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Footprint traversal by adenosine-triphosphate-dependent chromatin remodeler motor
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Adenosine-triphosphate (ATP)-dependent chromatin remodeling enzymes (CREs) are biomolecular motors in
eukaryotic cells. These are driven by a chemical fuel, namely, ATP. CREs actively participate in many cellular
processes that require accessibility of specific segments of DNA which are packaged as chromatin. The basic
unit of chromatin is a nucleosome where 146 bp ∼ 50 nm of a double-stranded DNA (dsDNA) is wrapped
around a spool formed by histone proteins. The helical path of histone-DNA contact on a nucleosome is also
called “footprint.” We investigate the mechanism of footprint traversal by a CRE that translocates along the
dsDNA. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states
in the mechanochemical cycle of each ATP-dependent CRE. We calculate the mean time of traversal. Our
predictions on the ATP dependence of the mean traversal time can be tested by carrying out in vitro experiments
on mononucleosomes.
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I. INTRODUCTION

A deoxyribonucleic acid (DNA) molecule is a linear
heteropolymer whose monomeric subunits, called nucleotides,
are denoted by the four letters A, T, C, and G. The sequence
of these nucleotides in a DNA molecule chemically encodes
genetic information. In the nucleus of a eukaryotic cell, DNA is
stored in a hierarchically organized structure called chromatin
[1–4]. The primary repeating unit of chromatin at the lowest
level of the hierarchical structure is a nucleosome [5]. The
cylindrically shaped core of each nucleosome consists of an
octamer of histone proteins around which 146 base pairs
(i.e.,∼50 nm) of the the double-stranded DNA is wrapped
about two turns (more precisely, 1.7 helical turns); the arrange-
ment is reminiscent of wrapping of a thread around a spool.
There are 14 equispaced sites, at intervals of 10 base pairs (bp),
on the surface of the cylindrical spool. Electrostatic attraction
between these binding sites on the histone spool and the
oppositely charged DNA seems to dominate the histone-DNA
interactions which stabilize the nucleosomes. Throughout this
paper, the helical curve formed by the histone-DNA overlap
will be called the “footprint.”

The DNA stores the genetic blueprint of an organism.
If nucleosomes were static, segments of DNA buried in
nucleosomes would not be accessible for various functions
involving the corresponding gene [6–8]. However, in reality,
nucleosomes are dynamic. Spontaneous dynamics of nucle-
osomes are usually consequences of thermal fluctuations,
whereas the active dynamic processes are driven by special
purpose molecular machines called chromatin remodeling
enzymes (CREs) fueled by adenosine triphosphate (ATP)
[9–14]. Various aspects of chromatin dynamics have received
some attention of theoretical modelers, including physicists,
over the last few years [15–27].

In general, “chromatin remodeling” refers to a range
of enzyme-mediated structural transitions that occur during
gene regulation in eukaryotic cells. To make DNA, which
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is wrapped around a histone octamer, accessible for various
DNA-dependent processes, it is always necessary to rearrange
or mobilize the nucleosomes. In principle, there are at least four
different ways in which a CRE can affect the nucleosomes [28]:
(i) sliding the histone octamer, i.e., repositioning of the entire
histone spool, on the dsDNA; (ii) exchange of one or more of
the histone subunits of the spool with those in the surrounding
solution (also called replacement of histones) (iii) removal of
one or more of the histone subunits of the spool, leaving the
remaining subunits intact, and (iv) complete ejection of the
whole histone octamer without replacement. Our theoretical
work here is closely related to sliding.

In the next section we describe a scenario in which
either a CRE motor (or, other ATP-dependent motors that
translocate along dsDNA) traverse the “footprint.” Because of
the stochasticity of the underlying mechanochemical kinetics,
the footprint traversal time (FTT) is a fluctuating random
variable. Extending an earlier model developed by Chou [29],
we analytically calculate the mean FTT (MFTT) of the CRE
motor.

To our surprise, we found that the ATP dependence of the
various ATP-driven activities of CREs has not been studied
systematically in the published literature. In particular, we
address the question of how the MFTT of a CRE motor
varies with the variation of the concentration of ATP. This
rate is not necessarily directly proportional to the rate of ATP
hydrolysis by the CRE, because the mechanical sliding of the
nucleosome need not be tightly coupled with the hydrolysis
of ATP by the CRE. Therefore, we develop here an analytical
theory predicting the ATP dependence of the ATP-dependent
footprint traversal by CRE. We hope our result will stimulate
systematic experimental investigations on the ATP dependence
of ATP-dependent CREs.

II. CRE: PHENOMENOLOGY AND MOTIVATION
FOR THIS WORK

Chromatin is not a frozen static aggregate of DNA and pro-
teins. Spontaneous thermal fluctuations can cause a transient
unwrapping and rewrapping of the nucleosomal DNA from one
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end of the nucleosome spool; the corresponding rates for an
isolated single nucleosome are, typically, 4 s−1 and 20–90 s−1,
respectively [30]. In other words, once wrapped fully, the
nucleosomal DNA remains in that state for about 250 ms before
unwrapping again spontaneously; however, it waits in the
unwrapped state only for about 10–50 ms before rewrapping
again spontaneously. Surprisingly, the accessibility of the
nucleosomal DNA is only modestly affected if instead of a
single nucleosome the experiment is repeated with an array of
homogeneously distributed nucleosomes [31,32]. Moreover,
folding of an array of nucleosomes makes the linker DNA
about 50 times less accessible [31,32]. Furthermore, on the
nucleosomal DNA, the farther a site is from the entry and
exit points, the longer one has to wait to access it by a rare
spontaneous fluctuation of sufficiently large size [33]. Thus,
nucleosomal DNA far from both the entry and exit sites is
practically inaccessible by spontaneous thermal fluctuations.

Can a nucleosome slide spontaneously by thermal fluctua-
tions, thereby exposing the nucleosomal DNA? Interestingly,
spontaneous repositioning of nucleosome on DNA strands
is a well-known phenomenon [34]. How can one reconcile
accessibility of nucleosomal DNA by such repositioning [34]
with the difficulty of access by unwrapping from either end of
the spool [33]? If the DNA were to move unidirectionally
along its own superhelical contour on the surface of the
histone, at every step it would have to first transiently detach
simultaneously from all the 14 binding sites and then reattach
at the same sites after its contour gets shifted by 10 bp (or
multiples of 10 bp). But the energy cost of the simultaneous
detachment of the DNA from all the 14 binding sites is
prohibitively large because the total energy of binding at the
14 sites is about 75 kBT [17,18,21].

But why can’t the cylindrical spool simply roll on the
wrapped nucleosomal DNA, thereby repositioning itself? If
the nucleosome rolls by detaching DNA from one end of the
spool, can it not compensate this loss of binding energy by
simultaneous attachment with a binding at the other end? If
such an energy compensation were possible, detachment from
only one binding site would be required at a time, but the
cylindrical spool has a finite size on which only a finite number
(14) of binding sites for DNA are accommodated. Therefore,
by rolling over the DNA, the spool would not offer any vacant
binding site to the DNA with which it can bind. This rolling
mechanism would successfully lead to spontaneous sliding of
the nucleosome only if the histone spool were infinite with an
infinite sequence of binding sites for DNA on its surface [21].

We now describe a plausible mechanism for spontaneous
sliding of a nucleosome [16–18]. In the process of normal
“breathing,” most often the spontaneously unwrapped flap
rewraps exactly to its original position on the histone surface.
However, if the rewrapping of a unwrapped flap takes place at
a slightly displaced location on the histone spool, a small bulge
(or loop) of DNA forms on the surface of the histones. Since
the successive binding sites are separated by 10 bp, the length
of the loop is quantized in the multiples of 10 bp [16]. Such
a spontaneously created DNA loop can diffuse in an unbiased
manner on the surface of the histone spool. In the beginning
of each step, DNA from one end of the loop detaches from
the histone spool, but the consequent energy loss is made up
by the attachment of DNA at the other end of the loop to

the histone spool before the step is completed. Consequently,
by this diffusive dynamics, the DNA loop can traverse the
entire length of the 14 binding sites on the histone spool of a
nucleosome which will manifest as sliding of the nucleosome
by a length that is exactly equal to the length of DNA in the
loop. The diffusing DNA bulge can be formed by a “twist,”
rather than bending, of DNA [35–37]. Spontaneous sliding of
a nucleosome, however, is too slow to support intranuclear
processes which need access to nucleosomal DNA.

It is now widely agreed that ATP-dependent active re-
modeling of nucleosomes can account for the fast sliding of
nucleosomes. Nevertheless, the bulging DNA loop is expected
to play a key role in the remodeling process [27]. Our model
describes how a CRE motor can wedge itself at the fork
between the histone spool and a transiently detached segment
of dsDNA and, by exploiting the spontaneously diffusing loop
by an ATP-dependent ratcheting, traverse the footprint in a
directed manner. Because of the intrinsic stochasticity of the
mechanochemistry of the CRE and that of the diffusive motion
of the DNA loop, the overall motion of the CRE is noisy and
the time it takes to traverse the footprint is random.

The main question we address in this paper is the following:
If 〈T 〉 is the MFTT, what is the dependence of 〈T 〉 on the
concentration of ATP in the surrounding aqueous medium? To
our knowledge, in the published literature neither systematic
experiments nor any analytical theory has addressed this
question. In this paper, by extending Chou’s model [29]
of CRE, we capture the role of ATP explicitly and derive
an analytical expression for the dependence of 〈T 〉 on the
concentration of ATP.

A CRE may be regarded as a molecular motor where input
energy is derived from ATP hydrolysis and the output is
mechanical work. The directed movement of the CRE may
be caused either by a power stroke or by a Brownian ratchet
mechanism [2]. The kinetics of the ATP-dependent CRE motor
is formulated in our model in terms of a set of master equations.
The kinetic scheme can be interpreted in terms of both power
stroke and Brownian ratchet mechanisms.

One interesting question [28] in the context of CRE is
whether the CRE translocates along the DNA by moving
around the nucleosome, or whether the CRE anchors on
the histone octamer and “pumps” DNA by pulling around
the octamer. From the perspective of physicists, these two
alternative scenarios can be viewed as merely a change of
frame of reference- one is fixed with respect to the DNA
whereas the other is fixed with respect to the CRE. Therefore,
we describe the operation of the CRE with respect to a
reference frame with respect to which the CRE translocates
along the DNA, but the model can be reformulated by a
coordinate transformation so as to capture the alternative
scenario where the CRE pumps the DNA.

III. THE MODEL

We model a mononucleosome where a dsDNA is wrapped
one-and-three-fourths turn around a disk-shaped spool made
of histone proteins [see Fig. 1(a)]. Following Chou [29],
we consider the scenario where the CRE “wedges itself
underneath the histone.”
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FIG. 1. (Color online) A schematic representation of the isolated
nucleosome.

The sites of histone-DNA contact along the DNA chain are
represented as a one-dimensional lattice. Therefore, the lattice
constant is, typically, 10 bp [see Fig. 1(b)]. The total number
n of lattice sites is equal to the total number of histone-DNA
contact in a single nucleosome.

A. Flap, loop, and diffusive sliding of histone spool

In this section we present a summary of Chou’s ideas
[29] which we need in the next section where we extend
Chou’s model. Here we consider the simple situation when
no CRE is present and the kinetics of the system is governed
solely by spontaneous thermal fluctuations. Because of these
fluctuations, from either end of the histone-DNA contact
region, small segments of DNA momentarily unwrap from
the histone spool at a rate ku. For energetic reasons, the most
likely length of such a segment would be one lattice spacing,
i.e., about 10 bp. Following Chou [29], we call such unwrapped
segments a “flap.” The rate of the reverse transition, in which
rebinding of the DNA flap with the histone occurs, takes place
at a rate kb.

A flap need not remake the original histone-DNA contact.
Instead, by pulling in an extra segment of the DNA, its next
segment can bind with the last binding site on the histone
spool, with rate α thereby forming what Chou [29] referred to
as a “loop.” While located at either end of the lattice, a loop
can revert to a flap at a rate β. The rates α and β are well
approximated by [29]

α ∼ kbe
−Ebend/(kBT ), and β ∼ ku, (1)

where Ebend is the energy cost of bending the DNA into the
shape of the loop.

A loop can step forward or backward. In the absence of any
CRE, the rates of the forward and backward steppings of the
loop are equal (denoted by k), provided the size of the loop
Lloop remains unaltered (see Fig. 2); in each forward step it
unwraps one segment of DNA from the histone in the direction
of its hop and rewraps another equally long segment behind it.

n* n .......n−1 2 1 0*                 0
α k k β b

k

β k k α k
u

FIG. 2. A schematic representation of the position of the ther-
mally generated flap and its diffusion along wrapped DNA.

Therefore, one can approximate k by [29]

k ∼ ku

(
kb

(kb + ku)

)
. (2)

When a loop, after entering the lattice from one end, makes
an eventual exit from the other end, it completes the “sliding”
of the histone spool by a distance Lloop along the DNA in
the opposite direction. Therefore, from the perspective of the
sliding histone spool, its effective rate of hopping by a step of
size Lloop along the dsDNA strand is the same as the rate pn

at which a DNA loop of length Lloop traverses the lattice of n

sites from one end to the other.
Suppose Pj (t) denotes the probability that the loop is

located at j (0 � j � 1). Following Chou’s arguments, based
on master equations for Pj (t), one gets [29]

pn = αkku

(n − 1)βkb + k(α + 2kb)
. (3)

In the absence of a CRE, the traversal of a DNA loop of length
Lloop from left to right is as likely as that from right to left.
Therefore, the histone spool can slide forward or backward,
with equal rate pn, by a step of size Lloop. As we’ll see in
the next subsection, peeling off of the DNA from the histone
spool by a CRE motor keeps decreasing the effective value of
n which, in turn, increases the effective sliding rate pn.

B. Kinetics of a CRE-driven directed sliding of histone spool

Next, we consider the effect of DNA loop diffusion on the
ATP-dependent translocation kinetics of a CRE. The model
and results presented in this section are extensions of Chou’s
work [29] by incorporating explicitly a Brownian ratchet
mechanism for CRE motors.

As in Ref. [29], we assume that the step size of the CRE
motor is identical to the length of the thermally generated
DNA loop. Therefore, the mechanical movements of the
CRE motor can be described as that of a “particle” on
the one-dimensional lattice on which the equispaced sites
denote the histone-DNA contact points. We denote the position
of the CRE motor on this lattice by the integers m. We now
extend Chou’s model [29] by exploiting a superficial similarity
with the Garai-Chowdhury-Betterton (GCB) model [38] for
the Brownian ratchet mechanism of monomeric helicase
motors.

A DNA helicase unwinds a dsDNA and translocates along
one of two strands. At any arbitrary instant of time, the
configuration of the system looks very similar to that shown
in Fig. 1(b), except that the surface of the DNA spool and
the dsDNA would be replaced by the two strands of the
dsDNA itself. The lattice constant is 1 bp in the case of
a helicase, whereas it is about 10 bp in Fig. 1(b). In the
Brownian ratchet mechanism, momentary local unwinding of
a segment, typically 1 bp long, takes place at the fork by
spontaneous thermal fluctuation; the opportunistic advance of
the helicase merely prevents closure of the segment. Similarly,
in the Brownian ratchet mechanism of the CRE, the CRE is
assumed to “wedge” itself just in front of the DNA-histone
fork. The CRE motor can move forward only if the segment
in front of it is unwrapped by thermal fluctuation.
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FIG. 3. (Color online) A schematic representation of the transi-
tion of the CRE between its two states.

The mechanochemical cycle of the CRE is captured in our
model exactly the same way in which that of the helicase
was formulated in the GCB model [38]. We assume that the
sequence of states in each mechanochemical cycle of a CRE
can be combined into two distinct groups which we label by
the integers 1 and 2 (see Fig. 3). The allowed transitions and
the corresponding rate constants are shown in Fig. 4.

The physical processes captured by these rate constants
can be motivated by a comparison with the abstract Brownian
ratchet mechanism, illustrated in Fig. 5. ATP hydrolysis by
the CRE drives its transition from state 1 to state 2 at a rate
ω21. Let us assume that the motor experiences two different
types of potentials in states 1 and 2. Let us further assume that
initially the periodic potential, with an asymmetric sawtooth-
like period, is kept on for a while, and during this time the motor
settles at a position that coincides with one of the minima of
this potential. Now if this potential is switched off, then the
probability distribution of the position of the motor will spread
as a symmetric Gaussian. After some time this Gaussian profile
is broad enough to overlap with the next well (shaded region
in Fig. 5), in addition to the original well. Now, if the sawtooth
potential is again switched on, then with a nonzero probability
(that is proportional to the area of the shaded region) the motor
will find itself in the next well. Our model accounts for this
possibility with the transition associated with the rate constant
ω

f

12. There is also a finite probability that the particle stays
back in its original well; this is captured by the transition with
the rate constant ω12.

The CRE motor would step forward at the rate ω
f

12 if the
next site in front is cleared. But if the next site is not cleared
and it has to wait for the unwrapping of the DNA segment by
thermal fluctuation. Consequently, its effective hopping rate

ω̃
f

12 = ku

(
ω

f

12(
ω

f

12 + kb

))
(4)

is reduced from the free hopping rate ω
f

12 by a factor that
depends on both ku and kb.

1 1

2 2 2

mm−1 m+1

ω
ω

21
12
f

ω
12

1

FIG. 4. A schematic representation of the position of the motor
with two states of the model.

ω ω 12
f

ω 12

21

Flat Potential

Potential

Asymmetric Periodic

FIG. 5. (Color online) A schematic representation of the
Brownian ratchet mechanism.

When a diffusing loop reaches in front of the motor, it
momentarily creates a flap of two bond segments. Three dif-
ferent transitions are now possible (see Fig. 6): (i) the motor’s
position remains unaltered while the two open segments close,
(ii) the motor moves forward by one step while one segment
of the flap closes; (iii) the motor moves forward by two steps
and the flap cannot close. The rate for the process (i) is kb/2,
irrespective of the “chemical” state of the motor. However,
the rates of the processes (ii) and (iii) depend on whether the
motor was in the “chemical” state 1 or 2. If the motor is in state
2, the rate of process (ii) is given by [(ωf

12)−1 + k−1
b ]−1 and

g0

g2

g1

(a)

(b)

pn 
*

*

*

*

**

f0

f2

f1

pn 
*

*

*

*

**

FIG. 6. (Color online) Schematic representations of the possible
transitions when the motor is in front of the open flap. In (a) and
(b) the motor is in the chemical state 1 and 2, respectively.
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that of process (iii) is given by [(ωf

12)−1 + (ω21)−1 + (ωf

12)−1].
Therefore,

f0 = kb

2λf

, f1 = ω
f

12kb(
ω

f

12 + kb

)
λf

, f2 = ω
f

12ω21

λf

(
2ω21 + ω

f

12

) ,

(5)

with the normalization constant

λf = kb

2
+ ω

f

12kb(
ω

f

12 + kb

) + ω
f

12ω21(
2ω21 + ω

f

12

) , (6)

where the symbols f0, f1, and f2 are the probabilities of
processes (i), (ii), and (iii) above when the motor is in the
“chemical” state 2. Similarly,

g0 = kb

2λh

, g1 = kbω21ω
f

12(
ω21ω

f

12 + kbω
f

12 + kbω21
)
λh

,

(7)

g2 = ω21ω
f

12

2
(
ω

f

12 + ω21
)
λh

,

with the normalization constant

λh = kb

2
+ kbω21ω

f

12

ω21ω
f

12 + kbω
f

12 + kbω21

+ ω21ω
f

12

2
(
ω

f

12 + ω21
) , (8)

the corresponding probabilities, when the motor is in the
“chemical” state 1.

Suppose N is the maximum number of histone-DNA
contacts possible in the nucleosome. Let m denote the
instantaneous position of the motor. n is the distance between
the motor and the far end of histone-DNA contact. The master
equations for the probabilities P (m,n,t) are as follows:

For n � N + 1,

dP1(m,n)/dt

= ω12P2(m,n) − ω21P1(m,n) + ω
f

12P2(m − 1,n + 1)

+pN [P1(m,n + 1) + P1(m,n − 1) − 2P1(m,n)] (9)

and

dP2(m,n)/dt

= ω21P1(m,n) − ω12P2(m,n) − ω
f

12P2(m,n)

+pN [P2(m,n + 1) + P2(m,n − 1) − 2P2(m,n)]. (10)

For n = N ,

dP1(m,N )/dt = ω12P2(m,N ) − ω21P1(m,N )

+ω
f

12P2(m − 1,N + 1)

+pN [P1(m,N + 1) − P1(m,N )]

+pN [f1P2(m − 1,N ) + g1P1(m − 1,N )]

+pN−1g0P1(m,N − 1) (11)

and

dP2(m,N )/dt = ω21P1(m,N ) − ω12P2(m,N ) − ω̃
f

12P2(m,N )

+pN [P2(m,N + 1) − P2(m,N )]

+ f0pN−1P2(m,N − 1). (12)

For 3 � n � N ,

dP1(m,n)/dt = ω12P2(m,n) − ω21P1(m,n)

+ ω̃
f

12P2(m − 1,n + 1) − pnP1(m,n)

+pn[f1P2(m − 1,n) + g1P1(m − 1,n)]

+pn+1[f2P2(m − 2,n + 1)

+ g2P1(m − 2,n + 1)]

+ g0pn−1P1(m,n − 1) (13)

and

dP2(m,n)/dt = ω21P1(m,n) − ω12P2(m,n)

− (
ω̃

f

12 + pN

)
P2(m,n)

+ f0pn−1P2(m,n − 1). (14)

For n = 2,

dP1(m,2)/dt = ω12P2(m,2) − ω21P1(m,2)

+ ω̃
f

12P2(m − 1,3) − p2P1(m,2)

+p2[g1P1(m − 1,2) + f1P2(m − 1,2)]

+p3[g2P1(m − 2,3) + f2P2(m − 2,3)]

(15)

and

dP2(m,2)/dt = ω21P1(m,2) − ω12P2(m,2)

− ω̃
f

12P2(m,2) − p2P2(m,2). (16)

For n = 1,

dP1(m,1)/dt = ω12P2(m,1) − ω21P1(m,1)

+ ω̃
f

12P2(m − 1,2) − kuP1(m,1)

+p2[f2P2(m − 2,2) + g2P1(m − 2,2)]

(17)

and

dP2(m,1)/dt = ω21P1(m,1) − ω12P2(m,1) − kuP2(m,1).

(18)

C. Footprint traversal time

We define Pμ,n(t) = ∑
m Pμ(m,n,t) as the probability that

the n histone-DNA contacts are intact at time t , irrespective of
the position of the CRE motor. From Eqs. (9)–(18), summing
over m, we get the following equations: For n � (N + 1),

dP1,n/dt = pN [P1,n+1 − 2P1,n + P1,n−1]

+ω
f

12P2,n+1 + ω12P2,n − ω21P1,n (19)

and

dP2,n/dt = pN [P2,n+1 − 2P2,n + P2,n−1]

+ω21P1,n − ω12P2,n − ω
f

12P2,n. (20)

For n = N ,

dP1,N/dt = −pNP1,N + ω12P2,N + ω
f

12P2,N+1

+ g0pN−1P1,N−1 + g1pNP1,N

+pNP1,N+1 + f1pNP2,N − ω21P1,N (21)

and

dP2,N/dt = −(
ω̃

f

12 + pN

)
P2,N + ω21P1,N − ω12P2,N

+pNP2,N+1 + f0pN−1P2,N−1. (22)
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For 3 � n � N ,

dP1,n/dt = −pnP1,n + ω̃
f

12P2,n+1 + ω12P2,n − ω21P1,n

+ g0pn−1P1,n−1 + g1pnP1,n + g2pn+1P1,n+1

+ f1pnP2,n + f2pn+1P2,n+1 (23)

and

dP2,n/dt = −(
ω̃

f

12 + pN

)
P2,n + ω21P1,n

−ω12P2,n + f0pn−1P2,n−1. (24)

For n = 1,

dP1,1/dt = −kuP1,1 + ω̃
f

12P2,2 + f2p2P2,2

+ g2p2P1,2 + ω12P2,1 − ω21P1,1 (25)

and

dP2,1/dt = −kuP2,1 + ω21P1,1 − ω12P2,1. (26)

For n = 2,

dP1,2/dt = −p2P1,2 + ω̃
f

12P2,3 + g1p2P1,2 + f1p2P2,2

+ g2p3P1,3 + f2p3P2,3 + ω12P2,2 − ω21P1,2

(27)

and

dP2,2/dt = −ω12P2,2 + ω21P1,2 − p2P2,2 − ω̃
f

12P2,2. (28)

We define the survival probability Sμ,n(t) to be the
probability that the CRE has not yet reached the far end of
the footprint until time t , given that initially (at t = 0) there
were n intact contacts between the histone spool and the DNA
on the footprint in front of the CRE motor. Obviously, Sμ,n(t)
is the solution of the equations for Pμ,n(t) with the initial
condition Sμ,n(0) = 1.

Interestingly, the time evolution of Sμ,n(t) can be recast as

dS1,n/dt = a+
n (S1,n+1 − S1,n) + a−

n (S1,n−1 − S1,n)

+ rn(S2,n − S1,n), (29)

dS2,n/dt = b+
n (S2,n+1 − S2,n) + b−

n (S2,n−1 − S2,n)

+ sn(S1,n − S2,n) + Fn(S1,n−1 − S2,n), (30)

where the transition rates a±
n ,b±

n ,rn,sn, and Fn depend on the
value of n as follows:

For n � (N + 1),
Fn = ω

f

12,a
+
n = pN,a−

n = pN,b+
n = pN,b−

n = pN,

rn = ω21,sn = ω12.
For n = N ,
Fn = ω

f

12,a
+
n = g0pN,a−

n = pN,b+
n = f0pN,b−

n = pN,

rn = ω21,sn = (ω12 + f1pN ).
For 3 � n < N ,
Fn = (

ω̃
f

12 + f2pn

)
,a+

n = g0pn,a
−
n = g2pn,b

+
n = f0pn,

b−
n = 0,rn = ω21,sn = (ω12 + f1pn).

For n = 2,
F2 = ω̃

f

12 + f2p2,a
+
2 = 0,a−

2 = g2p2,b
+
2 = 0,b−

2 = 0,

r2 = ω21,s2 = ω12 + f1p2.
For n = 1,
F1 = 0,a+

1 = 0,a−
1 = ku,b

+
1 = 0,b−

1 = ku,r1 = ω21,

s1 = ω12.

The master equations (29) and (30) together, effectively
correspond to the kinetic scheme shown in the Fig. 7. Using this

11 1

2 22

−+

+
a

bb

S
F

−
n

n

n n

n

a n

r
n

n+1 n n−1

FIG. 7. A schematic representation of the position of the
DNA-histone contact with two states of the model.

scheme, the MFTT for the single CRE motor can be calculated
analytically by extending the theoretical framework developed
in Ref. [39] for calculating the mean first-passage time of
random walks.

Following Pury and Caceres [39], the MFTT is given by

Tμ,n =
∫ ∞

0
Sμ,n(t)dt. (31)

Since Sμ,n(∞) = 0 and Sμ,n(0) = 1, integrating the equations
(29) and (30) with respect to t , we get

−1 = a+
n [T1,n+1 − T1,n] + a−

n [T1,n−1 − T1,n]

+ rn[T2,n − T1,n], (32)

−1 = b+
n (T2,n+1 − T2,n) + b−

n (T2,n−1 − T2,n)

+sn(T1,n − T2,n) + Fn(T1,n−1 − T2,n). (33)

By defining

�μ,n = Tμ,n+1 − Tμ,n,
(34)

δn = T2,n − T1,n,

Eqs. (32) and (33) can be expressed as

−1 = a+
n �1,n − a−

n �1,n−1 + rnδn, (35)

−1 = b+
n �2,n − b−

n �2,n−1 − snδn − Fn(�1,n−1 + δn). (36)

Now, in the special case

�1,n = �2,n = �n, (37)

Eqs. (35) and (36) become

−1 = a+
n �n − a−

n �n−1 + rnδn, (38)

−1 = b+
n �n − (b−

n + Fn)�n−1 − (sn + Fn)δn. (39)

Next, multiplying Eq. (38) by (sn + Fn) and Eq. (39) by rn,
and then adding the resulting equations, we get

−(rn + sn + Fn) = {rnb
+
n + (sn + Fn)a+

n }�n − {rn(b−
n + Fn)

+ (sn + Fn)a−
n }�n−1. (40)

Equation (40) can be rewritten as

−Cn = Bn�n − An�n−1, (41)

where

Cn = (rn + sn + Fn),

Bn = {rnb
+
n + (sn + Fn)a+

n }, (42)

An = {rn(b−
n + Fn) + (sn + Fn)a−

n }.
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We can rewrite Eq. (41) as follows:

�n−1 = Bn

An

�n + Cn

An

. (43)

For a fully wrapped histone, the MFTT td is given by

td =
N∑

n=1

�n. (44)

Using (43) in (44), we finally get

td =
N∑

n=1

[
Cn/An +

∞∑
i=1

Cn+i/An+i

i−1∏
k=0

Bn+k/An+k

]
. (45)

Since it is not easy to get an intuitive feeling for the
implications of the expression (45), we analyze its special
simpler forms in some limiting cases. In the limit of extremely
slow motors, i.e., ω

f

12 → 0, as expected, the expression (45)
for the MFTT td diverges.

For ensuring the high speed of the CRE motor, we need si-
multaneously w

f

12/kb � 1 and w21/kb � 1. If, for simplicity,
we make the additional assumption that w

f

12 is the slower of
the two, i.e., ω21 � ω

f

12, we have f0 = f1 = g0 = g1 	 0 and
f2 	 1, and g2 	 1. Hence, in this limit, Bn = 0 for n � N

and, therefore,

td =
N∑

n=1

Cn

An

	 N/ku, (46)

which is identical to the corresponding limiting value of td
reported in Ref. [29]. This is a consequence of the fact that in
the limit of an extremely fast motor, because of the assumption
of a very large value of ω21, the two-state model reduces to
an effectively one-state model. We make a numerical estimate
of td in this limit by computing an approximate value of ku.
Defining

K = kb/ku (47)

as the flap binding constant, we can rewrite Eq. (46) as

td = NK

kb

. (48)

The range of typical values of K has been used earlier by
Chou [29]. Using this range of values for K , one can estimate
ku, provided a typical value of kb is known. Therefore, we now
estimate the typical numerical values of kb following Schiessel
and co-workers [16–18]. Suppose L0(	50 nm) is the length of
the DNA that wraps around the histone spool. Let L

′ + dL be
the contour length of the loop induced by spontaneous thermal
fluctuations where (see Fig. 8) L

′
is the exposed arc length on

the histone spool that was covered by the DNA segment prior
to the loop formation and dL is a small segment of the linker
dsDNA that has been pulled into the loop.

We assume that the lifetime of a loop (τ ) is much shorter
than the average time required to form a loop. Following
Schiessel et al. [16–18], we write down the rate of loop
formation as

α 	 L0exp[−Ebend/(kBT )]

τL
′ . (49)

L
′

L = L
′
+ dL

FIG. 8. Top view of the histone octamer bound with DNA. Loop
formation involving length dL of the linker chain being incorporated
into the nucleosome, with length L′ of the exposed surface. (Adapted
from Fig. 2 of Ref. [16].)

By comparing Eqs. (1) and (49) we obtain

kb = L0

τL
′ . (50)

Since τ−1 = k characterizes the rate of unbiased diffusion of
the loop around the histone spool [16], τ 	 L2

0
D

where D is the
corresponding diffusion constant. From the Stokes-Einstein
relation D = kBT /ζ , where ζ 	 ηL

′
[16] and η is the effective

viscosity of the aqueous medium. By combining all the results
and substituting these into Eq. (50), we finally obtain

kb = kBT

ηL0(L′)2
. (51)

The estimation can be completed only if an estimate of L
′

is
available. Following Ref. [16] (Eq. (2a) of [16]), we get

L
′ 	

(
20π4κ

λR2
0

)1/6

(dL/R0)1/3R0, (52)

where κ is the bending elastic constant of the semiflexible
DNA chain, λ is the adsorption energy per unit length, and
R0 is the radius of the histone spool. Using the reasonable
values quoted in Refs. [16–18], namely, R0 = 5 nm,κ =
207.10 pN nm2,dL = 3.40 nm, and λ = 5.92 pN, we obtain
from Eq. (52) L

′ = 16.43 nm. Using this estimate of L
′
,

together with 1 kBT = 4.142 pN nm, L0 = 500 Å, and η = 1
cP, we obtain from Eq. (51) kb = 306877.4 s−1.

With the above estimated value of kb and N = 15 from
Eq. (48), we get the estimates td = 0.000024 s for K =
0.5 and td = 0.0005 s for K = 10. Such small values of
td , estimated from Eq. (46), arise from the fact that the
approximate form (46) is valid only in the limit of an extremely
fast motor. Therefore, this limiting formula provides only a
lower bound and does not correspond to real CRE motors
under physiological conditions.

In Fig. 9 we plot the normalized MFTT tdα/N as a function
of the normalized motor speed ω

f

12/α for ω12/α = ω21/α =
0.5 and a few fixed values of the parameter K . For any fixed
value of K , the normalized MFTT decreases monotonically
with the increase of the normalized motor speed and saturates
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FIG. 9. (Color online) Normalized MFTT αN−1td plotted against
the normalized motor speed ω

f

12/α for different values of K with
ω12/α = ω21/α = 0.5.

to the value given by Eq. (46) in the limit ω
f

12/α → ∞.
Moreover, for a given value of ω

f

12/α, as the flap binding
constant K increases the MFTT increases.

In Fig. 10, td is plotted against ω
f

12/α for (a) K = 10,
ω12/α = 0.8, and (b) K = 10, ω12/α = 0.1, each for a few
distinct values of ω21/α. The MFTT decreases as ω21/α

increases. This is a consequence of the fact that ω21 depends
on the ATP concentration. Small ω12/α reduces the amplitude
of peeling time.

In Fig. 11 we demonstrate that for large value of ω21/α,
which effectively speeds up the motor, reduces the magnitude
of the MFTT.

Although the qualitative trends of variations of td with
ω

f

12/α in our model is similar to that in Chou’s model [29],
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FIG. 10. (Color online) Normalized MFTT αN−1td plotted
against the normalized motor speed ω

f

12/α for different values of
ω21/α with (a) ω12/α = 0.8 and (b) ω12/α = 0.1,K = 10.
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FIG. 11. (Color online) Normalized MFTT αN−1td plotted
against the normalized motor speed ω

f

12/α for different values of
ω12/α with (a) ω21/α = 0.8 and (b) ω21/α = 0.1,K = 10.

a wide range of variation of td is possible in our model by
controlling ω21 which, in turn, can be controlled by the ATP
concentration.

In order to explore the dependence of td on the concentration
of ATP, we first assume that

ω21 = ω0
21[AT P ]. (53)

Assuming a typical value ω0
21 = 106 M−1 s−1, we have plotted

the normalized MFTT against the ATP concentration for two
different normalized values of the unhindered motor speed,
keeping the other parameters fixed. With the increase of ATP
concentration, the MFTT decreases and gradually saturates.
When ATP concentration is sufficiently high, the step with
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FIG. 12. (Color online) Normalized MFTT αN−1td plotted
against the ATP concentration [ATP] for ω12/α = 0.1, K = 10.0 and
two different values of ω

f

12/α.
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rate constant ω21 is no longer rate limiting. We also find that,
for a given ATP concentration, the higher the value of ω

f

12/α,
the shorter the MFTT td .

The linear dependence of ω21 on ATP concentration, as
envisaged in (53), may be valid only at sufficiently low
concentration of ATP. In general, ω21 may follow the usual
Michaelis-Menten equation for the rate of enzymatic reactions
(because ω21 represents the rate of ATP hydrolysis catalyzed
by the CRE motor) [40]. In that case ω21 itself would saturate
with the increase of ATP concentration, instead of increasing
linearly with [ATP].

IV. CONCLUSION

In this paper we have studied the process of ATP-dependent
chromatin remodeling. For simplicity, we have considered
only a single nucleosome consisting of a dsDNA strand
wrapped one and three-fourth turns around a cylindrical spool
made of histone proteins. We have extended Chou’s model
[29] by assigning two distinct “chemical” states to the CRE
and postulating a minimal mechanochemical kinetic scheme
for capturing the effects of ATP hydrolysis explicitly. Our
theoretical framework has been developed by exploiting a
close analogy with the unzipping of a double-stranded DNA
by a helicase [38]. We have written down the master equations

for the postulated kinetic scheme. This model of footprint
traversal by ATP-dependent CRE can be easily interpreted as
an implementation of a Brownian ratchet mechanism. From
an analytical treatment of this stochastic kinetic model, we
have derived an analytical expression for the MFTT of the
ATP-dependent CRE. We make explicit analytical predictions
on the dependence of the MFTT on (i) the unhindered speed
of the CRE, as well as on (ii) the concentration of ATP. In
principle, our theoretical predictions can be tested by carrying
out in vitro experiments with a single nucleosome.
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