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Normalized increment of crystal mass as a possible universal parameter for dendritic growth
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The unsteady growth of ammonium chloride dendrites during crystallization from an aqueous solution in a
thin capillary is experimentally investigated. The dependence of the crystal area S on the time t for various
sectors located along primary branches and side branches is measured. The hypothesis that the ratio between the
area change and the area itself [S ′(t)/S(t)] is one and the same for different but simultaneously growing parts
of an unsteady dendrite is advanced and confirmed. This conclusion allows a curve to be proposed to describe
the evolution of the dendrite area (or its part), with the form S(t) = const t a exp(−bt), where a and b are the
parameters whose values are determined in the paper. The nondimensionalization of S(t) and S ′(t)/S(t) (using
the full dendrite growth time) produces simple one-parameter functions that depend on a single parameter a

(which is presumably associated only with the physical and chemical characteristics of the crystallized system
and, in our case, is equal to 1.7 ± 0.2).
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I. INTRODUCTION

Interest in the investigation of dendrite growth during
crystallization arose long ago1 and has persisted until the
present [2–9]. This interest is primarily connected with the
fact that these structures often form during the solidification of
melts and determine many properties of metal ingots [2–4]. In
addition to researchers in material science, profound interest
in dendrite growth has been shown by researchers studying
various problems in the physics of nonequilibrium processes
[5–9]. This breadth of interest occurs because the dendrites
form in multiple so-called nonequilibrium (or dissipative)
processes, which are commonly observed in nature. There
are many examples of the formation of dendritelike structures,
such as lightning discharges, growing trees, and the develop-
ment of transport infrastructure [9,10]. Nature often chooses
these structures when it is necessary to dissipate or remove
a nonequilibrium state (during supercooling, supersaturation,
changes of electric potential, etc.) that occurs for some reason.
Consequently, researchers study dendrite crystallization as an
example that may provide insight into the general regularities
of nonequilibrium processes. The example is remarkable
because it permits easy experimental investigation, the under-
lying physical processes are well studied, and the describing
equations are relatively few and simple [5–7].

Many papers have dealt with the regularities of dendrite
development during crystallization (see, for example, reviews
[5–8]). The relation between the external shape (or the
morphology) and the growth rate (or the kinetics) of the
dendrite is an extensively studied field. At present, a dendrite
is considered to have a rigorously defined (close to parabolic)
shape and a precise growth rate at a certain supercooling
or supersaturation. When the supercooling or supersaturation
increases, the dendrite growth rate (V ) increases, and the
dendrite becomes sharper (the dendrite tip radius R decreases).

*leonidmartyushev@gmail.com
1Thus, as far back as 1611, Kepler dedicated his paper to an ice

dendrite, i.e., a snowflake [1].

It has also been shown that the quantity VR2 in the first
approximation does not depend on the supercooling or su-
persaturation, but it is determined by the material parameters
of the crystallized system. These results have received both
experimental and theoretical confirmation (see, for example,
[5–8]), and they represent important achievements; however,
many questions remain open. First, these facts relate to steady
dendrite growth. However, it is difficult to precisely detect
this dendrite growth stage (especially for dendrites that grow
under natural uncontrolled conditions rather than laboratory
and controlled conditions, in which supersaturation or super-
cooling is artificially maintained). Indeed, a dendrite crystal
has three growth stages: origination, approximately steady
growth, and rate decrease and stoppage (when supercooling
or supersaturation is removed as a result of crystallization).
Obviously, the constancy of VR2 does not hold during the
entire interval of dendrite growth.2 Second, the obtained results
are not applicable to side branches. Indeed, the sidebranches
grow at slightly lower supercooling/supersaturation, and they
exhibit a smaller growth rate than that of the primary branch.
According to the VR2 constancy criterion, side branches
should have blunter tips. However, in actual practice, their
tips usually have a considerably smaller radius of curvature
than that of the primary branch. Consequently, researchers
aiming to confirm or verify the constancy of VR2 are forced to
artificially divide the dendrite into the primary branch (which
is grown in conformity with the theory) and the side branches
(which do not conform to the theory). This artificial division
leads to some loss of universality and practical significance of
the results.3

2When decreasing supercooling/supersaturation, R increases tend-
ing to some constant value and the rate is reduced to zero. It should be
noted that a number of recent experiments (see papers [8], [11–13])
called into question the independency of VR2 from supersaturation
even in the case of steady growth.

3Indeed, when we focus the microscope on an arbitrary location in
the solution and find a dendrite, we cannot predict what we will see. It
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FIG. 1. Parabola with different sectors, for which the area is
calculated.

Let us make an intermediate summary. Dendrite crystal-
lization is a common phenomenon in nature. The parameter
VR2 cannot assume a universal role because it is not applicable
to arbitrary (unsteady) dendrite time evolution intervals, and
it fails to describe the morphokinetics of the dendrite side
branches (it is only applicable to the region near the tip of
the primary branch). If such a universal parameter exists, it
remains unknown; however, we can provide some reasoning
to indicate that such a parameter evidently exists.

A dendrite represents a certain ordered set of branches with
parabolalike shapes (for simplicity and definiteness, we shall
consider the two-dimensional case and crystallization from a
solution). Let us consider a single parabola and select a certain
sector therein with an arbitrary angle α (for example, p1 in
Fig. 1). The equation of the parabola moving along the 0Y

axis direction at a rate given by V (t) and with a tip radius
described by R(t) has the following form:

y(x,t) = −x2/ [2R(t)] +
∫ t

0
V (t)dt. (1)

As a result, the parabola area S can be written as follows:

S(t) = 2
∫ d(t)

0
y(x,t)dx − y(d(t),t)d(t), (2)

where t is the time and d(t) is the positive solution of the
equation x ctg(α/2) = −x2/[2R(t)] + ∫ t

0 V (t)dt .
It is shown that the specific change of the crystal area (which

can also be identified as the increment per unit of crystal
area, the normalized area increment, or the relative increment)

may be a primary branch with secondary branches, or it may be a large
and detached (as a result of the increase of the side-branch intervals
because of period doubling) secondary branch with forming tertiary
branches. In the second case, the researcher can take the secondary
branch as a primary branch, even when a different spatial scale is
used (when zooming in with the microscope).

S ′(t)/S(t) has an interesting property.4 Let us calculate this
quantity for the two simplest and most widespread crystalliza-
tion models.

(i) We shall assume that V (t) and R(t) are arbitrary
constants (related to supersaturation, diffusivity, etc., but
independent of time); i.e., steady dendrite growth occurs. In
this case, for small angles α, as follows from (1) and (2),
S ′(t)/S(t) = 2/t. Thus, this quantity proves to be independent
of both the supersaturation and other crystal characteristics.

(ii) We shall assume that the parabolic crystal grows under
quasisteady diffusion-limited conditions. In this case, it is
known that V (t) = �/

√
t and R(t) = �

√
t , where �, � are

some constants related to supersaturation and the physical and
chemical parameters of the considered crystallized system
[18,19]. In this case, (1) and (2) can be used to show that
S ′(t)/S(t) = 1/t . Moreover, unlike the previous case, this ratio
proves to be true for any angle α.

Thus, the simplest models considered indicate the inter-
esting behavior of the quantity S ′(t)/S(t). This quantity has
a power-law dependence on time only, during which the
parabolic5 dendrite grows in the sector selected along its
direction of growth. If the selected sector is at some angle
β to the direction of growth (Fig. 1), the quantity S ′(t)/S(t)
becomes dependent on many quantities, and there is no
such simple and universal power-law dependence on time.
According to the analysis results, the numerical factor that
multiplies time (in the considered cases, it is 0.5 or 1) depends
not only on the dependence of V and R on time but also on
the shape of the sector in which the dendrite is observed (in
particular, the numerical factors turn out to be twice smaller
for rectangular sectors). Additionally, it can be easily verified
that the numerical factor depends on the spatial dimension of
the problem.

A real dendrite consists of a primary branch and side
branches with parabolalike shapes. Will the experiment con-
firm the constancy of the quantity S ′(t)/S(t) for various
dendrite branches growing simultaneously? Will this quantity
depend on the angles α and β of the sectors? How close, in the
case of real unsteady dendrites, will the quantity S ′(t)/S(t) be
to the dependence that is given above for the simplest models
of steady and quasisteady growth? The search for the answers
to these questions forms the objective of the present study.

II. EXPERIMENTAL PROCEDURE

A. Experimental setup

An aqueous solution of ammonium chloride (NH4Cl) was
selected as a dendrite growth system (its crystallization has
been the subject of numerous studies [20–28]).

An NH4Cl solution with a concentration of 43.6 g/100
g H2O was prepared, corresponding to a saturation temper-
ature of 35◦C, and the solution was placed between two

4This parameter (which is directly proportional to entropy produc-
tion density) has attracted interest because of papers [14–17].

5The parabolicity of the dendrite front is not of fundamental
importance, and it can be easily proved that similar conclusions will
also be true; for example, in the case of rounded or rectilinear shapes
of the crystallization front.
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18 × 18 × 0.2 mm glass plates. The solution thickness be-
tween the panes did not exceed 0.05 mm. Because the diffusion
length was not less than 2D/v ≈ 0.5 mm (where v and D are the
growth rate and the dendrite diffusivity, respectively, and D =
2.6 × 10−5 cm2/s [24]), the cell prepared in such a manner can
be considered a quasi-two-dimensional cell. The prepared cell
was held at a temperature exceeding the saturation temperature
by 5◦C to homogenize the solution in the cell and remove any
possible crystal nuclei. The waiting time was not less than
10 min. Then, the cell was placed on the heavy objective table
of a BIOLAR PI microscope at a temperature of 20◦C. Because
of the thin cover glasses and the small thickness of the solution
between them, the cell attained a temperature of 20◦C within
2–3 s. Video recording of the freely growing dendrites was
started after 10–15 s. Only single freely growing dendrites that
were separated from the neighboring dendrites and the borders
of the crystallization cell by at least the diffusion length were
targeted for observation and recording (usually at 110-fold
magnification). In the vast majority of cases (94%), dendrite
growth was observed in which the secondary branches were
oriented in the 〈100〉 direction.6 No tertiary branches were
observed. In total, 96 samples were studied. The dendrites
under study were oriented almost parallel to the glass plates.
During the experiments, both less (Fig. 2) and more (Fig. 3)
symmetrical dendrites were observed. The number of less
symmetrical dendrites was slightly greater (approximately
65% of those observed). Recording was carried out using a
digital video camera with a resolution of 720 × 576, and the
size of a pixel at the selected zoom was 0.00068 mm.

B. Image processing and measurement errors

The projection area of the dendrite onto the cell surface7

was measured as follows:
(1) A video clip of the dendrite growth was divided into

separate frames with a minimum frequency of 1 frame/s.
These frames were converted to gray scale. Then, each
frame was individually processed. For this purpose, a special
software tool was written in the MATLAB (image processing
toolbox) environment.

(2) The detection of the crystal contour in each frame was
the most complicated stage of image processing. This com-
plexity arose from the automation needed for the processing
because the number of frames for each video clip could amount
to approximately 1000. Two standard methods were used: the
method of morphological erosion and the method of brightness
histogram adjustment [29]. The first method is based on
the detection of boundaries from the brightness gradient

6So-called irregular patterns [22] were observed in 4% of the cases.
A separate paper will be dedicated to the discussion of the kinetics of
these crystals.

7This value is directly proportional to the crystal mass. Indeed, the
observed dendrites are three-dimensional (e.g., they are a paraboloid
near a tip), however, side branches do not grow perpendicularly
to the glasses due to the cell’s geometry (Figs. 2 and 3). As a
conclusion, the projection area of the dendrite onto the cell’s surface
is a close approximation of the volume or mass (if the crystal density
is constant) of the whole crystal.

FIG. 2. Frames of an asymmetric dendrite of ammonium chloride
growing from the aqueous solution.

difference. This produces multiple unconnected fragments of
the crystal perimeter located along its apparent boundary.
The fragments form a continuous line by thickening. This
procedure leads to a slightly overestimated value of the
crystal area because of boundary thickening. The second
method presupposes the histogram adjustment (brightness
redistribution). The crystal object in the picture usually has
a specific brightness interval that does not cover the entire
possible range (from 0 to 255). The image pixels whose
brightness values fall outside the interval are assigned the
values of the brightness interval boundary. This manipulation
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FIG. 3. Frames of a symmetric dendrite of ammonium chloride
growing from the aqueous solution.

provides noise reduction and improves the crystal-background
contrast. This improvement enables segmentation (detection)
of the edge pixels with threshold filtering. Neither the first nor
the second method has full process automation. For example, it
is necessary to set the minimum brightness gradient difference
that is to be considered in the first method, and the brightness
interval and threshold value must be set in the case of the
second method. However, if these parameters are set for
several frames at different moments of dendrite growth, then all
intermediary frames can be processed automatically. Testing

FIG. 4. Example of the crystal contour detection and the image
binarization for the structure shown in Fig. 2 (160 s).

of these two methods on frames containing structures with
known areas and video quality similar to that of the experiment
has shown that the method based on histogram adjustment has
greater accuracy and stability in the case of automatic area
calculation. This method was selected as the main method for
image processing.

(3) After detecting the dendrite contour, the images were
binarized. The region belonging to the crystal was assigned
one color (black), and the solution was assigned another color
(white) (Fig. 4). The crystal area was found by simply counting
the black pixels. The pixels were converted to mm using the
templates of known size that were recorded under the same
conditions.

(4) As mentioned above, the detection of the crystal bound-
ary inevitably introduces error in the crystal area calculation.
Obviously, a greater ratio of the characteristic size of the
crystal R to the size of the pixel d produces smaller error.
The relative error of the area calculation with the size
determination accuracy of one pixel can be obtained from
δR = 2d/R. Consequently, for a crystal size of 10 pixels
(and a corresponding area of approximately 100–300 pixels),
the absolute error of the area determination is 20%, and
it is only 2% for a characteristic size of 100 pixels. This
estimate shows that an area measurement with an accuracy of
approximately 10% is only possible for the crystal sections
with areas of approximately 103 pixels. In the considered
case of the determination accuracy of one pixel, the relative
determination error of the crystal area increment per unit
time is approximately δ� = 2d/�, where � is the change of
the crystal size (it is assumed that the growing crystals are quite
large, and one can neglect the error of area determination). The

determination error of [S ′(t)/S(t)] is
√

δ2
� + δ2

R . For a crystal
with a characteristic dimension of 100 pixels and an increment
of 10 pixels per unit time, it is easy to determine that the error
will be at least 20% (however, the area change will be only
1%). Thus, based on the above, there is a restriction for both the
sector size during measurement of the crystal area (it should
not be very small) and for the observation time (such that the
area change is not excessively small). Therefore, in the case
of the so-called sigmoid curves (see below), the dependence
of the crystal area (mass) on time and the normalized area
increment can be determined with adequate accuracy only in
the middle section. Indeed, the crystal size is small (and δR is
high) at the initial stage, and the area change is very small (and
the role of δ� increases significantly) at the final stage. The
above issue will be considered in the next section, when the
results of the direct and indirect measurements are presented.
The values will be given in the time interval for which their
errors do not exceed 20%.
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FIG. 5. Measurement results of the dendrite shown in Fig. 2.
(a) Sectors used for area measurement. Sector sizes (in radians) are
as follows: a1 = 0.02π , a2 = a8 = a9 = 0.1π , a3 = a10 = 0.2 π ,
a4 = a6 = a7 = 0.5π , and a5 = π . The sector a5 contains the whole
dendrite grown for the selected moment of time, and sectors a6 and a7
contain only the lower and the upper parts of the dendrite, respectively.
(b) Values of the area S relative to the dendrite growth time t

for different sectors. (c) Values of the normalized area increment
S ′(t)/S(t) relative to the dendrite growth time t for different sectors.
The inset shows the relative difference between S ′(t)/S(t) of each
sector and S ′(t)/S(t) for the sector a2.

III. RESULTS AND DISCUSSIONS

In accordance with the goal of this study, the mass
increment (equivalent to the area increment in the quasi-two-
dimensional case considered here) was observed in sectors
of different sizes oriented along various dendrite branches
[see Figs. 5(a) and 6(a)]. The areas and increments were
measured and compared in every sector at the same time.
Correspondingly, the vertices of these sectors were placed on
the crystal surface at some selected moment of time, and the
crystal area contained in the selected sector was measured.
The results were processed for different time intervals of
the dendrite growth (limited to its beginning and end). The
measurement results of the area S(t), the ratio S ′(t)/S(t), and
the deviations of S ′(t)/S(t) for various dendrite sectors are
given in Figs. 5(b) and 5(c) and 6(b) and 6(c).8

8Here and below, the results of two typical experiments out of the
whole array of the obtained experimental data are presented.
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FIG. 6. Measurement results of the dendrite shown in Fig. 3. (a)
Sectors used for area measurement. Sector sizes (in radians) are as
follows: s1 = 0.02π , s2 = s7 = 0.1π , s3 = s5 = s6 = 0.5π , and s4 =
π . The sector s4 contains the whole dendrite grown for the selected
moment of time, and the sectors s5 and s6 contain only the left and the
right part of the dendrite, respectively. (b) Values of the area S relative
to the dendrite growth time t for different sectors. (c) Values of the
normalized area increment S ′(t)/S(t) relative to the dendrite growth
time t for different sectors. The inset shows the relative difference
between S ′(t)/S(t) of each sector and S ′(t)/S(t) for the sector s2.

The following conclusions can be drawn from the presented
results:

(1) The dependence of the area on the time belongs to
a sigmoid-type (S-shaped) curve. For different observation
sectors, a significant difference is observed in the values of
both S(t) (sometimes by factors of 10) and the crystal area
increment S ′(t) (as an example, see Fig. 7).

(2) In spite of the significant difference between S(t) and
S ′(t) for different sectors, the values of S ′(t)/S(t) agree in
the vast majority of cases within a range of 15% (i.e., within
the limits of the experimental error). This value exhibits a
hyperbolic dependence on time. The agreement is observed
for the small angles of 0.02π and 0.1π , but it is also observed
for large angles of 0.5π and π , which cover the whole dendrite
and all side branches. The results given in Figs. 5(c) and 6(c)
show that the dependences of S ′(t)/S(t) for the side branches
(sectors a8–a10, s7) and the primary branches (sectors a1
and a2, s1 and s2) are the same, within the limits of the
experimental error. Let us specifically note the agreement
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FIG. 7. Dependence of the area increment S ′(t) on the dendrite
growth time t for different sectors of the structure shown in Fig. 5.

within the error limits of the normalized increment for the
dendrite parts growing in sectors a7 and a6. These identical
sectors divide the dendrite into two parts with unequal areas.
Because the first sector (a7) contains the upper half of the
dendrite with the developed side branches, and the second
sector contains the lower half of the dendrite with almost no
branches, the agreement of the normalized mass increment is
an uncommon result.

Thus, the presented measurement results confirm the
hypothesis of the universality of the normalized crystal mass
increment S ′(t)/S(t) stated in the Introduction (i.e., the found
parameter is the same for different simultaneously growing
branches of the unsteady dendrite). However, two critical
questions arise:

(i) Is it possible that other quantities composed of S ′(t) and
S(t) may also be nearly equal for different sectors within the
limits of the experimental error, so that no positive conclusion
can be drawn from the above results?9 Figure 8 shows an
example of two calculations of the quantities S ′(t)/S2(t) and
S ′(t)/L(t) [where L(t) is the length of the crystal boundary
inside the sector] for sectors a2 and a5. These derived quantities
differ by 80%–350% for the two sectors, which enables this
uncertainty to be resolved.

(ii) What will happen if the sector in which the dendrite area
is measured is directed at an angle to the growing dendrite
branch? Will differences occur here, by analogy with the
simplest case considered in the Introduction (e.g., sector p2,
Fig. 1)? The measurements have indicated that the answer
is affirmative. As Fig. 9 shows, the differences between the
values of S ′(t)/S(t) increase sharply for different turns of the
sector. The error is 30%–70% when for a turn of 30◦, and it is
>120% for a turn of approximately 45◦.

Let us refer to a more detailed analysis of the dependence
of S ′(t)/S(t). Table I gives factors of the experimental point
approximation using the following three-parameter depen-
dence: a/t c − b. The correlation coefficient is at least 0.99.
According to the table data, c = 0.97 ± 0.06 for the dendrite

9The more so because, due to the sigmoid-type curves of S(t),
the numerator of the ratio S ′(t)/S(t) decreases and the denominator
increases, and, as a consequence, the value under study becomes
very small with time and its difference for different sectors is hard to
determine.

40 80 120 t (s)

S /S
( /mm s)1

2

2

200

400

600

800

0

a5

a2

40 80 120 t (s)

S /L
(mm/s)

-3

1

2 1× 0

0

a2

a5 40 80 1200 t (s)

100

200

300
S /S

2

S /L

Δ (%)′ ′

′

′

FIG. 8. For the sectors a2 and a5 (Fig. 5), the dependence of
the dendrite area increment divided by the squared area [S ′(t)/S2(t)]
and the dependence of the dendrite area increment divided by the
perimeter of the crystal boundary inside the sector [S ′(t)/L(t)]
are given. The inset shows the relative deviation of the values of
S ′(t)/S2(t) measured for the sectors a2 and a5 and the relative
deviation of the values of S ′(t)/L(t) for the same sectors.

shown in Fig. 2, and c = 1.00 ± 0.04 for the dendrite in
Fig. 3 (with a significance level of 95%). Thus, the factor
multiplying the time can be assumed to be equal to one within
the accuracy of observation. Consequently, the use of the
two-point approximation a/t − b is possible.

Table II gives factors of the experimental point approxima-
tion using the two-parameter dependence given by a/t − b.
The correlation coefficient remains at least 0.99. The factors
for different sectors of the same dendrite are close to each other,
and their distribution is nearly normal. Furthermore, in terms
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FIG. 9. (a) Sectors used for area measurement: r1, r2 with turns
of 30◦ and 45◦ with respect to the primary dendrite branch. Sector
sizes (in radians) are as follows: r1 = r2 = 0.1π . (b) Values of the
normalized area increment S ′(t)/S(t) relative to the dendrite growth
time t for the sectors. The inset shows the relative difference between
S ′(t)/S(t) of each sector (r1 or r2) and S ′(t)/S(t) for the sector a2
[Fig. 5(a)].
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TABLE I. Values of the three-parameter approximation a/t c − b of S ′(t)/S(t) for different sectors.

�������Factors
Sectors

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 s1 s2 s3 s4 s5 s6 s7

a 1.49 1.92 1.65 1.72 1.71 1.89 1.56 1.55 1.43 1.07 1.99 1.77 1.66 1.92 1.72 1.87 1.51
b 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.02
c 0.89 1.00 0.98 1.02 1.05 1.09 1.01 0.95 0.89 0.81 0.96 0.97 0.99 1.06 1.01 1.07 0.95

of the experimental accuracy, the values of the factor a agree
for sectors of different dendrites within the error limits, and the
values of the factor b do not agree. Therefore, it is reasonable
to consider one average value of the factor a, 1.7 ± 0.2. For
the factor b, the average values do not vary for different sectors
of one dendrite, but they do vary for different dendrites. Thus,
b = 0.007 ± 0.002 for the dendrite shown in Fig. 2, and
b = 0.014 ± 0.002 for the dendrite in Fig. 3. The use of a
one-parameter approximation of the form a/t proves to be too
crude for the available experimental data.

If we know that S ′(t)/S(t) = a/t − b, the analytical
dependence for S(t) can be found. The differential equation is
solved as follows: S(t) = Cta exp(−bt), where C is a constant
that can be found using the known value of the crystal area at
some moment of time.

The obtained factor a proves to be similar to the values
obtained analytically when the “growth” is considered to be
parabolic (see the Introduction). The factor is equal to 2 if
the steady growth (kinetically limited) regime is assumed,
and it equals 1 for the quasisteady growth (diffusion-limited)
regime. The obtained value lies between these limits. The
factor b characterizes the decrease of the crystal growth rate.10

However, this rate decrease is not connected with the geometric
features of the growing crystal (as it is in the case of diffusion-
limited growth in a solution with a constant supersaturation
control), but it is most likely related to the ratio between the
initial supersaturation and the time at which the supersaturation
is reduced to zero. Indeed, the initial supersaturation for the
dendrite in Figs. 3 and 2 is approximately the same; however,
it is reduced to nearly zero for ∼90 s (Fig. 3) in the first case
and for ∼160 s (Fig. 2) in the second case. Based on these time
intervals, we have b ≈ 0.014 and b ≈ 0.007, respectively. If
the supersaturation remained constant (as in the case of the
examples considered in the Introduction), the supersaturation
change would require an infinitely long time, and b = 0. Based
on the above, it becomes clear that the factor b (as opposed to
the factor a) is different for the different crystals observed in
the experiments. Obviously, this factor also differs when the

10It is clearly seen from the fact that S(t)∼ exp(−bt).

same crystal is observed at different moments of time. Indeed,
we can select sectors at different moments of time rather than
one moment of time [as it was performed in Figs. 5(a) and
6(a)]. For example, we can place sector 0.1π on top of the
primary branch 120 s before the crystal growth stops, allowing
the behavior of S ′(t)/S(t) to be studied when the crystal grows
through the sector (Fig. 10). This sector can also be placed on
top of the primary branch (for example, 70 s before the crystal
growth stops), and the measurements can be repeated. In the
first case (120 s), b ≈ 0.007, and in the second case (70 s),
b ≈ 0.004 (note that parameter a remains within the interval
of 1.7 ± 0.2).11

Thus, the brief analysis conducted herein shows that the
factor a is of a sufficiently universal nature, and it is apparently
connected with the growth regime.12 It is known [19] that
this regime is determined by the ratio between the rate of
surface processes (this rate depends on the kinetic factor of
crystallization and the characteristic size of the crystal) and
the rate of the diffusion transfer in the solution (which is
related to the diffusivity).13 The factor b is presumably not
a universal characteristic of the crystallized system, and it
evidently describes the unsteadiness inherent to spontaneous
(noncontrolled) crystallization.

Let us nondimensionalize the obtained dependences S(t)
and S ′(t)/S(t). The time t∗ of the crystal growth termination
in the selected sector is the most important time for the problem
under discussion. This time can be easily determined from the
condition that S ′(t∗) = 0. Clearly, t∗ = a/b. Let us reduce
the dependence of the area on time to the dimensionless
form, so that S̃(t∗) = 1. Then, S̃(t̃) = t̃ a exp(a[1 − t̃]) in
dimensionless units, where the dimensionless time t̃ = t/t∗,
and the dimensionless area S̃ = S/[C(a/b)a exp(−a)]. Thus,

11In the second case, the supersaturation proves to be considerably
lower than in the first case because the supersaturation decreases
exponentially rather than linearly with time.
12For the fixed shape of the sector in which the observation is carried

out and the fixed dimension of the problem.
13Essentially, the growth regime is determined by the basic physical

and chemical parameters of the crystallized system [19].

TABLE II. Values of the two-parameter approximation a/t − b of S ′(t)/S(t) for different sectors.

�������Factors
Sectors

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 s1 s2 s3 s4 s5 s6 s7

a 1.8 1.9 1.7 1.7 1.6 1.6 1.5 1.7 1.7 1.5 2.1 1.9 1.7 1.8 1.7 1.7 1.6
b, ×10−2 0.7 1.0 0.8 1.0 0.8 0.9 0.7 0.6 0.5 0.3 1.7 1.5 1.3 1.6 1.5 1.4 1.0
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0.1 mm

t1

a2

FIG. 10. Measurement of crystal area for two different intervals
of dendrite growth time. Sector t1 allows the last 120 s of the dendrite
growth to be measured, and sector a2 allows 160 s of the dendrite
growth to be measured. This selection of sector t1 fundamentally
differs from the case shown in Fig. 5 [in which all sectors allow S(t)
to be measured at the same time].

for dimensionless units, all time dependences of the crystal
area obtained in the experiment are described with the one-
parameter function t̃1.7 exp(1.7[1 − t̃]) (Fig. 11).

If we use the same time scale, the normalized area increment
has the form S̃ ′/S̃ = a(1/t̃ − 1) or (based on the results of
our experiments with the ammonium chloride crystallization)
S̃ ′/S̃ = 1.7(1/t̃ − 1). Figure 12 shows the extent to which the
obtained and pre-non-dimensionalized data deviate from this
universal dependence. For clarity, this graph is constructed
using converted coordinates in which the dependence S̃ ′/S̃ =
1.7(1/t̃ − 1) has the form of a linear function starting from
the origin of the coordinate system. The presented results
(Figs. 11 and 12) indicate that the obtained experimental data
regarding the time dependence of the area and the normalized
area increment can be described well (within 10%–15% error
limits) using the simple one-parameter dependences after the
corresponding normalization.

0.20 t

S

˜

˜

0.4 0.6

0.2

0.4

0.6

0.8

0.8

FIG. 11. Values of the nondimensionalized areas of all sectors
shown in Figs. 5 and 6 relative to the nondimensionalized time.
The nondimensionalization was carried out according to the rules
given in the present paper. The parameters a and b for the
nondimensionalization were individually taken from Table II for each
sector.

1

1

432

4

3

2

0 -ln(t)

ln 1/1.7 1( S /S+  )

˜

˜˜′

FIG. 12. Values of the nondimensionalized normalized area
increment of all sectors shown in Figs. 5 and 6 relative to the nondi-
mensionalized time. The nondimensionalization and conversion of
the coordinate axes were carried out according to the rules given in the
present paper. The parameters a and b for the nondimensionalization
were individually taken from Table II for each sector.

IV. CONCLUSIONS

On the basis of the simplest geometrical reasoning, it is
possible to advance a hypothesis of the universality of the
normalized mass increment for a dendrite under unsteady
growth.14 This hypothesis is confirmed in the present paper by
the experiment with the quasi-two-dimensional crystallization
of ammonium chloride from an aqueous solution. The dendrite
area change divided by the area itself varies with time as
a/t − b for any sector oriented along the growth direction of
the dendrite branches (primary or side). The values of the
factors a and b are obtained, and their physical meaning
is discussed. This result allows an analytical form of the
curve to be proposed for description of the evolution of the
dendrite area (or its part) with time; this analytical form
can be expressed as follows: S(t) = const ta exp(−bt).15 The
nondimensionalization of quantities using the full dendrite
growth time enables S(t) and S ′(t)/S(t) to be reduced to
simple one-parameter dependences, in which the parameter
is presumably connected with the dendrite growth regime in
the solution. The given results are the first to find a universal
(invariant) characteristic for the primary and side dendrite
branches under unsteady growth. Additional experiments
with both ammonium chloride and other dendrite-forming
substances are required for complete certainty of the obtained
results and to provide further progress in the selected direction
of the study.16

14Let us repeat here that universality is considered to be the equality
of the normalized mass increments for different simultaneously
growing dendrite branches.
15There is no definite opinion regarding this issue in the literature.

In particular, the Weibull function is used to describe the dependence
of the crystal mass (area) on time [17–19,30].
16Apparently, the obtained result for the area (in the case of the quasi-

two-dimensional system) can be generalized to the crystal volume (for
the three-dimensional case) and to the dendrite growth with arbitrary
orientation with respect to cell borders. In that case, the values of the
factors will certainly change.
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