
PHYSICAL REVIEW E 85, 041402 (2012)

Symmetry breaking in a few-body system with magnetocapillary interactions
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We have experimentally investigated the interactions between floating magnetic spheres which are submitted
to a vertical magnetic field, ensuring a tunable repulsion, while capillary forces induce attraction. We emphasize
the complex arrangements of floating bodies. The equilibrium distance between particles exhibits hysteresis
when the applied magnetic field is modified. Irreversible processes are evidenced. Symmetry breaking is also
found for three identical floating bodies when the strength of the magnetic repulsion is tuned. We propose a
Dejarguin-Landau-Verwey-Overbeek (DLVO)–like potential, i.e., an interaction potential with a primary and a
secondary minimum, capturing the main physical features of the magnetocapillary interaction, which is relevant
for self-assembly.
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I. INTRODUCTION

Many particles trapped at fluid interfaces lead to various
patterns from fractal-like [1] to foam-like clusters [2]. The
attractive interaction between floating bodies originates from
the deformations of the fluid interface around the particles.
This is called the “Cheerios effect” [3], a reference to clumping
of cereal in a breakfast bowl. Despite being a subject with
simple experiments and tricks, the fundamental and technolog-
ical implications of the Cheerios effect are far from frivolous.
Indeed, extensive researches are currently being undertaken to
investigate the possibility of using surface tension to induce
the self-assembly of small-scale structures. Understanding
both shape and dynamics of the aggregate may enable much
simplified manufacture of micro-electromechanical systems
(MEMS) [4,5].

Experimental studies evidenced complex mechanisms and
nonobvious patterns even for a low number of floating bodies
[6]. Recent works [7,8,10] have been done with asymmetric
bodies as well as unequal bodies. Computing with floating tiles
for creating specific patterns has been also investigated [9].

In order to prevent aggregation, magnetic floating entities
could be considered as proposed by Golosovsky et al. [11,12].
Indeed, dipole-dipole interactions could induce repulsive
interactions leading to equilibrium distances between particles
when placed in a confined system. We consider hydrophobic
magnetic floating entities (see Sec. II for details). An external
magnetic field is used for tuning the repulsion between bodies.
Figure 1(b) shows pictures of the various configurations
obtained for an increasing number of submillimeter floating
objects (from N = 6 to 60 spheres) in a strong and uniform
magnetic field. Since our system considers athermal particles
only, it seems to exhibit symmetrical features, as expected from
isotropic interactions [11]. Indeed, particles tend to be located
at the vertices of a triangular lattice. However, some defects are
observed in such small 2D crystals; i.e., fivefold symmetry is
observed in the center of the rafts. Nearest neighbor distances
are also larger at the cluster boundaries than in the center of
the structure. Since no confinement potential is used in our
experiments, those particular features can be interpreted as a
result of the local curvature of the interface due to the size
of the raft. A full description of such a curvature effect for

several hydrophobic objects can be found in [13]. This local
curvature is also the origin of the nonequal interdistances that
one observes on the pictures of Fig. 1(b).

Although it is possible to create crystals of noncontacting
spheres for high magnetic field values, a decrease of the re-
pulsive interaction always involves the appearance of disorder
when beads come into contact. Figure 1(c) presents a crystal of
N = 28 spheres which collapses when the magnetic repulsion
is switched off. Particles always aggregate in disordered
configurations, even after various “on-off” cycles. It should
be noted that some pairs of particles remain in contact after
switching again the field on.

The observations made in Fig. 1 raise fundamental ques-
tions. Why are local dense configurations not observed for a
vanishing repulsion? How do particles get separated from each
other? What is the origin of irreversibility? In the present paper,
the case of simple configurations made of a low number of
floating objects is investigated and fundamental characteristics
of the magnetocapillary interactions are revealed. Those
physical features will then be put into perspective for larger
assemblies at the end of the paper.

II. EXPERIMENTAL SETUP

The experimental setup is the following. A large Petri dish is
filled with water. The liquid-air interface is placed at the center
of Helmholtz coils, as illustrated in Fig. 1(a). When a current i

is injected in such coils, a uniform and vertical magnetic field
�B is obtained in the Petri dish. Magnetic fields up to 50 G have
been measured for current intensities up to i = 2.5 A. Chrome
steel spheres (alloy AISI 52100, ρs = 7830 kg/m3) have been
considered. Prior to experiments, spheres are washed with
acetone and thereafter dried in an oven. As shown in [14], a
chrome steel particle does not exhibit any hysteretic behavior
and therefore its magnetization is completely reversible. As
a result, one particle does not retain any residual magnetic
moment once the field is removed. The onset of magnetization
occurs immediately once B > 0 and is linearly dependent
on B.

The diameter D = 500 μm of the spheres is lower than
the capillary length λ = √

γ /ρwg ≈ 2.5 mm ≈ 5D. Partial
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FIG. 1. (Color online) (a) Sketch of the experimental setup. A
Petri dish filled with a liquid is placed at the center of horizontal
Helmholtz coils. When a current i is injected in the coils, a vertical
and uniform magnetic field B is produced through the air-liquid
interface. There, floating objects were placed on the liquid surface
before switching the field on. (b) Pictures of typical configura-
tions obtained with an increasing number N of floating magnetic
objects for a strong magnetic field (Bo = 2.05; see text). Large
structures exhibiting a 5-fold symmetry are often encountered. (c)
Four pictures of N = 28 floating bodies experiencing two “on-off”
cycles. Starting from an ordered structure under a magnetic field
(left picture), the system collapses when the field is switched off.
Thereafter, the field is again increased and again switched of: The
initial ordered structure is not recovered.

wetting ensures the floatability of the spheres. Indeed, they can
float only in a hydrophobic case; the contact angle is therefore
θ > 90◦ (see Fig. 2). In most experiments, spheres are always
separated from each other before relaxing the system. A
high-resolution CCD camera records images from top. Image
analysis allows the extraction of accurate interdistances rjk for
all pairs of floating bodies j and k. On recorded pictures, each
particle has at least a diameter of 50 pixels, meaning that the
accuracy for interdistances rjk is less than D/25. On all plots
(see Figs. 3 and 6), error bars are not drawn since they are
smaller than the symbols.

As illustrated in Fig. 2 (top), the interaction between
two magnetized spheres consists of (i) an attractive and
horizontal capillary force Fγ due to the deformation of the
air-liquid interface near floating objects, and (ii) a repulsive
dipole-dipole magnetic force

Fm = 3μ0M2

4πr4
(1)

when the beads are far from each other [15]. The magnetization
M of the bodies is due to the vertical field B being proportional
to the current i injected in the coils. Therefore, one has Fm ∼
i2/r4.

Before conducting experiments, the magnetic repulsion
Fm between beads was characterized since it represents the
control parameter of our study. As illustrated in Fig. 2, two
beads are placed in a watch glass with a curvature radius
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FIG. 2. (Color online) Illustration of forces acting on the beads
in our experiments. Top: Interaction between two floating bodies at
the air-liquid interface. Due to wetting of the bodies, deformations of
the air-liquid interface implies the existence of a horizontal attractive
force Fγ . The magnetization of each sphere induces a repulsive
magnetic force Fm. The bodies are found at some equilibrium
interdistance r� where Fγ = −Fm. Bottom: On a curved surface
which is slightly vibrated (reduced acceleration α ≈ 1), it is possible
to determine the magnetic Bond number Bom characterizing the
magnetic repulsion between beads by measuring the competition
between Fm and the attractive force Fa due to surface curvature (see
text).

R = 0.1 m. Then, the vertical magnetic field B is switched
on to induce the dipole-dipole repulsive force Fm between
the grains. The gravity force Fa = −mgr/2R, induced by the
concavity of the watch glass, tends to gather the beads at the
center of the watch glass. In order to avoid some sticking of
the grains due to microscopic irregularities of the surface, the

r
/D

i/i0

1

2

3

4

FIG. 3. (Color online) Dimensionless equilibrium interdistance
r�/D between two floating magnetized spheres as a function of the
control parameter

√
Bom = i/i0. Each dot represents an experiment.

The gray region is forbidden since it corresponds to overlapping
spheres. Thick curves correspond to a fit of the data with a model
proposed in the text. Arrows indicate the way the system behaves
around the hysteresis loop in the model [Eq. (7)]. Vertical lines
corresponds to separation events of beads in repeated experiments,
providing a broad distribution of bead detachment events. Numbered
arrows are discussed in the text.
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watch glass is vibrated vertically with a normalized maximum
acceleration α = Aω2/g slightly higher than the unity. The
vibration is switched off when the grains have reached a
distance r� of equilibrium and the repulsive force is calculated
from Fm = −Fa . This measurement has been repeated five
times for different values of the current i inside the coils and
for large interdistances (r� > 3D). Therefore, we obtained a
relationship between the current i and the force ratio Fm/mg.
This allows us to define the magnetic Bond number

Bom =
(

r�

2R

) (
r�

D

)4

(2)

which will be used in scaling laws [see Eqs. (6) and (8)]. The
second factor in (r�/D)4 takes into account the interaction
range of Fm as seen in Eq. (1). In our experimental setup,
Bom = 1 when the injected current i0 = 1.12 A such that the
control parameter becomes

√
Bom = i/i0. In the following,

we will use i/i0 for simplicity.

III. RESULTS FOR N = 2

Let us now present the case of a pair of interacting floating
spheres. Figure 3 presents the equilibrium distance r�/D

between two particles as a function of the control parameter
i/i0. Each measurement is performed after waiting a minimum
of 10 seconds for considering the quasistatic regime. This
delay is indeed much larger than the characteristic time τ =
ρsD

2/18η ≈ 0.1 s for velocity damping if one considers the
Stokes force (by solving mdv

dt
= −3πηDv). As expected when

attractive and repulsive forces compete, r� depends on the
magnetic interaction. For high field values, any modification
of r� through any variation of i/i0 is reversible (see arrow
1). When the repulsion decreases below a threshold ic1/i0 ≈
0.35, the distance abruptly falls to contact. This transition
is observed to be discontinuous, like in a first-order phase
transition. Once a particle reaches this deformation, attraction
starts to dominate the physical processes. Below this threshold,
the particles remain “glued” by capillary forces (arrow 2). This
“kiss” between two floating bodies is irreversible with respect
to moderate magnetic field variations (arrow 3). In order to
separate contacting bodies, a high magnetic field value (ic2/i0)
is able to provide enough repulsion in some cases. The bead
separation seems to be a probabilistic event (arrow 4) with a
broad distribution of ic2/i0 values, as illustrated in Fig. 3. The
contact-detachment events take place at different values of the
control parameter, providing hysteresis in the system. In other
cases, the maximum field produced in our experiment was not
able to separate bodies. In that case, a mechanical separation
was needed to reset the system. This clearly shows that two
equilibrium positions exist.

The capillary interaction between two floating bodies is
rather complex to describe [3]. This particular interaction
is due to the overlap of interfacial deformations created
by the particles. It should be noted that the superposition
principle is not guaranteed such that the sum of deformations
of neighboring floating objects does not correspond to the
deformation of the whole assembly. One can understand that
touching bodies create thin voids where the liquid tends to rise
by capillary action. Complex deformation landscapes have
also been evidenced experimentally and numerically using

x

−
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FIG. 4. (Color online) The continuous curves represent the
attractive interaction potential Uγ [Eq. (3)] as a function of the
dimensionless interdistance x = r/D ranging between 1 (contact)
and 4. The dots represent the approximated potential [Eq. (4)]
as proposed in the main text. The agreement is excellent in the
considered range of x values.

particles of various shapes and sizes [7]. The possible un-
dulations of the contact line along the bodies creates capillary
multipoles displaying various interaction types as described
Kralchevsky et al. [16] and experimentally studied in [10]. All
experimental and theoretical studies of the capillary attraction
between two floating particles emphasize the complexity of the
phenomenon and the occurrence of unexpected equilibrium
states.

Using a few assumptions, Vella and Mahadevan [3] derived
the interaction energy for two identical spherical particles. This
interaction is given by

Uγ = −�K0

( r

λ

)
(3)

where K0 is the zero-order Bessel function of the first
kind. The capillary energy � takes into account all physical
ingredients such as the surface tension effects, sphere density,
and the partial wetting of the bodies, including the contact
angle θ . Since we typically consider interdistances between
r = D (contact) until r ≈ 4D, the interaction potential may
be approximated by

Uγ ≈ − �̃λD

r − d
(4)

which captures the main features of capillary attraction. The
distance d corresponds roughly to the position of the meniscus
on the bodies. Taking d < D ensures the finiteness of the
interaction energy when the bodies are in contact. Introducing
the dimensionless parameter x = r/D, the validity of the
approximation (4) is illustrated in Fig. 4 which presents
−K0(x/5) (continuous curve), while dots corresponds to a fit
with A/(x − B) + C for x in the interval [1,4], A = −3.72,
B = −0.9, and C = 0.18 being free fitting parameters. The
approximation is acceptable and holds for all interdistances
explored in our experiment. It should be noted that for larger
values (r > λ), the approximation does not hold.

Considering the geometry of our system, the interaction
energy between two point dipoles M is Um = μ0M2/4πr3,
involving the expression of Eq. (1) for the magnetic force
Fm = − ∂Um

∂r
. When two magnetized spheres are placed close to

contact, each spherical particle modifies the magnetization of
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its neighbor and a deviation from Eq. (1) is therefore expected.
Experimental evidence of this effect (close to bead contact)
can be found in the work of Mehdizadeh et al. [17]. Although
medium-range interactions are mainly considered in Ref. [18],
strong deviations from the classical point dipole interaction
are observed on the experimental data for r < 2D. In fact, the
magnetization of each sphere comes from the external field
plus the dipolar field generated by the neighboring sphere. We
assume that the interaction energy can be approximated by

Um ≈ mgD4Bom

3(r − a)3
(5)

where a is a length characterizing the magnetization of the
spherical beads, and Bom is the magnetic Bond number defined
before [see Eq. (2)].

When both components of the interaction are put together,
one has

U (r) ≈ − �D

(r − d)
+ mgD4Bom

3(r − a)3
for r � D

= ∞ for r < D (6)

which is illustrated in Fig. 5 as a function of the r/D for
different strengths of the repulsive interaction, i.e., for different
values of Bom. Like the Dejarguin-Landau-Verwey-Overbeek
(DLVO) theory [19] for colloids, this potential U (r) may
exhibit a primary and a secondary minimum depending on
the competition between capillary attraction and magnetic
repulsion. The existence of two minima, often encountered
at the microscopic scale, is a remarkable feature of our
macroscopic system. When Bom � 1, only capillary forces
are relevant and bodies comes to contact. The minimum of
U (r) is therefore r�

1 = D. When the repulsive force is high
(Bom > 1), a second minimum r�

2 appears. The first derivative
of U (r) provides the location of this minimum

r�
2 = a + ξD

2
+ 1

2

√
ξD[ξD − 4(d − a)] (7)

U
/
m

g
D

r/D

FIG. 5. (Color online) The dimensionless interaction potential
U/mgD as a function of the dimensionless interdistance r/D for
different strengths of the magnetic repulsion. The parameters of
Eq. (6) are fixed by the fit of the data presented in Fig. 3. Depending
on Bom, a primary and a secondary minimum can be observed. From
top to bottom curves, one has i/i0 = 0.50, 0.45, 0.40, 0.35, and 0.30.

where the dimensionless number

ξ =
√

Bom

√
mgD

�
(8)

is the square root of the ratio of magnetic and capillary
forces. Equation (7) has been fitted on the data of Fig. 3 and
provides three parameter values a = 0.7D, d = 0.92D, and
ξ = 2.55 i/i0. The fitted values of a and d are below D as
expected. The latter value informs us that capillary energy � is
about 6.5 times larger than gravity energy mgD in our system,
ensuring floatability of the beads. The model is in excellent
agreement with the data, as seen in Fig. 3 (see thick curve).
Moreover, it exhibits hysteresis. Indeed, the threshold ic1/i0

can be derived from the condition ξD = 4(d − a) in the last
term of Eq. (7). This condition gives ic1/i0 = 0.35. When the
repulsive force becomes much larger, the first minimum r�

1
disappears. This occurs at ic2/i0 = 0.45 using the parameters
of the fit. The hysteretic behavior expresses the coexistence
of two minima in between ic1/i0 and ic2/i0. However,
we have found experimentally numerous different values for
the second threshold. This means that the detachment is
sensitive to each particular contact. Indeed, the contact may
change the partial wetting conditions which depends on the
surface roughness of both spheres, as discovered in [6]. We did
not observe any capillary rise in between the beads. However,
the contact line anisotropy along each bead is a relevant effect
and probably adds an extra force to be overcome for particle
detachment. Since tiny deformations of the contact line are
not reproducible, this explains also the various values of the
current measured for detachment. The value ic2/i0 = 0.45
should then be considered as a low bound value, as observed
in our experiments.

IV. RESULTS FOR N = 3

The case with 3 particles is now considered. In order to
collect the data, we first tested the particles by pairs and we
checked that each pair behaves like in Fig. 3. Figure 6 exhibits
the distances for each pair in the N = 3 structure as a function
of i/i0. Typical configurations are also shown. The data are
shown for respectively a decrease and an increase of the current
i/i0, i.e., for a complete cycle of bead magnetization. Memory
effect is clearly observed. Moreover, symmetry breaking is
seen since the different curves have different shapes and exhibit
jumps at different i/i0 values suggesting that the regularity of
the structure is not conserved when capillary effects dominate
the magnetic repulsion. This asymmetry takes place as follows.

When three particles are placed onto the liquid surface at
high fields, a triangular configuration is obtained with identical
interdistances (arrow 1). When the strength of the magnetic
interaction decreases, the symmetry is suddenly broken: Two
particles gather while the third one remains at some distance
(arrow 2). When the capillary interaction becomes more and
more important, a contact is seen between two particles while
the distance to the third one vanishes (arrow 3). Finally, the
spheres form a small cluster without a 3-fold symmetry. Two
particles are still separated by a small distance. After contact,
the magnetic field is kept to zero a moment before it increases
again. Contrary to the case of two particles which could
remains in contact even at large i/i0 values, three spheres
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FIG. 6. (Color online) Dimensionless equilibrium distances
r�
jk/D for N = 3 floating spheres, as a function of the control

parameter i/i0 for a typical experiment. Each symbol represents
a pair. The gray region corresponds to overlapping spheres. Thick
curves represent the behavior obtained numerically when the model
[Eq. (6)] is implemented for 3 particles. Numbered arrows indicate
relevant steps discussed in the main text. Typical configurations are
shown. Near arrow 1, repulsion dominates capillary attraction. One
observes three beads located at the vertices of a regular triangle.
Near arrow 3, three beads come into contact. As illustrated, a
nonsymmetrical configuration is obtained in most cases, and this
remains unchanged for a vanishing magnetic field. Near arrow 5,
two different scenarios exist: either complete detachment restoring
the system into a regular configuration or a partial detachment into
a capillary dipole plus a single bead. The detachment takes place at
high i/i0 values.

separate without any perturbation above some probabilistic
threshold (arrows 4 and 5). However, the way they separate
is quite different from the way they come close together. Two
scenarios exist: (i) In some cases, high field values restore
a regular configuration, and (ii) in other cases one sphere
separates from a pair of beads which remain in contact. When
the experiment is repeated many times, the same scheme
is observed but final configurations could present slightly
different angles.

In order to model the behavior of three particles, we
implemented numerically the potential of the trimer U =
U (r12) + U (r23) + U (r13) considering the relative positions of
the particles along a 2D plane and Eq. (6). The parameters of
the model are fixed with the values obtained for the N = 2
case, starting from a symmetrical equilibrium configuration,
i.e., a regular triangle, for a large Bond number. The Bond
number is then decreased step by step to zero. At each step,

the algorithm is searching for a minimum of the total energy
U when beads are moving slightly around their previous
location. A steepest descent deterministic method would keep
the system into a regular triangle until the beads are touching
at ic1/i0. However, our algorithm considers the possible
fluctuations for the sphere positions corresponding to at most
σ = D/20 from their previous equilibrium positions (close to
the accuracy of our measurements). These fluctuations could
possibly originate from complex hydrodynamics interactions
due to bead motions, contact line hysteresis, air turbulence,
or simply the relaxation mechanism occurring after each
modification of the magnetization. When i/i0 decreases, the
regular triangle shrinks, and around ic1/i0, the beads come into
contact in a nonsymmetrical configuration. Hard core potential
is considered. Since the capillary attraction dominates, only
small relative motions of contacting beads are observed for
low i/i0 values. Our model provides an interpretation of the
phenomenon. In fact, the fluctuations for the bead motion
allows the system to visit other local minima corresponding to
asymmetric configurations. Indeed, local minima are provided
by the coexistence of a primary and a secondary minimum
observed in U (r) (see Fig. 5). Please note that when i is close
to ic1, the energy barrier between both equilibrium situations is
small. Fluctuations allows the system to jump from the regular
configuration to the nonsymmetrical one.

The thick curves or lines on Fig. 6 represent the typical be-
havior obtained in numerical simulations. Since the parameters
correspond to the N = 2 case, the curves are identical to the
ones of Fig. 3. Contact and detachment take place respectively
at i/i0 = ic1/i0 = 0.35 and at i/i0 = ic2/i0 = 0.45. The only
difference with the N = 2 case is the presence of a second
horizontal line between i/i0 = 0 and ic2/i0, corresponding to
the symmetry breaking. This second line is a typical behavior
obtained from our model.

We performed several simulations. The probability distri-
bution function (PDF) of the relative distances rjk/D obtained
after 500 simulations is shown in Fig. 7 in a semilog plot.

P
D

F

rjk/D

FIG. 7. (Color online) Probability distribution function (PDF) of
interdistances rjk/D obtained from 500 numerical simulations. Each
simulation starts from a regular configuration at high magnetic field
values. The repulsive interaction is then slowly decreased to zero. The
interdistances are measured for final configurations. A peak appears
at rjk/D = 1 since beads are in contact. However, a broad distribution
of rjk/D values around 1.12 is observed meaning that the system lost
its symmetry.

041402-5



N. VANDEWALLE et al. PHYSICAL REVIEW E 85, 041402 (2012)

A peak at rjk/D = 1 represents pairs of contacting beads
expected for i/i0 < 0.35. A broad Gaussian-like distribution
of distances around rjk/D ≈ 1.12 is obtained revealing the
probabilistic nature of the symmetry breaking process.

Recently, Berhanu and coworkers [2,6] have experimentally
shown a similar behavior for 3 floating particles only submitted
to capillary attraction. Due to friction between particles,
nonsymmetrical configurations were obtained and quasilinear
chains can be assembled [6]. Although bead-bead friction is
not considered in the model, it could enhance the symmetry
breaking and hysteresis observed in our experiments.

V. LARGER ASSEMBLIES (N > 3)

For larger assemblies (N > 3), the situation becomes
more complex since a curvature centered on the assembly
appears. This local curvature leads to capillary confinement
of the central particles and smaller interdistances are therefore
obtained near the center of mass. As a consequence, when
Bom is reduced, dimers are first formed in the center of
the structure which collapses. For a vanishing repulsion, a
“loose” packing of spheres is obtained since trimers adopt
nonsymmetrical shapes, as shown in the previous section.
When the magnetic field is switched on, the ordered system
is not restored due to hysteresis and capillary adhesion of
dimers. One observes clearly on Fig. 2(c) that grains are
still connected in that case even for high magnetic repulsion
strengths. It is therefore hard to obtain close packed grains
for a vanishing field. Further research should be done in

order to overcome those difficulties in order to control large
magnetically self-assembled structures.

VI. CONCLUSION

In summary, we emphasized the main features of magneto-
capillary interactions for a few-body system. The interaction
potential exhibits one or two coexisting minima, providing
memory effects, when repulsion is tuned. A DLVO-like model
has been proposed to capture these features. It could be
used for elaborating ways to shape self-assembled systems
[20]. Experimentally, we discovered that a pair of floating
bodies could remain in contact even for high repulsion values.
Detachment is a probabilistic event which is related to various
physical parameters such as wetting, friction, and capillary
rise. Finally, the capillary interaction is found to limit the
formation of dense arrangements.

By playing with magnetic field orientation and variations,
one could change the nature of the interactions between beads.
This could lead to a wide variety of arrangements [21]. The
dynamical aspects of this experiment could also raise new
fundamental questions, but this is left for future works.
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