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Kinetic mechanism for modeling of electrochemical reactions
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We propose a kinetic mechanism of electrochemical interactions. We assume fast formation and recombination
of electron donors D− and acceptors A+ on electrode surfaces. These mediators are continuously formed in
the electrode matter by thermal fluctuations. The mediators D− and A+, chemically equivalent to the electrode
metal, enter electrochemical interactions on the electrode surfaces. Electrochemical dynamics and current-voltage
characteristics of a selected electrochemical system are studied. Our results are in good qualitative agreement with
those given by the classical Butler-Volmer kinetics. The proposed model can be used to study fast electrochemical
processes in microsystems and nanosystems that are often out of the thermal equilibrium. Moreover, the kinetic
mechanism operates only with the surface concentrations of chemical reactants and local electric potentials,
which facilitates the study of electrochemical systems with indefinable bulk.
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I. INTRODUCTION

Electrochemical interactions play an important role in many
fields of science and industry. The energy storage and release
in battery technology or fuel cell technology are among the
most important scopes [1–3]. Reversible electrochemical cells
such as rechargeable batteries [4–6] can be used either for
the production of electric energy from an electrochemical
reaction or in the reverse electrolytic mode. Electrochemical
reactions in the field of corrosion science also constitute one
of the fundamental problems [7,8]. Faradaic reactions are
principal phenomena in micropumps driven by an electric
field [9–12], galvanic cells intended for metal deposition
[13], or electroseparation applications [14]. Problems emerge
in microelectrochemical systems because traditional macro-
scopic approximations such as electroneutrality or thermal
equilibrium often are not valid due to small dimensions, large
applied voltages, and a high rate of transport processes. The
relative importance of surface phenomena also increases with
miniaturization.

The theoretical study of electrochemical reactions was
initially performed by Gruz and Volmer [15]. The reaction rate
was expressed as a function of concentrations of reactants and
an actual value of electrode potential, which is the difference
between the inner (Galvani) electric potential on the metal
surface and the electric potential in an electrolyte bulk. The
Butler-Volmer (BV) equation does not take into account
processes in the compact (Stern) and diffuse (Debye) parts
of an electrical double layer (EDL) (Fig 1). Frumkin [16]
later modified the classical BV description. He considered
that the rate of electrochemical reaction depends on the
electric potential difference across the compact layer. It is
assumed that the charge transfer occurs at some atomic
distance away from the electrodes, at a reaction plane (the
outer Helmholtz plane), where the electroactive species can
react. The electrochemical methods that use the BV equation
(or the Tafel linearized equation) for the evaluation of kinetic
parameters of electrochemical reactions are electrochemical
impedance spectroscopy [17–19] and potential-relaxation
methods [20,21].

Several theoretical studies of transport processes in mi-
crosystems with Faradaic interactions have been published

[22–29]. The analysis of these systems is based on the solution
of the Poisson-Nernst-Planck (PNP) equations. The governing
PNP equations were combined with the Frumkin correction
of the classical BV kinetics. This approach allows one to
study the transport processes in the diffuse layer together with
electrochemical processes; however, it is not derived from the
character of reaction mechanism. With the growing impor-
tance of various microfluidic and nanofluidic electrochemical
sensors, electro-osmotic pumps, and dielectrophoretic sorters
(often operating under high frequencies) [30–32], there is a
serious need to develop an alternative description for systems
out of thermal equilibrium. Even if the Frumkin modification
of the BV kinetics is used, it still assumes the Boltzmann
distribution of ions at electrode interfaces [9,33], which
is simply not true in many high-frequency electrochemical
systems.

II. ELECTROCHEMICAL SYSTEM

Here we study a reversible electrochemical reaction with
one electron transfer

A+ + e− ⇀↽ A. (1)

The BV approach considers that the chemical energy barrier
for the reaction and movement of ions through the EDL is
reduced by the electrostatic energy αF�φ. The parameter α

is called a charge-transfer coefficient. The basic description of
the intensity of charge transfer can be expressed as

i = F

[
kOcb

Aexp

(
(1 − α)F�φ

RT

)

− kRcb
A+exp

(−αF�φ

RT

)]
, (2)

where i, F , R, T , and �φ are the electric current density,
the Faraday constant, the molar gas constant, the absolute
temperature, and the electric potential difference across the
EDL, respectively (see Table I). The symbols kO and kR

represent the oxidation and reduction kinetic rate constants,
respectively, and cb

A+ and cb
A are the bulk concentrations.
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FIG. 1. Scheme of electric potential profile across the electric
double layer.

The Frumkin modification [16] of Eq. (2) is

i = F

[
k′
OcAexp

(
(1 − α)�φSF

RT

)

− k′
RcA+exp

(−α�φSF

RT

)]
, (3)

where k′
O and k′

R are the modified oxidation and reduction
kinetic rate constants. The Frumkin modification takes into
account the fact that the concentrations at the outer Helmholtz
plane (cA+ ,cA) significantly differ from those in the electrolyte
bulk (cb

A+ ,cb
A). The symbol �φS denotes the electric potential

difference across the Stern layer (see Fig. 1 for the EDL
structure).

In this paper we suggest an alternative kinetic model of
the Faradaic reactions. The scheme of an electrochemical cell
arrangement is outlined in Fig. 2. We consider that a dilute
electrolyte consists of a reactive metal cation A+ and inert
ions B− and C+ that do not participate in electrode reactions.
When electrodes made from metal A are immersed in the
electrolyte that is free of A+ ions, metal A is oxidized and
A+ ions are then released into the electrolyte. This transient

TABLE I. List of constants.

Symbol Quantity Value

F Faraday constant (C mol−1) 96485
R molar gas constant (J K−1 mol−1) 8.3145
T temperature (K) 298.15
ε electrolyte permittivity (F m−1) 6.954 × 10−10

c0 electrolyte concentration (mol m−3) 1
λD Debye length (m) 9.619 × 10−9

D diffusivity (m2 s−1) 2 × 10−9
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FIG. 2. (Color online) Scheme of an electrochemical cell: (a)
transient processes when electrodes are immersed in an electrolyte
and (b) cell under a current load.

dissolution of the electrodes continues until an electrochemical
equilibrium is established (given by the Nernst equation). Both
electrodes become negatively charged [Fig. 2(a)]. If we impose
an external electric field between the electrodes, the system
works in the electrolysis regime [Fig. 2(b)]. At the surface of
the negative electrode (cathode), the reduction of A+ ions is
the dominant electrochemical reaction. The oxidation prevails
at the anode. The same amount of metal A is dissolved on the
anode and deposited on the cathode in a steady state.

III. REACTION MECHANISM

We propose the following reaction mechanism for the
reduction and oxidation processes forming the overall elec-
trochemical reaction [Eq. (1)]:

A+ + D− → A + Sact, rred = kredcA+cD− , (4)

A + A+ → A+ + Sact rox = k′
oxcAcA+ = koxcA+ , (5)

where D−, A+, and Sact denote the donor of electrons, the
acceptor of electrons (i.e., electron mediators), and active sites
on the metal surface, respectively, and k′

ox and kred are the
reaction rate constants. The surface concentration of the metal
remains approximately constant and is involved in the rate
constant kox.

In this particular case (4), the metal A participates in
the electrochemical reaction and simultaneously serves as a
mediator (between donor and acceptor). Thus the component
Sact is chemically equivalent to the metal A. However, in
many other electrochemical reactions, A and Sact are different
quantities. For example, the reduction of hydrogen ions
on a platinum electrode (Sact) results in the formation of
hydrogen (A).

We assume that permanent thermal fluctuations in electrode
matter give rise to the formation of electron-rich atoms (donors
of electrons) and electron-poor atoms (acceptors of electrons).
Schematically, the process is expressed by

D− ⇀↽ e− + Sact, A+ + e− ⇀↽ Sact. (6)
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The formation of the donors and acceptors is considered much
faster than the other reaction-transport processes (electrode
reactions, diffusion, and electromigration transport in the
electrolyte). Hence thermal equilibrium can be expected in
the form

D− + A+ ⇀↽ 2Sact. (7)

In this equilibrium the overall reaction rate is equal to zero and
we can write

kdc
2
Sact

= kacA+cD− , kdc
2
Sact

/ka = cA+cD− = KD, (8)

where ka , kd , and KD denote the donor-acceptor association
rate constant, the active site dissociation rate constant, and
the equilibrium constant of the donor-acceptor recombination,
respectively. If there is a large surplus of active sites, their
concentration can be considered constant. Alternatively, we
can assume a total concentration of the active sites as a sum
of concentration of the free active sites, electron donors, and
electron acceptors. However, this approach brings a higher
complexity to the proposed model.

The difference between concentrations of donors and
acceptors on an electrode is equal to the concentration of the
electric charge Q available on the electrode

cA+ − cD− = Q/F ≡ 2b. (9)

The combination of Eqs. (8) and (9) leads to explicit expres-
sions for the concentration of donors and acceptors

cA+ = b +
√

b2 + KD, cD− = −b +
√

b2 + KD . (10)

IV. MATHEMATICAL MODEL

If we assume the presence of a dilute electrolyte in the
electrochemical cell, the local ion concentrations ci are given
by the molar balances

∂ ci

∂ t
= −∂ Ji

∂ x
, Ji = −Di

∂ ci

∂ x
− ziDiF

RT
ci

∂ φ

∂ x
,

i = A+,B−,C+, (11)

where the molar flux of ion Ji is given by the Nernst-Planck
equation and Di and zi are the diffusivity and ion charge
number, respectively. The distribution of the electric potential
φ satisfies the Poisson equation

∂

∂ x

(
ε
∂ φ

∂ x

)
= −q = −F

∑
i

zici, (12)

where q is the electric charge density and ε is the electric
permittivity of the electrolyte (here assumed constant).

As we consider two electrodes, both made from the same
material, the same boundary conditions are used for both
electrode-solution interfaces. The zero molar fluxes are used
for ions that do not participate in the electrode reactions. The
molar flux of the reactive cation JA+ is equal to the release or
consumption via the electrochemical reactions

JA+|x=0,L = ran,cat = koxcA+ − kredcA+cD− . (13)

The actual electric charge concentration Q on the electrode
boundaries (where “an” denotes the anode at x = 0 and “cat”

denotes the cathode at x = L) has to be evaluated in order to
compute the donor and acceptor concentrations

∂Qan

∂ t

∣∣∣∣
x=0

= i − Fran,
∂Qcat

∂ t

∣∣∣∣
x=L

= −i − Frcat, (14)

where i denotes the external electric current load, which is
the principal parameter of the model. The electric potential
boundary conditions are in the following form:

∂ φ

∂ x

∣∣∣∣
x=0

= −Qan

ε
, φ|x=L = 0. (15)

Spatially uniform concentrations of B− and C+ ions and zero
concentration of the reactive ion A+ are the initial condition
for dynamical simulations

cB−,C+|x,t=0 = c0, cA+|x,t=0 = 0. (16)

The model equations are transformed into a dimensionless
form in the Appendix.

V. RESULTS

We first carry out dynamical simulations with zero electric
current imposed on the system [Fig. 2(a)]. The metal initially
dissolves due to the presence of the reactive electron acceptors
in the metal layer A+. As A+ ions are released into the
electrolyte, negatively charged electron donors D− dominate
on the metal electrodes due to the equilibrium, which is
accompanied by the relative decrease of the electric potential
(Fig. 3). As both reactants A+ and D− are now present at
the electrode surface, the reverse reaction (metal deposition)
becomes important. After a short period, the equilibrium state
between the direct and reverse reactions is reached. The
A+ concentration, the electric charge density, and the ionic
strength Is = 1

2

∑
i z

2
i ci attain maximal values at the electrode

surfaces due to the electrostatic interaction.

A. Dynamical simulations of the electrochemical
cell under a current load

Further we study the dynamical behavior of the electro-
chemical cell under a current load (Fig. 4). As the initial
condition we used the previously obtained steady state shown
in Fig. 3 (with no current load). At time t = 0 we quickly
impose a constant electric current on the electrochemical
circuit. Electrons leave the left electrode (anode) through
the external circuit and the electrode becomes positively
charged, i.e., more electron acceptors are available for the
electrochemical reaction. This leads to the metal oxidation
and release of A+ ions in the electrolyte. As the A+ ions are
electrostatically repelled from the anode, the A+ concentration
is significantly lower at the anode surface than in the bulk.
Electrons are pumped to the right electrode (cathode), where it
results in the formation of electron donors. Thus the reduction
deposition of the metal becomes the favored reaction on the
cathode. The A+ ions are electrostatically attracted to the
cathode and then reduced. In this particular case, A+ ions are
almost exhausted from the cathode vicinity due to the limited
rate of the A+ ion transport.
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FIG. 3. Initial transient in the electrochemical cell without an
electric current load. Profiles of the electric potential, A+ concen-
tration, electric charge density, and ionic strength are plotted. The
diamond-marked profile corresponds to the achieved equilibrium.
The values of the model parameters are L = 1000λD , kred = D/λ2

D ×
105 m3 mol−1, kox = D/λ2

D × 102, and KD = 10(c0λD)2.

B. Current-voltage characteristics

In the next step we construct current-voltage (CV) char-
acteristics of the entire electrochemical cell [Fig. 5(a)] and a
half cell [Fig. 5(b)]. The term �φtot in Fig. 5(a) represents the
total potential difference imposed on the electrochemical cell.
The anodic or cathodic overpotentials ηan,cat [Fig. 5(b)] are
defined as ηan,cat = �φh − �φe, where �φh is the potential
difference between the electrode surface and the cell center
(x = 500λD) and �φe is the established equilibrium electrode
potential (Fig. 3).

The CV dependences of the whole electrochemical cell
are characterized by exponential current growth for small
potential differences. When the system becomes limited by
the transport, the exponential growth is suppressed. For high
potential differences, the limiting current is reached. The
shift of the system from the electrochemically limited regime
(exponential growth) to the transport limited regime was
studied in detail. Four steady-state profiles, which correspond
to the four marked points in Fig. 5(a), are plotted in Fig. 6.
The two steady states obtained for low current densities
(square and circle) can be characterized by almost constant
ionic strength and negligible electric charge density in the
electrolyte bulk. As the voltage increases, the system shifts to
the transport limited regime (triangle and diamond). The A+
ions are the only electric charge carriers at any steady states.
A growing supply of electrons to the cathode results in the
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FIG. 4. Transient behavior of the electrochemical cell under a
current load (i = 40 A m−2). Spatial profiles of the electric potential,
A+ concentration, electric charge density, and ionic strength are plot-
ted at four selected times. The diamond-marked profile corresponds
to the achieved steady state. The values of the model parameters
are L = 1000λD , kred = D/λ2

D × 105 m3 mol−1, kox = D/λ2
D × 102,

and KD = 10(c0λD)2.

massive formation of the electron donors and in a decrease
of the electric potential. The A+ ions are then intensively
consumed on the cathode and simultaneously attracted to the
electrode surface from the electrolyte bulk. The electric-field
strength in the cathode vicinity becomes high. Hence the
other electrolyte components B− and C+ are electrostatically
expelled from this region and the ionic strength decreases.
With growing electric current, the depleted zone extends far
from the cathode. A similar phenomenon is observed in the
vicinity of ion-exchange membranes under a current load [34].

The obtained CV characteristics of the electrochemical
system are in good qualitative agreement with those given
by the classical BV theory. A detailed discussion of the
compatibility of the proposed kinetic model with the Frumkin
modification of BV kinetics is given in Sec. V F.

C. Cyclic voltammetry modeling

We would like to show the capability of our model for cyclic
voltammetry modeling. For that reason we have to slightly
modify the model. To compute the cyclic voltammetry curves
of the whole electrochemical cell we virtually impose a voltage
signal V (t) on the system. The corresponding electric current i
(an input parameter of the model) can then be simply evaluated
as i = ki[V (t) − U ], where U is the difference of the electric
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FIG. 5. The CV characteristics of (a) the whole electrochem-
ical cell and (b) half cells. The values of the model parameters
are L = 1000λD , kred = D/λ2

D × 102 m3 mol−1, kox = D/λ2
D × 102,

and KD = (c0λD)2 (dash-dotted line); L = 1000 λD , kred = D/λ2
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D × 105 m3 mol−1, kox =

D/λ2
D × 102, and KD = (c0λD)2 (dashed line).

potential between the two electrodes �φtot, [V (t) − U ] is
the voltage on a virtual resistor between the voltage source
and the electrochemical cell, and ki is a sufficiently high
proportionality constant (i.e., a reciprocal resistance of the
virtual resistor). To compute the cyclic voltammetry curves of
the electrochemical half cell we impose a voltage signal V (t)
between the source and the center of the system. Then U is
equal to �φh.

The data obtained for the whole cell are symmetric due
to the reversible chemical reaction and identical composition
of the electrodes (Fig. 7). If we plot cyclic voltammetry
data for the voltage imposed on a half cell, the symmetry
is broken, which manifests different reaction rates of the
oxidation and reduction processes. In the corresponding cyclic
voltammetry curve, the cathodic and anodic peaks can be
simply identified. Although our simulations do not precisely
mimic a typical cyclic voltammetry measurement due to the
lack of a well-stirred electrolyte bulk, the obtained cyclic
voltammetry dependences are in qualitative agreement with
the typical shape of cyclic voltammetry curves. We would like
to emphasize that our model is able to simulate the entire
cyclic voltammograms for fast sweep rates together with the
dynamics of the EDL processes. The BV kinetics operates
only with electric potential differences between two chosen
points of a system [Eqs. (2) and (3)]. The BV approach then
does not reveal the real spatial-temporal processes at electrode
surfaces.
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FIG. 6. Stationary behavior of the whole electrochemical cell
under a current load for an electric current density of 3 A m−2

(squares), 10 A m−2 (circles), 40 A m−2 (triangles), and 70 A m−2 (di-
amonds). The values of the model parameters are L = 1000λD , kred =
D/λ2

D × 105 m3mol−1, kox = D/λ2
D × 102, and KD = (c0λD)2.

D. Nonequilibrium dynamical responses

To highlight the difference in the dynamical behavior
(dynamical response) of classical models and our model, we
simulate the dynamical response of the proposed model to a
fast and symmetric ramplike change of the imposed voltage
[Fig. 8(a)]. When the voltage imposed on the electrochemical
cell increases [Fig. 8(b)] the concentration of the reactive
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FIG. 7. Cyclic voltammetry simulations: voltage imposed on the
whole electrochemical cell �φtot with a sweep rate of 2.78 kV s−1

(dashed line) and voltage imposed on one half cell �φh with a sweep
rate of 2.22 kV s−1 (solid line). The values of the model parameters
are L = 1000λD , kred = D/λ2

D × 102 m3mol−1, kox = D/λ2
D × 102,

and KD = (c0λD)2 (dashed line) and L = 1000λD , kred = D/λ2
D ×

10−3 m3 mol−1, kox = D/λ2
D × 10−2, and KD = (c0λD)2 (solid line).
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marked points on the ramplike function. The model parameters are
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KD = (c0λD)2 and the spatially uniform initial concentrations are
cA+ = 1 mol m−3, cB− = 2 mol m−3, and cC+ = 1 mol m−3.

cation A+ grows at the cathode [Fig. 8(c)]. The concentration
profiles are monotonic at the electrode and similar to the
Boltzmann profiles (distributions). If the voltage returns to its
origin value, the concentration profiles become nonmonotonic
with a concentration maximum at a distance less than one
Debye length from the electrode. Such profiles do not satisfy
the Boltzmann distribution (equilibrium). This phenomenon
occurs when the dynamics of the imposed electric field is so
fast that the EDL relaxation time λ2

D/D is longer than the
electric-field dynamics. This aspect is not taken into account
in the BV models.

E. Limiting current analysis

We compare predictions of our model with earlier theories
for a constant current load [35,36]. For comparison with the
models by Ben and Levich, we rescale our model according to
Ben’s scaling [35]. The voltage is determined as the difference
of the electric potential between one electrode and the center
of the modeling domain. The parameter l in Ben’s model is
equal to 500λD . The dashed line in Fig. 9 represents Levich’s
theoretical prediction [Eq. (17)] on the CV response of a uni-
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FIG. 9. Current voltage characteristics of the model system in the
dimensionless form introduced in Ref. [35] for Levich’s prediction
(dashed line), our model with three ions (the spatially uniform initial
conditions are cA+ = 0, cB− = 1 mol m−3, and cC+ = 1 mol m−3)
(dash-dotted line), and our model with two ions (the spatially uniform
initial conditions are cA+ = 1 mol m−3 and cB− = 1 mol m−3) (solid
line). The other model parameters are L = 1000λD , kred = D/λ2

D ×
102 m3 mol−1, kox = D/λ2

D × 102, and KD = (c0λD)2.

univalent system to the electric current input [36]

ĩ = 2{1 − exp[−�φ̃h/2 + ln(p)/2]}, (17)

where p is the surface concentration of the counterions. In our
model the surface concentration p depends on the imposed
voltage. Hence we determine this concentration from the
spatial profile obtained numerically for each imposed �φ̃h.
One can clearly see the onset of the dimensionless limiting
current. Levich’s theory predicts a limiting current value
equal to 2. The dash-dotted line is obtained by rescaling of
our CV characteristic plotted in Fig. 5. Our dependence is
characterized by a typical sigmoidal shape with an exponential
increase and the reaction limited regime. It differs completely
from Levich’s dependence; however, the limiting current value
is slightly higher than 2 and for higher voltage �φ̃h � 20 the
current increases according to Ben’s prediction [35]. First,
we introduce the reasons for this apparent discrepancy. In the
second step we will show that our model is applicable to Ben’s
and Levich’s problems. Thus we prove the robustness of our
model.

In our model we consider the presence of three ions
A+, B−, and C+. Normally there is a large surplus of
nonreactive C+ ions with respect to the reactive A+ ions.
The negative electric charge accumulated at the electrode
surfaces is equilibrated with both the reactive and nonreactive
cations. However, only the reactive ion is able to transfer
electrons via the electrolyte-electrode boundaries. A relatively
low concentration of A+ leads to a relatively low current
response to the imposed voltage or vice versa. To compare the
behavior of our model with Ben’s and Levich’s systems, we
considered a zero concentration of the C+ ion. Then our system
behaves as a uni-univalent one. By evolution integration (the
imposed electric current was slowly linearly increased with
time), we obtain the solid line in Fig. 9. The solid line coincides
with Levich’s theory for small voltages. For high voltages our
model is in agreement with Ben’s predictions. Thus our model
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is not in disagreement with earlier theoretical models (at least
in a steady state) and simultaneously allows us to model more
complex nonequilibrium systems.

There are also important works focused on electrochemical
systems with a uni-univalent supporting electrolyte that is
chemically equivalent to our three-ion system [37,38]. Almog
and Yariv derived an asymptotic current-voltage characteristic
of a sigmoidal shape [38]. Their result is in qualitative
agreement with our findings, which are depicted by the
dash-dotted line in Fig. 9. A direct comparison of the models
is not possible due to different boundary conditions for the
reactive ion.

F. Compatibility of the proposed model with the Frumkin
modification of BV kinetics

Our model is in agreement with the Frumkin modification
of the BV kinetics [Eq. (3)] at least in low-potential and
low-frequency regimes. Under such conditions, the electric
potential difference across the Stern layer �φS can be replaced
by the surface concentration of the electric charge Q divided
by the Stern layer capacitance CS giving us

i

F
= k′

Ocs
Aexp

(
(1 − α)FQ

CSRT

)
− k′

Rcs
A+exp

(−αFQ

CSRT

)
.

(18)

When Eqs. (10) and (13) are combined we obtain another
expression for the electric current density

i

F
= kox[Q/2F +

√
(Q/2F )2 + KD]

− kredcA+ [−Q/2F +
√

(Q/2F )2 + KD]. (19)

Equations (18) and (19) can be rearranged into
i

F
= k1expk2Q − k3exp−k4Q, (20)

i

F
= k5[k2Q+

√
(k2Q)2 + k6] − k7[−k4Q+

√
(k4Q)2 + k8],

(21)

where

k1 = k′
Ocs

A, k2 = (1 − α)F

CSRT
, k3 = k′

Rcs
A+ , k4 = αF

CSRT
,

(22)

k5 = kox/2Fk2, k6 = 4F 2k2
2KD, (23)

k7 = kredcA+/2Fk4, k8 = 4F 2k2
4KD. (24)

In order to obtain the same current density, these con-
ditions have to be satisfied: k1 ≈ k5 and expk2Q ≈ k2Q +√

(k2Q)2 + k6. Analogously, k3 ≈ k7 and exp−k4Q ≈ −k4Q +√
(k4Q)2 + k8. Now we plot the functions f (Q) = expk2Q and

g(Q) = k2Q +
√

(k2Q)2 + k6 (Fig. 10). Physically relevant
values of the constants k2 and k6 can be estimated: F =
96 485 C mol−1, α = 0.5, R = 8.314 J mol−1 K−1, T =
298 K, CS = 1 F m−2 (based on CS = εS/λS , where the Stern
layer permittivity and thickness are estimated to be εS =
1 × 10−10 F m−1 and λS = 1 × 10−10 m, respectively), and
KD = 7.1 × 10−14 mol2 m−4. The maximal KD is estimated

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
10

−2

10
−1

10
0

10
1

10
2

Q (Cm−2)

 

 

f(Q)
g(Q)

FIG. 10. Plotted functions f (Q) and g(Q) with k2 = 19.5 m2 C−1

and k6 = 1.

as the square of surface concentration of the metal atoms on the
electrode surface KD,max ≈ 2.8 × 10−8 mol2 m−4. Our choice
of KD then satisfies our statement about the surplus of the
active sites Sact. Then the constants k2 and k6 are 19.5 m2 C−1

and 1, respectively.
We see that the functions f (Q) and g(Q) perfectly coincide

for low values of the electric charge concentration (low
differences of the electric potential). There are of course sig-
nificant discrepancies in regimes with higher electric potential
differences. However, the transport of chemical components
to the electrode surface becomes the limiting process of the
entire system under higher voltages.

VI. CONCLUSION

We believe that the proposed model can be useful for
a dynamical analysis of electrochemical microsystems and
nanosystems forced by high-frequency electric fields. Our
kinetic mechanism also allows one to study and analyze more
complex electrochemical systems by simple adding different
kinetic terms into the boundary conditions (13).

Our theory allows the description of electrochemical
reactions by means of the standard chemical kinetic theory
that is widely accepted in chemical reaction engineering. In
this theory all concentrations are principally non-negative.
Electrons are considered to be reactants in the electrochemical
reactions. The introduction of the electron donors and accep-
tors as reactants then avoids negative electron concentrations.

Moreover, the proposed mechanism allows, in principle,
modeling of the electrochemical deposition of metals on a
cathode from complex anions (coordination complexes), i.e.,
the complex anion is split into metal cation and other anions.
This happens at the electric double layer, where the electric-
field strength is high enough to split the complex anion. We
have no idea how to describe this process by the BV kinetics.
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APPENDIX: DIMENSIONLESS MODEL

The model equations are transformed into a dimensionless
form. The spatial coordinate x is scaled by the Debye length
λD

x̃ = x

λD

, (A1)

where the Debye length can be written as

λ2
D = εRT

2 c0F 2
. (A2)

The dimensionless time t̃ is given by

t̃ = t

t0
, t0 = λ2

D

D
. (A3)

The other dimensionless quantities are defined by

c̃i = ci

c0
, φ̃ = φ

φ0
, φ0 = RT

F
, q̃ = q

q0
, q0 = Fc0.

(A4)

The Poisson equation in the dimensionless form is given by

∂2 φ̃

∂ x̃2
= −q̃ = −

∑
i

zi c̃i (A5)

and the molar balances of ions are

∂ c̃i

∂ t̃
= − ∂

∂ x̃

(
−∂ c̃i

∂ x̃
− zi c̃i

∂ φ̃

∂ x̃

)
. (A6)

The dimensionless surface concentrations of acceptors,
donors, and electric charge are defined as

c̃A+ = cA+

cE0
, c̃D− = cD−

cE0
, Q̃ = Q

Q0
, (A7)

where

cE0 = c0λD, Q0 = Fc0λD, j0 = c0D

λD

. (A8)

Then we can write

c̃A+ =
(

Q̃ +
√

Q̃2 + 4KAD

(c0λD)2

) /
2, (A9)

c̃D− =
(

−Q̃ +
√

Q̃2 + 4KAD

(c0λD)2

) /
2. (A10)

Equations (13) and (14) take the form

J̃A+
∣∣
x̃=0,L/λD

= λ2
D

D
(koxc̃A+ − kredc0c̃A+ c̃D−), (A11)

∂ Q̃A

∂ t̃

∣∣∣∣
x̃=0

= ĩ − λ2
D

D
(koxc̃A+ − kredc0c̃A+ c̃D−), (A12)

∂ Q̃C

∂ t̃

∣∣∣∣
x̃=L/λD

= −ĩ − λ2
D

D
(koxc̃A+ − kredc0c̃A+ c̃D−). (A13)

The dimensionless electric current is introduced as

ĩ = i

i0
, i0 = Fc0D

λD

. (A14)

The electric potential boundary conditions and the initial
conditions in dimensionless form are

φ̃|x̃=L/λD
= 0,

∂ φ̃

∂ x̃

∣∣∣∣
x̃=0

= −Q̃, (A15)

c̃B−,C+|x̃,t̃=0 = 1, c̃A+|x̃,t̃=0 = 0. (A16)
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