concentrations C = CA = CB of the
reactants to get a characteristic time scale as a function of
x = C−1/3. In this way such an experimental setup should
provide, after data fitting, an estimate of the constant C for the
resonant potential considered above. Thus, C = 0 would mean
that the reactants meet only under the action of Brownian
diffusion, whereas C �= 0 would prove the existence at the
same time of the long-range interactions evoked throughout
this paper and give quantitative information about them.
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APPENDIX

For the sake of clarity and to help the reader to get hold of
the physical origin of the U (R) ∝ −1/R3 potential referred
to throughout the present work, this Appendix provides

theoretical elements about the interaction of oscillating electric
dipoles.

To begin, let us recall basic facts about this subject. Two
atoms (or two small molecules) A and B in their ground
states with no net charge excess and vanishing average dipole
moment (i.e., both are nonpolar) interact through the London–
Van der Waals dispersive force. The origin of this interaction
is as follows. Though the expectation values of the dipole
operators are zero for nonpolar atoms, quantum fluctuations
are responsible for their instantaneous nonvanishing dipolar
moments. This entails a nonzero dispersion of the dipole
moment operator. The energy of the two isolated atoms is
corrected at first order by the dipole-dipole interaction energy,
which is proportional to the average dipole moments; thus it
vanishes when both atoms are in their ground states. Instead,
the second-order perturbative correction, due to the coupling
between instantaneous dipole fluctuations, is found to be
proportional to 1/R6. (In a QED framework the London–Van
der Waals interaction stems from the exchange of virtual
photons between the atoms.) This is a short-range potential,
so called because the exponent of the power law of R

is strictly larger than 3, the dimension of physical space.
London–Van der Waals interactions are of generically weak
intensity, whereas they likely become of prime importance in
a biological context when acting at short distances (below
the Debye length) together with additional interactions of
chemical type [45].

Remarkably the first-order perturbative correction may be
nonvanishing under a degeneracy condition. Indeed, if one or
both atoms are in an excited state, provided that the condition
for exchange symmetry is fulfilled, that is, they have common
eigenenergies in their spectra, it can be shown [46] that the
interaction energy is now proportional to 1/R3, a long-range
potential.

Interactions of similar kinds to those just mentioned
between two atoms (or small molecules) could exist between
macromolecules with an oscillating electric dipole moment.
In this case the oscillating dipole moment would not be due to
the electron motions but, rather, to conformational vibrations.
As already mentioned in the Introduction, this interaction
between the oscillating electric dipole moments of reacting
macromolecules could play a relevant role in living matter. In
fact, as already recalled in the Introduction, the high static
dielectric constant of water together with the considerable
amount of ions present in living cells tend to screen any
electrostatic interaction beyond a distance of a few angstroms.
However, this electrostatic opaqueness does not hold for an
oscillating field: The higher the frequency of an oscillating
field, the more transparent an aqueous salted medium. In
fact, the value of the dielectric constant of water at room
temperature is a decreasing function of the frequency [32] and,
for example, already at 1 THz ε(ω = 1012) � 4; likewise, the
imaginary (dissipative) part of the dielectric constant (which
is proportional to the conductivity of the medium due to
the presence of free ions) is inversely proportional to the
frequency of the oscillating electric field (according to the
Drude equation [48]), so that at suitably high frequency it can
be negligible.

Let us now study the basic mechanism of interaction
between two oscillating electric dipoles before discussing its
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application to biomolecules [47]. As we show below, these
oscillating dipoles can activate long-range forces that will
be shown to be frequency selective. We consider a one-
dimensional simplified model in which the dipoles oscillate
at frequencies ωA and ωB , respectively. Then a computation
of the interaction energy between A and B can be given,
which, despite the simplified treatment, allows us to grasp
basic physical facts.

Let μA and μB be the masses of the two oscillators, let
their dipole moments be parallel and given by qZArA and
qZBrB , and assume that their mutual separation R is such that
R � rA,rB ; then we can write the interaction Hamiltonian as

H = p2
A

2μA

+ p2
B

2μB

+ 1

2
μAω2

Ar2
A

+ 1

2
μBω2

Br2
B + ζq2ZAZB

4πε0R3
rA rB, (A1)

where Zi , i = A,B, stands for an effective number of charges
which account for the average value of the dipole moment of
the oscillator i; ζ is a geometrical factor depending on the
orientation of the dipoles with respect to the line joining them
(on which the distance R is measured). Then, introducing a
mean mass M defined so that μA = MZA and μB = MZB ,
the Hamiltonian becomes

H = 1

2M

(
p2

A + p2
B

) + 1

2
Mω2

Ar2
A + 1

2
Mω2

Br2
B + β

R3
rA rB,

(A2)

where the transformations (Zi)1/2ri → ri and pi/(Zi)1/2 →
pi , i = A,B, have been introduced (the variables ri and
pi are still canonically conjugated), and we put β =
ζq2(ZAZB)1/2/4πε0, where ε0 is the dielectric constant of
vacuum, in the absence of a material medium between the

oscillators, to be replaced by ε(ω) when a medium is present.
In matrix form this also reads

H = 1

2M

(
p2

A + p2
B

)
+ 1

2
M (rA rB)

(
ω2

A β/MR3

β/MR3 ω2
B

)
︸ ︷︷ ︸

C

(
rA

rB

)
. (A3)

Matrix C is real and symmetric, and thus diagonalizable
by means of an orthogonal transformation. Let ω2

+ and ω2
−

the eigenvalues of C (homogeneous to squared frequencies).
Under the action of this transformation the Hamiltonian can
be cast in the form of the sum of two decoupled oscillators,
that is,

H = 1

2M
(p2

+ + p2
−) + 1

2
Mω2

+r2
+ + 1

2
Mω2

−r2
−, (A4)

and it can be easily shown that

ω± = 1√
2

[(
ω2

A + ω2
B

) ±
{(

ω2
A − ω2

B

)2 + 4β2

M2R6

}1/2]1/2

.

(A5)

By considering rA, rB , pA, and pB as observables subject
to standard commutation relations, the energy values of the
system are obviously given by

E = h̄ω+
(
n+ + 1

2

) + h̄ω−
(
n− + 1

2

)
, (A6)

where n+,n− ∈ N, that is, are integers. Now, let us consider
two opposite physical situations depending on the relative
values of the frequencies ωA and ωB of the oscillators.

(1) Consider ωA � ωB (or, equivalently, ωA � ωB), we
have

ω± = 1√
2

⎡
⎣(

ω2
A + ω2

B

) ± (
ω2

A − ω2
B

) {
1 + 4β2(

ω2
A − ω2

B

)2
M2R6

}1/2
⎤
⎦1/2

, (A7)

and the denominator of the last term is large enough to give at the lowest-order expansion

ω± = 1√
2

[(
ω2

A + ω2
B

) ± (
ω2

A − ω2
B

) ± 2β2(
ω2

A − ω2
B

)
M2R6

+ · · ·
]1/2

= 1√
2

[
2ω2

A,B ± 2β2(
ω2

A − ω2
B

)
M2R6

+ · · ·
]1/2

= ωA,B ± β2

2ωA,B

(
ω2

A − ω2
B

)
M2R6

+ · · · ,

where ωA,B stands for ωA in the computation of ω+ and ωB in the computation of ω−. By substituting this expression in Eq. (A6)
we get

E = h̄ωA

(
n+ + 1

2

)
+ h̄ωB

(
n− + 1

2

)
+ h̄β2

2
(
ω2

A − ω2
B

)
M2R6

{
1

ωA

(
n+ + 1

2

)
− 1

ωB

(
n− + 1

2

)}
+ · · · . (A8)
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The first two terms correspond to the unperturbed energies
of the oscillators A and B considered as isolated (R → ∞),
while the last term provides the lowest-order correction
to the unperturbed energy of the system, and due to the
interaction, this interaction potential energy is proportional
to R−6. Note that this is functionally the same as the
London–Van der Waals interaction but of a remarkably
different physical origin (real oscillations instead of quantum
fluctuations).

(2) On the other hand, at resonance, that is, ωA � ωB = ω,
the eigenfrequencies (A5) are simply given by

ω± = ω

√
1 ± β

Mω2R3
. (A9)

At long distances (imposed by the reality condition for ω± in
this equation) we can develop ω± near ω and replace such a
development into Eq. (A6) to obtain

E = h̄ω(n+ + n− + 1) + h̄β

2MωR3
(n+ − n−)

− h̄β2

8M2ω3R6
(n+ − n− + 1) + · · · . (A10)

The first-order correction to the energy of the system corre-
sponds to the interaction energy between the two oscillators at
resonance and is proportional to R−3. If both oscillators are in
their ground states, i.e., n+ = n− = 0, the first contribution to
the interaction energy in Eq. (A10) vanishes as well as the force
given above. The first nonvanishing term is again proportional

to R−6. But if the lowest of these modes (ω−) gets more excited
than the other (ω+), then the consequence is the activation of
an attractive long-range frequency-selective force. A repulsive
force could also be activated in case n+ > n−.

In the context of Fröhlich’s theory [8,18,49,50] the above
described mechanism of resonant interaction between oscil-
lating dipoles was surmised to have a great potential relevance
for fundamental biological processes at the molecular level.
Fröhlich proposed a model describing the coupling between
the elastic vibrations of macromolecules and the resulting time
variations of their dipole moment; the model predicts that one
or a few Fourier modes of the dipole field oscillation should
be strongly (coherently) excited provided that the energy
supply rate exerted on the macromolecule by its environment
exceeds a threshold value. This energy supply is assumed
to depend on the biological activity of the environment
(metabolic energy). The strongly excited mode of oscillation
of the molecular dipole moment should be due to a collective
oscillation either of the entire molecule or of a subgroup of
its atoms. The consequence of such collective oscillations
would be to activate selective long-range recognition and
attraction between cognate macromolecular partners via the
above described mechanism of resonant interaction. Exper-
imental evidence of the existence of collective excitations
in macromolecules of biological relevance is available for
polynucleotides (DNA and RNA) [27] and for proteins
[26] in the Raman and far-infrared (THz) spectroscopic
domains.
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[49] H. Fröhlich, IEEE Trans. Microwave Theory Tech. 26, 613

(1978).
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