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Phase separation of binary mixtures in thin films: Effects of an initial concentration
gradient across the film
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We study the kinetics of phase separation of a binary (A,B) mixture confined in a thin film of thickness D

by numerical simulations of the corresponding Cahn-Hilliard-Cook (CHC) model. The initial state consisted
of 50% A:50% B with a concentration gradient across the film, i.e., the average order parameter profile is
�av(z,t = 0) = (2z/D − 1)�g, 0 � z � D, for various choices of �g and D. The equilibrium state (for time
t → ∞) consists of coexisting A-rich and B-rich domains separated by interfaces oriented perpendicular to the
surfaces. However, for sufficiently large �g , a (metastable) layered state is formed with a single interface parallel
to the surfaces. This phenomenon is explained in terms of a competition between domain growth in the bulk and
surface-directed spinodal decomposition (SDSD) that is caused by the gradient. Thus, gradients in the initial state
can stabilize thin-film morphologies which are not stable in full equilibrium. This offers interesting possibilities
as a method for preparing novel materials.
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I. INTRODUCTION

Pattern formation associated with phase-transition kinetics
is a problem of fundamental interest in statistical mechanics
and finds important applications in materials science [1–5].
The typical phenomena studied in this context are formation of
interconnected sponge-like structures via spinodal decomposi-
tion [4,6] of mixtures, dendritic crystal growth [7], spiral wave
patterns in reaction-diffusion systems and biological systems
[8,9], kinetics of mesophase formation in amphiphilic soft
matter systems [10], and so on. Under many circumstances,
the system is confined by external boundaries: The generic
problem is phase-separation kinetics of binary mixtures (A,B)
confined in thin films of thickness D (see Refs. [11–14] for
recent reviews). The film surfaces provide boundary conditions
for the Cahn-Hilliard-Cook (CHC) equation that describes the
growth of A-rich and B-rich domains in the bulk of such
a mixture. These boundary conditions cause the formation
of a transient layered structure via a process termed as
surface-directed spinodal decomposition (SDSD) [15]. An
SDSD wave corresponds to a concentration profile with a wave
vector oriented perpendicular to the wall and the wavelength
λ(t) growing with time t . The preparation of multicomponent
thin films finds useful applications as protective coatings of
surfaces, lubricants, templates for nanotechnology, etc., and,
hence, many studies of SDSD can be found in the literature
(e.g., experiments on polymer blend thin films are reviewed in
Ref. [11]).

In the context of producing multicomponent thin films
on substrates, it is rather natural to consider a situation
where the concentration of the constituents across the film
in the initial state is not constant but exhibits a gradient. For
example, creating a thin film of a small-molecule mixture
by vapor deposition, or by slow adsorption from a solution,
it is possible that the composition of the vapor or solution
changes gradually with time after the film growth has started.
Further, external fields (gravity, electric fields, etc.) can
also be responsible for thin films exhibiting such gradients.
For example, anisotropic microporous polymer membranes

are produced via thermally induced phase separation of a
polymer blend with an initial concentration gradient (the
latter is produced by evaporating the diluent from the top
surface of the film) [16]. Experimentally, one can also create
composition gradients [17] by bringing a macroscopically
segregated system back into the one-phase region, where the
interface broadens by interdiffusion to any desired mesoscopic
width and then quenching the system back into the miscibility
gap. Thus, phase separation in a system with a concentration
gradient arises in many contexts [17,18]. There have also been
some preliminary theoretical studies of structure formation
triggered by a region with a linear concentration gradient
sandwiched between large regions of the bulk coexisting
phases [18–21].

There has been intense interest [11–14] in the interplay
of finite-size effects (associated with a nanoscopic film
thickness) and preferential adsorption which may lead to
layered structures in equilibrium [22,23]. However, the effects
of composition gradients across a thin film and their interplay
with the surface effects have so far received scant attention. It
is the purpose of the present work to close this gap. We shall
present model calculations to show that concentration gradi-
ents may stabilize very long-lived metastable morphologies,
differing very much from the true equilibrium.

This paper is organized as follows. In Sec. II, we discuss our
theoretical modeling. In Sec. III, we present detailed numerical
results. Section IV concludes this paper with a summary.

II. THEORETICAL MODELING

The model that we study is the dimensionless version of
the standard CHC equation with conserved order parameter �

(normalized to ±1 in equilibrium) [1–5]:

∂

∂t
�(�r,t) = �∇ ·

{
�∇

[
−� + �3 − 1

2
∇2�

]
+ �θ (�r,t)

}
. (1)

For studying thin films of thickness D, we restrict the z

coordinate of the vector �r to the range 0 < z < D. Note that,
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for simplicity, we have assumed that the kinetic prefactors
(describing the interdiffusion of particles, etc. [24]) are
independent of �. The units of time and length are chosen
such that the mobility prefactor in Eq. (1) is absorbed in the
time scale, and the prefactor of the ∇2� term is absorbed in the
length scale, as is the standard practice [12–14]. The random
noise �θ (�r,t) satisfies the conditions (the overbar denotes a
statistical average)

θi(�r,t) = 0,

θi(�r ′,t ′)θj ( �r ′′,t ′′) = 2εδij δ(�r ′ − �r ′′)δ(t ′ − t ′′). (2)

Here ε characterizes the strength of the noise. We use a finite
linear dimension L with periodic boundary conditions in the
x direction. In the z direction, which is perpendicular to the
surfaces, we have a no-flux boundary condition at z = 0,D,
i.e., {

∂

∂z

[
−� + �3 − 1

2
∇2�

]
+ θz

}
z=0,D

= 0. (3)

Additionally, we have boundary conditions describing the open
surfaces [14]:

∂

∂z
�(x,z,t)

∣∣∣∣
z=0,D

= 0. (4)

Note that the two surfaces are perfectly neutral (unlike
Ref. [14], no surface field acts on �).

The noise amplitude is chosen as ε = 0.041, which cor-
responds to a deep quench with T = 0.22Tc, where Tc is the
critical temperature of the bulk mixture [14]. Equations (1)–(4)
are solved numerically via a Euler-discretization scheme with
mesh sizes �z = �x = 1 and �t = 0.03. Equations (4) are
realized by setting �(x,0,t) = �(x,1,t) and �(x,D + 1,t) =
�(x,D,t).

The initial condition for a run consists of small-amplitude
random fluctuations about a concentration gradient,

�av(z,t = 0) ≡ �in(z) = (2z/D − 1)�g, (5)

where �g characterizes the strength of the gradient. All sta-
tistical quantities presented here are obtained as averages over
n = 100 independent runs (with different initial conditions).
We have checked that our results are qualitatively unchanged
for other choices of ε and/or smaller mesh sizes.

III. DETAILED RESULTS

There is broad evidence that (in the absence of concen-
tration gradients) the phase-separation kinetics of systems in
two dimensions (L × D geometry) and in three dimensions
(L × L × D geometry) is very similar [12–14]. Thus, we
expect that it suffices to consider the simpler case of L × D

systems (which needs much less computer time) even if we
wish to address real systems in d = 3 dimensions. Figure 1
shows a series of evolution snapshots up to large times for
D = 50,L = 512, and �g = 0.2,0.6. At the shortest time
shown (t = 180), the typical linear dimension 	(t) of the
domains is much larger than unity but still clearly less than D.
Thus, one has an irregular domain morphology, with relatively
weak dependence on �g . For t = 18 000, the domain size
	(t) has become comparable to D, but the domain walls are

t = 1800 t = 1800

t = 18000 t = 18000

t = 1800000 t = 1800000

(a) Ψg = 0.2,  D = 50

t = 180

(b) Ψg = 0.6,  D = 50

t = 180

x

z

L

D

FIG. 1. Evolution snapshots of D × L thin films with D =
50,L = 512, for four times (t = 180,1800,18 000 and 1 800 000,
respectively). We show results for �g = 0.2 (a) and �g = 0.6 (b).
Regions with �(x,z,t) > 0 are shown in black, and regions with
�(x,z,t) < 0 are shown in white. We notice that the last snapshot in
(a) exhibits two AB interfaces of length D, whereas the final snapshot
in (b) exhibits a single interface of length L.

predominantly oriented parallel to the walls (particularly for
large �g). However, when domain walls hit the surfaces, the
contact angle is 90◦, as expected for local equilibrium when no
surface field acts (sphere-cap shaped droplets attached to the
wall should then be semicircular). For the latest time shown
in Fig. 1 (t = 1 800 000), only the system with �g = 0.2
has reached the real equilibrium, i.e., two domains with
walls perpendicular to the boundaries. This state has a total
interfacial free-energy cost of 2σD, where σ is the AB
surface tension. This is much less than the cost σL for the
metastable layered structure [Fig. 1(b)] that persists for large
�g . The layered structure can be destabilized by either of two
mechanisms: (a) the long-wavelength sinusoidal deformation
of the interface which hits the boundary of the film and
(b) the nucleation and growth of a plug across the width of the
film. Empirically, we find that the layered structure persists
on the time scales of our simulation for D = 50 if �g � 0.44.
We will shortly present arguments for the dependence of the
critical value of �g on D.

We also note that crossing the mean-field spinodal at
the boundaries (�g > �sp 	 0.577) does not lead to any
significant differences in the growth behavior, as expected from
experiment [17] and from general theoretical considerations
[6]. The singular behavior at the spinodal results from a
mean-field approach and is rounded off by fluctuations which
we include in Eq. (1).

It may be argued that the situation considered in the present
paper, namely a film with perfectly neutral walls (enforcing
domain walls in equilibrium that are strictly perpendicular to
the walls), is very special. However, we stress that the situation
can readily be generalized to films confined by symmetric
walls which prefer one of the phases. If we have equal amounts
of both phases present in the film, we always have a final
equilibrium state with one or two domain walls running across
the film for L 
 D. (There are two domain walls if we apply
periodic boundary conditions in the x direction and a single
domain wall if free boundary conditions are used.) Of course,
these domain walls are not straight but curved, depending on
the boundary conditions acting at the walls.
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Consider the limit where D is much larger than the intrinsic
width of interfaces between coexisting phases, which, for the
sake of illustration, we now call “vapor” (v) and “liquid” (l).
The vapor-liquid interface then hits the “wall” (w) at a contact
angle θ which obeys the well-known Young equation,

γwv − γwl = γvl cos θ. (6)

Here γwv , γwl , and γvl denote the wall-vapor, wall-liquid, and
vapor-liquid interfacial tensions. Since | cos θ | � 1, we have
“complete wetting” if γwv − γwl > γvl and “complete drying”
if γwv − γwl < −γvl . In the first case, the wall will be coated
by a (thin) wetting layer, so the actual interfacial energy of
the vapor against the wall is γwv = γwl + γvl . In the second
case, the wall is coated by a (thin) drying layer, so the actual
liquid-wall free energy is γwl = γwv + γvl . The term thin refers
to a layer whose thickness is negligible in comparison with
the film thickness D but large in comparison with molecular
distances (the thickness of such wetting/drying layers scales
as ln D for short-range forces at the walls).

Figure 2 shows the structure of the system in the vicinity of
the wall in the various regions that are of interest here. (Note
that the “neutral wall” situation, corresponding to cos θ =
0, is just intermediate between “incomplete drying” and
“incomplete wetting.”) In the region of incomplete drying and
incomplete wetting, about half of the total boundary (the total
boundary has the length 2L) is exposed to the vapor and half to
the liquid. Hence, the total interfacial energy due to the walls
is (γwv + γwl)L, since the contribution due to the vapor-liquid
interface can be neglected for D � L. In this spirit, one also
does not need to worry about contributions to the interfacial
energy due to the three-phase contacts where the vapor-liquid
interface hits the walls (Fig. 2, central part), nor about the
curvature contribution to the vapor-liquid free energy, and so
on. Uniformly layered structures (without interfaces running in
the z direction across the strip) always cost more interfacial free
energy than the equilibrium structures shown in Fig. 2(b). This
argument remains true for other volume fractions φ,1 − φ of
the two coexisting phases. A different situation could arise only
in a system with “antisymmetric” walls, such that the lower
wall favors the liquid and the upper wall favors the vapor, for
example. In the case of complete wetting, one then has a single
vapor-liquid interface running parallel to the walls. In the case
of incomplete wetting, the interface runs across the strip from
the lower wall to the upper wall, but it is not perpendicular to
the walls; it is inclined according to the contact angle.

However, antisymmetric walls are hardly realized in prac-
tice, while symmetric walls (as considered in Fig. 2) are the
generic case. Thus, the neutral wall case is a representative
example of the behavior to be expected in practice. Moreover,
if D is not much larger than the molecular scale, the
wetting/drying transitions are strongly rounded and the change
of the behavior encountered when one increases γwv − γwl

is rather gradual. On the molecular scale, neither the liquid
nor the vapor phase is homogeneous near the walls, and,
hence, these regions are not really distinct from wetting or
drying layers which have only a thickness of a few molecular
diameters. From the above discussion, it should be clear that
including surface fields in the boundary condition in Eq. (4)
adds interesting details (see Fig. 2) but will not modify the
basic features of our description.

θcos

(2γ Ll l+ γ  )vw

2(γwv+ γ  )Lvl

2(γ v Ll l+ γ  )w

(2γ vwv+ γ  )Ll

}
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FIG. 2. (a) Graphical illustration of Young’s equation, showing
cos θ as a function of (γwv − γwl)/γvl , indicating the regimes
of complete and incomplete drying, as well as incomplete and
complete wetting, respectively. (b) The equilibrium state [for the
case where both coexisting phases, vapor (v) and liquid (l), occupy a
volume fraction of 50% of the strip] contains an interface between the
coexisting phases. On average, this runs perpendicular to the walls
(w) at x 	 L/2, irrespective of whether wetting/drying is complete or
incomplete. For (γwv − γwl)/γvl < −1 (complete drying), wall-liquid
contact is avoided because of a thin drying layer, which leads to a
cost of 2γvl(L/2) of vapor-liquid interfacial free energy, in addition
to the free energy cost of the vapor at the two walls, 2γwlL. Thus, the
total free energy cost is (2γwv + γvl)L. (c) However, if one considers
a layered structure [left panel in (c)], the two vapor-liquid interfaces
extend over L instead of L/2 only. Hence, the total free energy cost
is 2(γwv + γvl)L. Likewise, the layered structure occurring under
conditions of complete wetting [right frame of (c)] has an interfacial
free energy cost 2(γwl + γvl)L. This exceeds the free energy cost of
the equilibrium structure in (b), which is (2γwl + γvl)L. In comparison
with γvlL, the cost of the perpendicular interface (∼γvlD) is always
neglected, since L 
 D.

After this digression on the equilibrium state the system
evolves toward, we now turn to the time evolution predicted
by our model. Particularly interesting is the behavior of the
order parameter profile �av(z,t), averaged in the x direction
parallel to the surfaces (Fig. 3). The initial linear profile
[Eq. (5)] persists for some time in the central part of the
film, while near the boundaries the linear profile is modulated
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FIG. 3. Order parameter profiles, �av(z,t) vs. z, averaged over
the x direction parallel to the boundaries. We show results for D =
50,L = 512, and �g = 0.2 (a), �g = 0.6 (b). Five times t are shown,
as indicated.

in a wavelike fashion, reminiscent of SDSD [11–14]. For
thinner films with D = 30 (not shown), the waves starting
from z = 0 and z = D have already interfered near z = D/2
by t = 180. However, this is not the case for D = 50, where
opposite SDSD waves coalesce for t 	 1800. When this
interference has occurred, the extrema of �av(z,t) at z = 0,D

start to become more pronounced. Further, �av(z,t) resembles
a sigmoidal profile like tanh[(z − D/2)/w(t)], with w(t) being
an effective time-dependent interfacial width.

Note that all the data sets shown in Fig. 3 only reflect the
approach toward the layered metastable state with a single
interface parallel to the walls, but not its decay. This decay is
seen on the time scales of Fig. 3 (t < 18 000) if we study
thinner films, such as D = 20, and weaker gradients. In
contrast, the same gradient for a much thicker film (D = 70)
requires much longer to reach the metastable state with a
single interface. The monitoring of its subsequent decay would
require an enormous computing effort. The time scale for
reaching the metastable state can be roughly estimated from
a comparison of the length scale R1(t) (thickness of the
enrichment layer of the SDSD wave) with D/2. The SDSD
waves interact when R1(t) ∼ D/2. If R1(t) � D/2, we still
have the interconnected structure seen for �g = 0.2,D = 50,
and t = 180. For t = 1800, one can already recognize a
(very rugged) interface running on average in the x direction,
while some bubbles (or droplets) are still present in both
phases. At t = 18 000, most bubbles and droplets have gone,
and the interface has straightened out. Thus, the memory
of the initial state with the gradient biases the structure of
the system for very large times. We also emphasize that the
lateral linear dimension L has been varied over a wide range
(256 � L � 2048) but the results are independent of L.

If one estimates that R1(t) grows like the bulk length scale
for a system with conserved order parameter [25], 	b(t) ∼
t1/3, the condition R1(t) ∼ D/2 yields tms ∼ D3 (neglecting
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FIG. 4. Normalized correlation functions C(x,z,t)/C(0,z,t) vs.
x/	(z,t) for �g = 0.2 and z = 10 (a), and z = D/2 = 25 (b). Panel
(c) shows the time dependence of the length 	(z,t) for various layers,
as indicated. Panel (d) shows 	(z = 0,t) for several values of �g .

all prefactors of order unity). However, the time to nucleate
a perpendicular domain wall is much larger, tplug ∼ exp(σD),
since the interface tension σ in our model is of order unity. In
order to quantify the evolution of the structure, we consider
the layerwise correlation function (Fig. 4)

C(x,z,t) = L−1
∫ L

0
dx ′[〈�(x ′,z,t)�(x ′ + x,z,t)〉

− 〈�(x ′,z,t)〉〈�(x ′ + x,z,t)〉], (7)

or its Fourier transform S(k,z,t). Both quantities can be used
to introduce characteristic length scales, e.g., 	(z,t) can be
defined from C[x = 	(z,t),z,t] = C(0,z,t)/2. For bulk phase
separation, one has the Lifshitz-Slyozov growth law, 	b(t) ∼
t1/3 (independent of z); and the correlation function C(r,t)
yields a universal scaling function C̃(r/	b) [1–5]. However,
such a scaling does not work in the presence of a gradient
[Figs. 4(a) and 4(b)]. Further, the layerwise length scale 	(z,t)
shows a monotonic increase with t for small �g [Fig. 4(c)],
but, near the boundaries, a nonmonotonic behavior prevails for
large �g [Fig. 4(d)].

The similarity of the profile �av(z,t) to SDSD can actually
be put on a quantitative basis, as the following argument
shows. We linearize Eq. (1) with �θ = 0 about the initial
state �in introduced in Eq. (5), �(�r,t) = �in(z) + φ(�r,t).
In the case of a small linear gradient (�g � 1), we obtain
[� ′

in(z) = d� ′
in(z)/dz]

∂

∂t
φ(�r,t) = ∇2

[
−φ − 1

2
∇2φ − �in(z) − 1

2
� ′′

in(z)

]

= ∇2

(
−φ − 1

2
∇2φ

)
. (8)
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FIG. 5. Early-time results for the case with no noise (ε = 0).
(a) Laterally averaged profiles for t = 6,9, reminiscent of SDSD
waves. The parameters are �g = 0.1 and D = 50. (b) Plot of the
first intersection of �av(z,t) with �in(z), R1(t) vs. t , for the profiles
corresponding to D = 50 and �g = 0.02,0.05,0.1.

The corresponding boundary conditions are

∂φ

∂z

∣∣∣∣
z=0

= ∂φ

∂z

∣∣∣∣
z=D

= −� ′
in(z)

∣∣∣∣
z=0,D

= −2�g

D
. (9)

In the case of SDSD with short-range surface forces, the same
equation [Eq. (8)] results and the standard boundary conditions
are [11–14]

h1 + g� + γ
∂�

∂z

∣∣∣∣
z=0

= 0,

hD + g� − γ
∂�

∂z

∣∣∣∣
z=D

= 0. (10)

Here, the constants h1,hD are the local surface fields (coupling
linearly to the order parameter). The parameters g,γ depend
on the change of pairwise interactions near the surface of the
underlying microscopic model (e.g., a spin-exchange kinetic
Ising model). Comparing Eqs. (9) and (10), we see that Eq. (9)
is a special case of Eq. (10) with g = 0 and antisymmetric wall
potentials, h1/γ = −hD/γ = 2�g/D [22]. Thus, we expect
that the initial stages of SDSD (where a concentration wave
forms near the surface, with an enrichment layer at each surface
oriented along the surface field, followed by a depletion layer)
also arise in the present case. To test this consideration more
quantitatively, Fig. 5(a) shows a counterpart of Fig. 3, where
very early times (t < 10) are considered and we set ε = 0
in Eq. (1) (so only the noise in the initial state is amplified).
Indeed, one sees [Fig. 5(b)] that the first intersection of the
growing waves near the boundary with �in(z) (denoted as R1)
stays independent of time at early times. The wavelength is
comparable with the theoretical value that follows from Eq. (8)
for the waves with the maximum growth rate, λm = 2π (note
that this result is not precisely reproduced due to the coarseness

of the discretization, which was �z = 1/2 in this case). At
times t > 10, coarsening already sets in (the nonlinear term in
Eq. (1) matters when the fluctuations of the initial state have
been magnified enough on the scale of λm [4,6]).

Before concluding, let us clarify the conditions govern-
ing the formation of the layered state. In the absence of
any concentration gradient, domains grow isotropically in
the film according to the LS growth law, 	b(t) ∼ (σ t)1/3.
Thus, the growing domains form a bridge across the film on a
time scale tbr ∼ D3/σ . On the other hand, the SDSD profiles
reach the center of the film and coalesce on a time scale tlayer

given by the condition R1(tlayer) ∼ D/2. In the late stages
of wetting-layer growth, we have R1(t) ∼ h1(σ t)1/3 [25], so
tlayer ∼ D3/(h3

1σ ). The layered state forms when tlayer � tbr or
h1 
 1. Recalling that h1 = 2ψg/D, we expect that the critical
value of ψg for formation of the metastable layered state
scales linearly with D. Given that ψc

g 	 0.44 for D = 50, we
can estimate ψc

g 	 0.0088D = D/Dm (with Dm 	 113.63)
for arbitrary D values. The above arguments are valid for
D � Dm. What about the case with D 
 Dm? In this case, the
z dimension of the “film” is very large. The wetting layer does
not grow to such macroscopic sizes as the growth of lateral
fluctuations destroys the layered structure at large distances
from the surfaces, i.e., we do not expect the formation of a
layered metastable state for D 
 Dm.

IV. SUMMARY

In summary, we have shown that a small concentration
gradient in an otherwise random initial state of a thin film of a
mixture causes an extremely long-lived memory in the subse-
quent phase-separation process, leading to metastable layered
structures for a broad range of conditions. For weak gradients,
this process has strong similarities to surface-directed spinodal
decomposition in thin films with antisymmetric boundary
conditions. It would be interesting to explore the complications
created if static (in general asymmetric) boundary conditions
such as Eq. (10) exist in addition to gradients. We propose that
initial gradients should be useful to produce various metastable
domain patterns via phase separation processes.
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