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Normal-mode spectrum of finite-sized granular systems:
The effects of fluid viscosity at the grain contacts
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We investigate the effects of adsorbed films on the attenuative properties of loose granular media occupying a
finite-sized rigid container that is open at the top. We measure the effective mass, M̃(ω), of loose tungsten particles
prepared under two different sets of conditions: (i) We lightly coat tungsten grains with a fixed volume fraction
of silicone oil (polydimethylsiloxane, PDMS), where the liquid viscosity is varied for individual realizations,
and (ii) in the other set of experiments we vary the humidity. On a theoretical level, we are able to decompose
the effective mass into a sum over the contributions from each of the normal modes of the granular medium. Our
results indicate that increasing either the PDMS viscosity or the humidity, as the case may be, markedly increases
the damping rate of each normal mode relevant to our measurements. However, there is appreciable damping
even in the absence of any macroscopic film. With a notable exception in the case of the highest humidity in the
humidity-controlled experiments, all the relevant modes are weakly damped in the sense of a microscopic theory
based on damped contact forces between rigid particles.
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I. INTRODUCTION

Granular media dissipate energy at interparticle contacts.
Several studies have focused on using granular media to atten-
uate structure-borne sound [1,2]. These efforts characterize the
properties of the coupled system granular medium plus elastic
medium. This approach obscures the property of the granular
medium responsible for attenuation. Recently, we established
a new technique (described in Sec. II) for characterizing
the frequency-dependent effective mass, M̃(ω) ≡ M1(ω) +
iM2(ω), of a granular medium filling a rigid cavity [3].
Specifically, we showed that, in many cases of interest, a
measurement of M̃(ω) can be used to predict accurately the
attenuation of a sound-bearing structure containing such grain-
filled cavities. This fact allows us to focus on an understanding
of what physical properties of the granular medium contribute
to M2(ω), the attenuative component of M̃(ω). This is the
purpose of the present article.

If the effects of M̃(ω) on the sound-bearing structure are
weak, in the sense of first-order perturbation theory, the real
part of M̃(ω) is simply related to the shift in the resonance
frequency of the structure, whereas the imaginary part of M̃(ω)
directly relates to the reduced quality factor, Q, of that structure
[3]. For this reason, we present our results in terms of the real
and imaginary parts of M̃(ω) rather than the magnitude and
phase, say, or the tangent of the loss angle, specific attenuation,
and so on.

Previously [3], we established that when the relative
humidity is greater than zero, water adsorbed in the region
of the grain-grain contacts accounts for the majority of the
dissipation in a granular medium. This effect is due to the
increase in the volume of adsorbed water with an increase in
humidity. Analogous results had been observed by others [4,5]
in different situations. In this article, we pursue a further
understanding of this effect. Additional experiments consist of
a sequence of measurements of M̃(ω) in which each sample is
lightly coated with silicone oil (polydimethylsiloxane, PDMS)
of varying viscosity. The volume of PDMS, ≈80 μL, is chosen

to mimic the measured volume of adsorbed water when the
humidity is 97%. In both of these systems we are able to deduce
the complex-valued resonance frequencies, and residues, of
those normal modes which contribute to the effective mass
in our accessible frequency range. We follow the trajectories
of the normal-mode frequencies of these two systems as we
change the strength of the damping mechanism, either the
viscosity of PDMS or the relative humidity of water. The
results are analyzed within the context of the theory of damped
contact forces also developed in this article.

The normal modes of the granular media that we study
differ significantly from those under investigation by others
in connection with the so-called jamming transition [6]. The
effect of gravitational compaction is significant in our systems
so they are definitely not homogeneous in any macroscopic
sense. As we elaborate in Sec. V, there are very significant
surface forces of adhesion in addition to the Hertz-Mindlin
ones. This means that unlike the situation in the idealized
jamming transition [7] we are able to ensure that our data
are in the regime of linear response theory if the amplitude
of vibration is small enough. Our measurements of M̃(ω)
are sensitive only to the subset of granular normal modes
for which the displacement goes to zero on the walls of the
cavity. Finally, all our measured normal modes are in the
long-wavelength limit in the sense that the displacements vary
on a scale comparable to the dimensions of the cavity, orders
of magnitude larger than the scale of the grains.

The article is organized in the following manner: First,
in Sec. II we describe the protocol for preparing a granular
medium and, subsequently, measuring M̃(ω) (Fig. 1). Next, in
Sec. III, we model M̃(ω) using the linear equation of motion
for each grain, assumed to be rigid. In this model, neighboring
grains interact via a complex valued stiffness, the imaginary
part of which describes damping. The main result of our model
is that M̃(ω) is expressible as a sum of simple poles, one for
each normal mode in the system. We deduce some properties
of the poles (the normal-mode frequencies) and their residues
in the limits of weak and of strong damping. Next, in Sec. IV,
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(a)

(b)

FIG. 1. (Color online) (a) Schematic of the effective mass
measurement Eq. (1). (b) Image of tungsten powder used in all M̃(ω)
measurements. The wire that spans the image is 125 μm wide.

we describe the algorithm for decomposing the M̃(ω) data into
its normal-mode contributions. This allows us to deduce the
complex-valued normal-mode frequencies from the data. In
Sec. V, M̃(ω) data are analyzed in the context of our theoretical
model (Sec. III). Since we are particularly interested in the
dissipative capacity of our granular medium, we focus on the
behavior of the modes in the system, relative to an increase in
damping, and the concomitant effects on M2. Our findings are
summarized in Sec. VI.

II. EXPERIMENT

A cylindrical cavity of diameter 2.54 cm and height
3.07 cm excavated in a rigid aluminum cup is filled with
tungsten particles [Fig. 1(b)]. The cup is subjected to a vertical
sinusoidal vibration at angular frequency ω; the resulting
acceleration is measured with two accelerometers attached to
the bottom of the cup on either end of a cup diameter, and the
force, F̃ , is measured with a force gauge mounted between the
shaker and the cup. Taking into account the mass of the empty
cup, Mc, we have

M̃(ω) = F̃

ã
− Mc, (1)

where ã is the average of the acceleration measured by both
accelerometers. The amplitude of vibration we use in the
experiment is always low enough that the measured M̃(ω)
is independent of the amplitude.

Each of the tungsten particles consists of four or five equal
axis particles, of nominal size 100 μm, fused together. The
individual grains are far from being identical; using a mi-
crobalance, we measured the mass of 19 of them individually.
From this exercise we deduce the average mass of an individual
grain to be mg = 44.2 ± 18.0 μg. Our motivation in using
these irregularly shaped particles is because the effective mass
is large due to the high density of tungsten.

We are interested in assessing the effect of increasing the
dissipation at interparticle contacts, so M̃(ω) is measured after
mixing the tungsten with PDMS of varying values of DC
viscosity (10–60 000 cP). In order to compare the damping
effect of viscous PDMS against that of water, we have used
a volume of PDMS (≈80 μL) nearly equal to that which we
have measured on a 97% relative humidity sample, using a
microbalance technique. In order to do this we, first, heavily

diluted the PDMS with heptane at a known ratio and measured
out a volume corresponding to 80 mg of PDMS. We mixed
100 g of tungsten particles into this solution using a stir plate.
After thorough mixing, the majority of heptane evaporates. To
ensure that all the heptane evaporates we monitor the mass
loss as a function of time subsequent to mixing. We have
previously described how we measure the effective mass in a
controlled-humidity environment [3].

Due to the propensity of granular media to quickly settle
into a metastable state [8], it is very cumbersome to prepare
a granular system reproducibly. To ensure comparison of
M̃(ω) measured on various compositions, it was necessary to
identify a handling protocol that yields reproducible behavior.
It was previously shown that either mechanical [9] or vibratory
compaction [10] is useful for reproducing the state of a
granular medium. We previously investigated the efficacy of
both techniques for reproducing M̃(ω) and found that either is
sufficient [3]. The compaction technique is employed for the
current study.

The protocol for mechanical compaction consists of using
a mechanical testing instrument to impose a sinusoidal stress
on the free surface. To promote a uniform imposition of the
stress over the free surface of the grains, we use a stainless
steel plunger with a rubber pad glued to the bottom surface.
First, a static stress of 59.2 kPa is imposed on the granular
medium. A sinusoidal stress then is imposed on the system
consisting of 200 cycles at a frequency of 0.25 Hz. The stress
amplitude is systematically varied between 39.5 and 118.5 kPa,
in steps of 39.5 kPa. To prevent unloading the system, the static
stress is increased by 39.5 kPa for each equivalent change
in stress amplitude. After the maximum stress amplitude is
achieved, the procedure is repeated in reverse. So the first
two steps consist of increasing, and the second two steps
consist of decreasing the stress amplitude. We have limited the
maximum stress on the grains to the low value of 118.5 kPa
[=1.185 bar], specifically in order to ensure that we are not
physically damaging any of the grains. Overall, the system is
exposed to 1000 stress cycles (5 sets of 200) at systematically
varied stress amplitudes.

III. THEORY

The main purpose of this section is to derive the expansion
of the effective mass in terms of the complex-valued normal
modes of the confined granular medium, Eq. (22), below. In
order to make contact with specific experimental results, we
will need the results for weakly damped systems, Eqs. (32)
and (33), as well as those for overdamped systems, Eqs. (45)
and (39).

Let us model a granular medium held in a cavity in which
each grain is considered to be rigid except for the region
near the contacts with its neighboring particles. We briefly
discussed some of the properties of the effective mass implied
by such a model in an earlier publication [3]. Let Xi be
the equilibrium position of the center of mass of the i-th
particle, whose mass is mi , and ui be its displacement from
equilibrium. Similarly, θi is the librational angle of rotation.
If two neighboring particles translate or rotate such that their
points of contact would move relative to each other there will
be a restoring force due to the contact forces. The linearized
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equation of motion for the i-th particle is

−miω
2ui = −Kiw · [ui + θi × diw − W]

+
∑

j

Kij · [uj + θj × dji − ui − θi × dij ]

(2)

where dij is the vector from Xi to the point of contact with
the j -th grain. It is understood that the tensor Kij (≡Kji) is
nonzero only for grains actually in contact with each other.
(For simplicity we assume there is at most one contact per
pair.) Similarly, diw and Kiw refer to grains that are in contact
with the surfaces of the cavity, whose rigid displacement is W.

The equation of motion for the angular variables is

−ω2Ii · θi

= −diw × Kiw · [ui + θi × diw − W]

+
∑

j

dij × Kij · [uj + θj × dji − ui − θi × dij ] (3)

where Ii is the moment of inertia tensor for the i-th particle.
In the special case that the particles are identical spheres

we have dij = (1/2)[Xj − Xi] and the spring constant tensor
may be written in terms of normal (N ) and transverse (T )
stiffnesses as

Kij = kN
ij d̂ij d̂ij + kT

ij [I − d̂ij d̂ij ], (4)

where d̂ij is the unit vector and we use dyadic notation. Simi-
larly for the grains in contact with the walls of the cavity. An
example here would be Hertz-Mindlin contact forces in which
the stiffnesses increase with increasing static compression as
happens with increasing depth into a grain-filled cavity, but we
also consider forces of adhesion, capillarity, and so on.

It is understood that, generally, each of the elements of
the tensors Kij or Kiw are complex-valued and frequency
dependent reflecting the microscopic origin of the dissipation.
For the purposes of this section we may take

Kij (ω) = K0
ij − iωBij , (5)

in which the second term describes an interparticle force
proportional to the difference in velocity of the two grains.
The tensor Bij is analogous to a dampening parameter. [More
generally, Eq. (5) represents simply the first two terms in the
Taylor’s series expansion of K(ω).]

The total force which the cavity exerts on the grains is

F = −
∑

i

Kiw · [ui + θi × diw − W] = −ω2
∑

i

miui , (6)

where the second equality follows because the interparticle
forces cancel, by Newton’s third law, as is clear from Eq. (2).
Thus, formally, we may deduce each component of the
effective mass from Eq. (6). If, for example, we assume
the displacement W is in the z direction, W = W ẑ, and
we measure the z component of the force we have the zz

component of the effective mass tensor,

M̃zz(ω) =
∑

i

miuzi/W. (7)

From Eqs. (2) and (3) it is clear that when the frequency
tends to zero one has limω→0 ui = W and limω→0 θ i = 0.

Therefore, in this limit one has, from the second line of Eq. (6),
F = −ω2M0W, where M0 = ∑

i mi is the total static mass of
the grains. Therefore, from the definition of the effective mass,
one has the following:

lim
ω→0

M̃(ω) = M0I, (8)

which seems obvious. In Ref. [3] we also proved

lim
ω→∞ M(ω) = 0, (9)

which property we shall use below.
The very simplest explicit form for the effective mass of a

granular medium is that appropriate to a single particle of mass
m attached to the cavity with spring constant k and damping
parameter b, i.e., the simple harmonic oscillator (SHO). As
there is only one variable, u, in Eq. (2), for this example, it
is obvious that the dynamic effective mass is simply deduced
from Eq. (7),

M̃SHO = −m(k − iωb)

mω2 + ibω − k
= A+

ω − ω+
+ A−

ω − ω−
, (10)

where the normal-mode frequencies are the usual,

ω± = ±√
4km − b2 − ib

2m
, (11)

and the residues of the poles are

A± = ∓k − ibω±
ω+ − ω−

. (12)

For future reference we plot the trajectories of the two poles,
ω±, as a function of the damping parameter, b, in Fig. 2.
We also show the magnitude and phase of the accompanying
residues for a few values of b. When b = 0 one has ω± = ±ω0,
where ω0 ≡ √

k/m is the (real-valued) resonance frequency of
an undamped SHO. As the damping parameter, b, is increased
the resonance frequencies move off the real axis and curve
toward the imaginary. Beyond a critical value of b (=2

√
km)
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FIG. 2. (Color online) Trajectories of the two normal-mode
frequencies of a damped harmonic oscillator in the complex plane, as
a function of assumed damping parameter, b. The arrows indicate the
direction of movement for increasing values of b. Also shown are the
residues of the poles, A±, for a few different values of b. The area of
each circle is proportional to the magnitude of the residue, |A±|. The
phase angle of each residue (in radians) is color coded as shown.
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both resonances frequencies are purely imaginary valued, as
are the residues.

We now show that one can formally write the effective mass
for a collection of coupled grains in terms of the normal-mode
frequencies of the system in a manner similar to that of the
SHO,

M̃(ω) =
∑

n

An

ω − ωn

, (13)

where ωn are the complex-valued frequencies for which
Eqs. (2) and (3) have nontrivial solutions when W is set
equal to zero. Each matrix An represents the strength of each
resonance. Here, we make this expansion concrete and derive
explicit expressions for the residues of the poles (the set {An})
in terms of the normal modes of the system. We specify to the
case of the zz component of the effective mass, in which the
acceleration of the cup is in the z direction and the measured
force is also in the z direction, i.e., M̃(ω) is understood to
represent M̃zz(ω).

Before we do this, however, we point out for future use that
because of the reflection symmetry in the complex plane,

M̃(−ω∗) = M̃∗(ω) (14)

(the asterisk denotes complex conjugation), all the normal-
mode frequencies occur in pairs, of the form ±R − iI , for
which I � 0. This is because M̃(ω) is a causal response
function, the Fourier transform of a real-valued memory
function. (See Sec. IV A of Ref. [3].) In our discussion of
the properties of the poles and residues of M̃(ω) we focus on
those poles which lie in the fourth quadrant of the complex
plane, with the understanding that each pole has its mirrored
pair in the third quadrant, as required by Eq. (14).

Let us rewrite Eqs. (2) and (3) as

Hijuj = KiwW {i,j = 1 : 6N}, (15)

where N is the number of particles in the system. Here {uj }
represents the set of 3N particle displacements (ui , above)
plus the set of 3N particle rotation variables, (θ i). Summation
over repeated indices is understood. W is the magnitude of the
displacement of the rigid cup, taken to be along the z direction,
and Kiw represents the generalized spring connecting a grain
to the cup. It is equal to zero for those grains not touching the
cup wall (i.e., it is zero for most of the grains). Even for those
grains in contact with the cup, it is nonzero only if i refers to
a coordinate (displacement or rotation) which couples to the z

component of the cup displacement. Formally, the individual
displacements or rotations are determined by inverting the
matrix Hij . The effective mass is determined by Eq. (7):

M̃(ω) = mi[H
−1]ijKjw, (16)

where mi is the mass of a grain if i refers to the z component
of displacement of that grain and is zero otherwise.

The matrix H is complex valued and frequency dependent
and it is symmetric (Hij = Hji). In general, a non-Hermitian
matrix, such as H , may lack the property that its eigenvectors
form a complete orthonormal basis [11]. However, according
to a recently derived theorem about symmetric complex matri-
ces by Tzeng and Wu [12], there exists 6N orthonormal vectors

which satisfy a modified eigenvalue-eigenvector problem:

Hij e
n
j = λnen∗

i , (17)

where the asterisk denotes complex conjugation. These eigen-
vectors do form a complete, orthonormal basis:

en∗
j e

p

j = δnp. (18)

The eigenvalues, λn, are generally complex valued. Tzeng and
Wu further showed [12] that the inverse may be written as

H−1 =
∑

n

1

λn
enen, (19)

where we are using dyadic notation. Therefore, from Eq. (16),

M̃(ω) =
∑

n

mie
n
i (ω) en

j (ω)Kjw(ω)

λn(ω)
. (20)

A normal mode of the granular medium is a solution to
Eqs. (2) and (3) in which there is no forcing by the cup
motion, i.e., when W ≡ 0. They occur at specific complex-
valued frequencies {ωm}. The corresponding displacements or
rotations correspond to an eigenvector of H whose eigenvalue
is zero, i.e., λn(ωm) = 0. For frequencies in the vicinity of ωm

we may write,

λn(ω) = αm(ω − ωm) + O(ω − ωm)2. (21)

If we substitute the first term of Eq. (21) into Eq. (20), and
evaluate each eigenvector at the corresponding normal-mode
frequency, we get

M̃(ω) =
∑
m

Am

ω − ωm

, (22)

in which the residue is

Am = mie
m
i (ωm) em

j (ωm)Kjw(ωm)

αm
. (23)

In Eq. (22) it is understood that the sum is over all normal
modes in the system, which is those eigenvectors of H for
which the corresponding eigenvalue is zero. Thus, the summa-
tion over n, the eigenvalue counting index, is superfluous and
we drop it.

Although Eq. (21) is an approximation, Eq. (22) is an
exact representation of the full frequency dependence of the
effective mass, Eq. (7) [or Eq. (16) or Eq. (20)]. This is because
the former represents a summation over all the poles and
residues of the latter. Therefore, the difference between the
two functions is analytic everywhere in the complex plane.
The only function that is analytic everywhere in the complex
plane is the constant function. That constant must be zero
because each of the equations (16) and (22) tends to zero as ω

tends to infinity. QED
The quantity αm can also be expressed more cleanly in

terms of the eigenvectors by means of a perturbation theory
where �ω = ω − ωm is the small parameter as follows:

H(ω) = H(ωm) + ∂H
∂ω

�ω, λ(ω) = 0 + �λ [=αm �ω],

em(ω) = em(ωm) + �em. (24)
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By substituting Eqs. (24) into Eq. (17), and collecting all the
terms that are first order in �ω, we may solve for αm as follows:

αm = em
i (ωm)

∂Hij

∂ω

∣∣∣∣
ωm

em
j (ωm). (25)

Therefore, we may rewrite Eq. (23) as

Am = mie
m
i em

j Kjw

em
k

∂Hkl

∂ω
em
l

∣∣∣∣∣
ωm

. (26)

The implications of Eqs. (22) and (26) are that the entire
frequency dependence of M̃(ω) can be expressed in terms
of the normal-mode frequencies, {ωn}, and the normal-mode
coordinates, {em(ωm)}. In practice (Sec. V), experimental data
can be understood in terms of a relatively small such number
of these, namely those whose normal-mode frequencies are
relatively near the frequency range of interest.

In Appendix A we demonstrate the general results of this
section as applied to a specific example of a multiparticle
system in which we derive analytic expressions for M̃(ω),
ωm, and Am. In the next subsections we derive some results
applicable to cases in which the attenuative part of the spring
constant is small and in which it is large.

We note in passing that as the size of H is 6N × 6N

the expression for the determinant is a polynomial of degree
12N in ω. This means that, within the context of the rigid
grain model, there are 12N normal-mode frequencies, some of
which may be purely imaginary and the others of which occur
in pairs, ω±

n = ±a − i | b |. For the granular media samples
we are considering here, N ≈ 2 × 106.

A. No attenuation

First, we assume the damping components of all the springs
vanish: Bij ≡ 0. The matrix H is now symmetric and real so
all the eigenvalues are real for real values of frequency ω.
Thus, the normal-mode frequencies are real valued. Let us
call them ω0

m. Without loss of generality the normal-mode
displacements or rotations, em0, may also be taken to be real
valued. The residue of the pole, A0

m, is real valued.
The expression (25) also simplifies. The only contribution

to this expression is from the inertial terms which are shown
in Eqs. (2) and (3). We find

αm0 = −2ω0
mem0

i Iij em0
j , (27)

where the matrix I is a block-diagonal matrix; Iii = mi if i

refers to a coordinate displacement. If i and j refer to rotation
coordinates of the same particle, then Iij is that component
of the moment of inertia tensor for the grain in question. All
other elements of I are equal to zero. In the very, very special
case that the particles are identical point masses of mass m (or
identical spherical particles with central forces only between
grains) we have

αm0 = −2mω0
m. (28)

B. Weak attenuation

Let us now assume that the damping component of each
spring is nonzero but also that it is small as compared to the

real part,

Kij (ω) = K0
ij − iξωBij . (29)

[An equivalent expression holds for the relevant grain-wall
springs, Kiw(ω).] The smallness parameter, ξ 	 1, is a stand-
in for the viscosity, say. We may compute the effect of this
new term using first-order perturbation theory.

In a manner analogous to the derivation of Eqs. (24) it is
simple to derive the change in the eigenvalue, �λ(ω). The
result is

λ(ω) = αm0
(
ω − ω0

m

) − iξω em0
i Bij em0

j + O(ξ 2). (30)

The new normal-mode frequency, ωm, defined by λ(ωm) = 0,
is

ωm = ω0
m − ξ

i

2

em0
i Bij em0

j

em0
i Iij em0

j

+ O(ξ 2), (31)

or, more succinctly,

ωm(ξ ) = ω0
m − i ξ γm + O(ξ 2). (32)

To first order in the damping considered as a small parameter,
there is no change in the real part of the resonance frequency;
the imaginary part is proportional to ξ and it is negative
(γm > 0), as required by causality considerations.

Similarly, there is a first-order change in the residue of the
pole, which change is also purely imaginary,

Am(ξ ) = A0
m + i ξ Cm + O(ξ 2). (33)

The contribution of said pole to the imaginary part of the
effective mass broadens it from its initial δ function into a
skewed Lorentzian, but the area under the peak does not change
to first order in ξ :∫ ∞

−∞
Im

[
Am(ξ )

ω − ωm(ξ )

]
dω = −πA0

m + O(ξ 2). (34)

Thus, if there is a number of these sharp resonances in some
(real) frequency band, ωL < ω < ωU , which is wide compared
to the width of each of the peaks, [ωU − ωL 
 max(ξγm)],
then Eq. (34) shows that the average value of the imaginary
part of the effective mass over that band does not change as the
attenuation mechanism is increased (to first order in ξ ), though
we may expect the rms deviation from the mean to decrease as
the granular damping increases. The maximum of each peak
is reduced but that reduction is compensated by an increase in
the width of the peak. We will see in our own experimental
data that these results may hold even in situations in which
the individual resonances are so closely spaced that they are
difficult to resolve.

C. Damping: No stiffness

Next we consider the opposite limit of that considered in
Sec. III A. Let us suppose that the damping part of each spring
is so large that we may sensibly neglect the real part of the
spring constant,

Kij (ω) = −iωξBij . (35)

(Here ξ is not necessarily a small parameter; we introduce it
to show how the various quantities scale as the attenuation
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mechanism increases.) This means that the matrix operator,
H , is of the form,

Hij = −ω2Iij + i ξ ω Gij , (36)

where the elements of Gij are real and symmetric. For values
of ω which lie on the imaginary axis, (ω = iβ), H is a real and
symmetric matrix. Therefore, its eigenvalues, λ(iβ) are real
valued. All the normal-mode frequencies, ωm, are imaginary,

ωm = −iξβm, (37)

in which causality requires that βm > 0. The normal-mode
coordinates, em

i (ωm), are real valued.
The quantity αm may be evaluated via Eq. (25) as follows:

αm = iξem
i [2βmIij + Gij ]em

j = iξβmem
i Iij e

m
j . (38)

The residue of the pole, Eq. (23), is also imaginary and scales
with ξ ,

Am = iξam. (39)

The contribution of one of these poles to the effective mass,

M̃m(ω) = iξam

ω + iξβm

, (40)

has a very broad peak in the imaginary part which peaks at
ω = ξβm. Its contribution to the average over a frequency band
[ωL,ωU ] is∫ ωU

ωL

Im[M̃m(ω)] dω = ξam

2
ln

(
ω2

U + ξ 2β2
m

ω2
L + ξ 2β2

m

)
. (41)

If that frequency band is large enough and covers the main
peak (0 < ωL 	 ξβm 	 ωU ), one has∫ ωU

ωL

Im[M̃m(ω)] dω = ξam ln

[
ωU

ξβm

]
. (42)

This result demonstrates an intuitively obvious situation: If
the damping of the grain-grain contacts are large enough
that one of the normal modes is overdamped, then this pole
contribution to the average of the imaginary part of the effective
mass, taken over a frequency range that includes the broad
maximum at ξβm, scales linearly with the strength of the
damping parameter, modulo a logarithmic correction.

D. Damping: Weak stiffness

Finally, we consider the situation that is the obverse of
that in Sec. III B. The grain-grain, or grain-wall, springs are
given by Eq. (29) in which 1/ξ is the small parameter for this
perturbation theory. We now derive modifications to Eqs. (37)–
(39) correct through order ξ−1. We consider the eigenvalues,
λn(ω), of Eq. (17) which now takes the form analogous to
Eq. (36),

Hij = −ω2Iij + i ξ ω Gij − Lij . (43)

The new term, Lij , represents the effect of the real-valued
spring constants K0

ij in Eq. (5). This matrix is real valued
and symmetric. We treat this new term, as well as those
proportional to δω ≡ ω − ωm from the first two terms, to first
order in perturbation theory. The result is

λ(ω) = αm(ω + iξβm) − em0
i Lij e

m0
j

em0
l em0

l

+ O(ξ−1), (44)

where αm is given by Eq. (38). The new normal-mode
frequencies are defined, as usual, by λ(ωm) = 0. We find the
following:

ωm = −iξβm − i
em0
i Lij e

m0
j

ξβmem
i Iij e

m
j

+ O(ξ−2). (45)

To this level of perturbation theory, the residue, Am, is
also purely imaginary. This result suggests that for weak-
enough spring stiffness values the normal-mode frequencies
are purely imaginary; we show an example of this behavior
in experimental data analyzed in Fig. 12. What we have
rigorously demonstrated, however, is that this is certainly true
to first order in 1/ξ , the ratio of stiffness effects to damping
effects.

The picture that emerges from this section is as follows:
If damping of each grain-grain, or grain-wall, contact is
completely negligible, the normal-mode frequencies occur as
real-valued pairs, ±ωn. The corresponding residues, An, are
also real valued. If each contact spring acquires a small damp-
ing constant, as in Eq. (29), then each normal-mode frequency
acquires a negative imaginary part: ±ωn → ±ωn − iγn. As the
damping of each spring is increased further, |Im[ωn]| continues
to increase and |Re[ωn]| decreases until the mirrored pair meet
on the negative imaginary axis, which occurs for some critical
value of the damping. For values of the damping parameter
larger than this critical value, the normal-mode frequencies
are purely imaginary valued. Just this behavior is seen in the
SHO example discussed in Eqs. (11) and (12) and plotted
in Fig. 2. For the general case of a collection of interacting
particles we have, however, proved this hypothesis only for
very large values of the damping and for very small ones. In
Appendix B we give another example of a simple model which
also exhibits such behavior.

IV. DECOMPOSITION OF EXPERIMENTAL DATA
INTO NORMAL-MODE CONTRIBUTIONS

We have measured the effective mass at a series of
discrete frequencies: [Mi = M̃(ωe

i ) : i = 1,Nf ]. (Typically,
Nf ≈ 1500.) In this section we show how we can determine
the poles {ωn} and their residues {An} from the data. The
first step is to analytically continue the discrete data into the
complex ω plane using a rational function technique [13], as
we have described previously [3]. The true causal response
function has the reflection property that

M̃(−ω∗) ≡ M̃∗(ω), (46)

where the asterisk denotes complex conjugation. This is
because M̃(ω) is the Fourier transform of a real-valued kernel
in the time domain [3]. In order to preserve this symmetry,
we extend the experimental data to negative real-valued
frequencies by use of the following rule: M̃(−ωe

i ) = M̃∗(ωe
i ) :

i = 1,Nf . Furthermore, we include in the data set the value of
the static mass on the granular medium, M0 = M̃(0), which
is real valued. The resulting rational function, which we shall
denote as M̃RF(ω), has the following properties:

(i) It passes through each original experimental datum
exactly. [M̃RF(ωe

i ) ≡ Mi : i = 1,Nf ].
(ii) It obeys the reflection property, Eq. (46).
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(iii) Because the extended data set now has an odd number
of data points, 2Nf + 1, the order of the polynomial in the
numerator and in the denominator of the rational function are
equal to each other (and equal to Nf ). This, in turn, guarantees
that the rational function approximation to M̃ and to 1/M̃

(which we denote as [M̃−1]RF) are reciprocals of each other
for all complex values of ω as follows:

M̃RF(ω) ≡ [[M̃−1]RF(ω)]−1. (47)

If, instead, the total number of data points used is an even
number, then, in general, Eq. (47) will be violated to some
extent. It is for this reason that we include the static mass as
one of the data points.

Our procedure consists of searching for a zero, call it ω1, in
the complex plane of the function [M̃−1]RF which we do using
Muller’s method [13] as we have done before in a different
context [3]. We take ω1 as an approximation to a pole in M̃(ω).
Next, we form the rational function approximation ARF(ω) ≡
[(ω − ω1)M̃]RF(ω). The residue of this pole is

A1 = ARF(ω1), (48)

as is obvious from Eq. (22). Because of the reflection symmetry
there is another pole at ω−1 ≡ −ω∗

1 having a residue A−1 ≡
−A∗

1. We define a new set of data points [(ωe
i ,M

(2)
i ) i =

−Nf ,Nf ] by subtracting these pole contributions from the
extended data set as follows:

M̃
(2)
i = Mi − A1

ωe
i − ω1

− A−1

ωe
i − ω−1

i = −Nf ,Nf . (49)

We then treat this new data set in the same manner as the
original one in order to find a second pole, ω2, and its residue,
A2. We subtract these new pole contributions from M

(2)
i and

we iterate the process until we have uncovered all the pole
contributions that are relevant to our experimental data.

As discussed in Sec. III, there may be normal modes which
are overdamped. Such frequencies lie on the negative imagi-
nary axis: ωk = −i|ωk|. Because of the reflection symmetry,
M̃RF(ω) is real valued for ω on the imaginary axis. Thus, it
is easy enough to identify such pole(s) simply by plotting
M̃RF(−i|ω|).

In order to test whether this procedure can actually be
expected to work correctly, especially for those poles well
off the real axis, we have applied it to a test function
whose resonant frequencies and residues can be determined
analytically, in Appendix B. There, we see that the algorithm
is able to accurately deduce the normal-mode frequencies and
their residues as long as they are not too far from the region
where we have input data.

V. RESULTS AND DISCUSSION

In this section we, first, discuss our results on the tungsten
particles coated with different PDMS of varying viscosities,
and then we discuss our results on (clean) tungsten particles
measured at different humidity values.

A. PDMS-coated grains

The tungsten granules for each sample were coated with
a total of 80 mg of PDMS and then they were mechanically
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FIG. 3. (Color online) Comparison of measured effective mass
data against that deduced from the pole decomposition algorithm of
Sec. IV. The grains were coated with 80 mg of 99.7-cP PDMS before
compaction into the cavity. The difference between the data and the
pole decomposition is quite small everywhere.

compacted into a rigid cup. In Fig. 3 we show a comparison
of our measured effective mass data against that reconstructed
from the pole decomposition scheme described in Sec. IV in
which the PDMS DC viscosity is 99.7 cP. The locations and
residues of the corresponding poles are plotted in Fig. 4, with
the understanding that each pole has its mirrored counterpart in
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FIG. 4. (Color online) Locations of the normal-mode frequencies
which contribute to the pole expansion of the effective mass data in
Fig. 3. The area of each circle is proportional to the magnitude of the
residue, |An|. The phase angle of each residue (in radians) is color
coded as shown.
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FIG. 5. (Color online) Effective mass data and its pole decompo-
sition for grains coated with 894-cP PDMS. Same conventions as in
Fig. 3. Here, the remainder is larger than in Fig. 3 but it is nearly a
real-valued constant.

the third quadrant. We see that the data can be well represented
in terms of a relatively few pole contributions with a remainder
that is quite small. Moreover, all of the poles are located nearly
on the real axis: |Im[ωn]| 	 Re[ωn].

The results of Fig. 4 imply that these modes are weakly
damped as discussed in Sec. III B. Accordingly, in Fig. 5 we
show our results for the effective mass of tungsten granules
prepared as before but with a much higher DC viscosity,
894-cP PDMS. The corresponding pole locations are shown
in Fig. 6.

It is apparent from a visual comparison of Figs. 3 and 5
that the normal modes of the latter are significantly more
damped than those of the former. Indeed, this behavior is
borne out quantitatively in a comparison of Figs. 4 and 6. We
have repeated the measurements of the effective mass using
PDMS fluids with a wide range of DC viscosity values, always
holding to 80 mg coating. Some properties of the fundamental
resonance mode are shown in Fig. 7.

We see from this figure that the real part of the res-
onance frequency as well as the real part of the residue
are nearly constant, even though we have varied the DC
viscosity of the coating fluid over five orders of magnitude.
In addition, the damping component of this mode increases
before leveling off when the DC viscosity is greater than
1000 cP. This initial increase is linear, as we demonstrate in
Fig. 8.

We use the compaction protocol in order to produce
granular samples which are “identical,” except for the variation
in viscosity of PDMS or humidity. Obviously, this is not perfect
and we see there is some scatter in the plots. Even so, we see
that the behavior of the three quantities plotted in Fig. 7 is
fully consistent with the theoretical predictions of a weakly
damped system, Eqs. (32) and (33), in which ξ is linearly
related to the viscosity, η, of the grain-coating PDMS. We may
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FIG. 6. (Color online) Locations of the normal-mode frequencies
for the 894-cP-coated grains of Fig. 5. Same conventions as in Fig. 4.
The set of the normal-mode frequencies has moved further from the
real axis, relative to those in Fig. 4.

say that ξ = a + bη in which a represents other attenuation
mechanisms that are unrelated to the viscosity of the coating
fluid. For fluids whose DC viscosity is greater than 200 cP we
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FIG. 7. Properties of the fundamental resonance in the effective
mass of tungsten granules coated with 80 mg of PDMS of different
DC viscosity values. (Top) The real part of the resonance frequency.
(Middle) The imaginary part. (Bottom) The real part of the residue
of that mode’s contribution to the effective mass.
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FIG. 8. (Color online) Same data as in the middle part of Fig. 7
but plotted on a linear scale. The dashed curve is a straight line fit to
the data points 2–5.

may say that viscous damping due to the adsorbed films is the
dominant mechanism of attenuation in these systems.

Why do the data for the damping rates of the fundamental
mode, −Im[ω1], level off as the DC viscosity is increased
beyond, say, 1000 cP? What is happening is that these fluids
are significantly non-Newtonian, especially for those of the
higher-viscosity values. From Fig. 14 of Barlow et al. [14],
we see that as the low-frequency viscosity is increased (by
increasing the molecular chain length) the shear modulus
asymptotes to a complex-valued plateau; the frequency at
which this happens decreases with increasing chain length.
For a Newtonian fluid, the shear modulus is purely imaginary
and is related to the (frequency independent) viscosity by

G̃newt(ω) = −iωη, (50)

where η is the (Newtonian) viscosity. According to the PDMS
data of Ref. [14], increasing the DC viscosity beyond 1000 cP
does not affect the shear modulus for frequencies greater than
about 1 kHz. It is equivalent to saying that the viscosity is
complex valued and frequency dependent but does not change
with increasing PDMS chain length for frequencies greater
than 1 kHz. That is, in the context of our theoretical model,
Eq. (32), ξ is not increasing with increasing PDMS chain
length beyond a certain limit.

In such cases, where the rheological behavior of the PDMS
is relevant in our frequency range, Eq. (5) is modified, viz.,

Kij (ω) = K0
ij + Cij G̃(ω), (51)

where G̃(ω) is the complex-valued frequency-dependent shear
modulus of the liquid and Cij , which is real valued, depends on
the geometry of the adsorbed film in the contact region; when
G̃(ω) is given as Eq. (50), then Eq. (51) reduces to Eq. (5).

The real part of G̃(ω) may be comparable to the imaginary
part for these rheological liquids but this does not manifest
itself as a measurable shift in the real part of the resonance
frequency in Fig. 7. The second term in Eq. (51) is always
small compared to the first for the fundamental modes of these
PDMS wetted systems. Moreover, the surface tension for all
these PDMS liquids is about the same: 20 ± 1 dyn/cm [15].
Thus, we do not expect, and we do not observe, any change
in the fundamental resonance frequency due to changes in the
surface tension from one PDMS fluid to another.

We could, in principle, analyze each of the other modes
contributing to M̃(ω) in the same way but we prefer to take
a statistical approach as there are so many resonances and
it is not obvious which resonance frequency at one viscosity
connects with which at another. Let us define the average 〈M2〉
as

〈M2〉 =
Nf∑
i=1

M2(fi) /Nf (52)

and the RMS deviation, �M2, as

�M2 =
√〈

M2
2

〉 − 〈M2〉2. (53)

(For all of the data reported here, f1 = 105 Hz, fN = 15005 Hz,
and Nf = 1491.) These quantities are plotted in Fig. 9 as
a function of the DC viscosity of the PDMS fluids. From
the theoretical arguments presented in Eq. (34) for a weakly
damped system we would expect 〈M2〉 to be independent of
the DC viscosity. Furthermore, because each resonance peak
broadens and widens, we would expect �M2 to decrease with
increasing DC viscosity. Both of these behaviors are seen in
the data, up to the point where the AC viscosity of PDMS
saturates.
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FIG. 9. Statistical properties of M2 computed over the frequency
range of the experiment as a function of PDMS DC viscosity. (Top)
Average; (bottom) standard deviation.
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Thus, our conclusion is that the attenuative properties of
these PDMS-coated granular media are dominated by the
viscous properties of the fluid. Furthermore, we conclude that
the damping is “weak” in the sense discussed in Sec. III B.

B. Effects of humidity

In our previous publications (Ref. [3] and references
therein) we have established that the film of adsorbed water
which coats grains at any finite humidity is largely responsible
for the attenuation mechanism in otherwise uncoated tungsten
granules. In this subsection we pursue this a bit further using
the analysis we have developed in this paper.

The grains were cleaned by rinsing, first in acetone and
then in isopropyl alcohol. The powder then was subsequently
baked in a 60 ◦C oven for 7 days in order to reduce the
humidity to nearly zero. On removal from the oven they were
poured loosely into the shaker cup and allowed to cool to
room temperature in a glove box held at 0% relative humidity
for 24 h before the first effective mass measurements were
made. Subsequently, the humidity was raised using pans of
different salt-saturated solutions to control the humidity, as we
have described previously [3]. Inasmuch as we are interested
in studying the effects of humidity, starting with the oven
dried sample, we did not use the compaction protocol here but
just loosely compacted the grains by tapping on the shaker
cavity. (It is not possible for us to compact the sample without
exposing it to room conditions.) Consequently, as we shall
see, the fundamental resonance frequencies we measure for
this suite of samples are significantly lower than those we
reported earlier [3] using the compaction protocol.

After each change of humidity the system stabilized for
at least 24 h prior to measuring the associated effective
mass. Analogously to Fig. 7, we plot some properties of the
fundamental resonance as a function of equilibrium humidity
in Fig. 10. The average and the standard deviation of the
imaginary part of M̃(ω) are plotted in Fig. 11 as a function
of humidity. Within the context of our theoretical model we
may say that the damping parameter, ξ , scales monotonically
with the amount of adsorbed water. Roughly speaking, the
behaviors of Figs. 10 and 11 are similar in kind to those of
Figs. 7 and 9. Thus, the behavior of these systems is also
consistent with the weak damping limit discussed above. We
make the following observations:

(i) There are two fundamental resonances of the “zero”
humidity sample overlapping each other, one narrow and one
broad. Both modes are shown in Fig. 10. The decay rate of
the narrower one, −Im[ω1] = 183 nep/s, is comparable to the
value implied by an extrapolation of the viscosity data to zero
viscosity implied by Fig. 8 (≈140 nep/s). We conclude that this
value represents an attenuation mechanism not related to the
bulk viscosity of the adsorbed film, similarly, in kind, to what
has been observed in the acoustic attenuation in rocks [16].

(ii) The total absorption of these two resonances, i.e.,
the sum −(1/2)Re[A1 + A2] = 9.4 × 104 (g Hz), is approx-
imately equal to the expected value of the nonzero humidity
data extrapolated to zero humidity.

(iii) The attenuation of the fundamental mode shown in
Fig. 10 attains values considerably larger than those for the
PDMS-coated grains, despite the fact that all the data in
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FIG. 10. (Color online) Properties of the fundamental resonance
in the effective mass of tungsten granules as a function of humidity.
(Top) The real part of the resonance frequency. (Middle) The
imaginary part. (Bottom) The real part of the residue of that mode’s
contribution to the effective mass. The data were taken at room
temperature.

Fig. 7 are for liquids considerably more viscous than water
(η = 1 cP). Using a microbalance we monitored the mass
uptake of 100 g of these tungsten particles at 97% relative
humidity, from which we deduce that the volume of adsorbed
water for the 89% data is ≈90 μL. It was this measurement
that lead us to use a mass of 80 mg for the PDMS experiments.
(The density of PDMS varies from 0.92 to 0.97 g/cc.)

Let us examine the behavior of this high-humidity system
further. In Fig. 12 we show the poles and residues of the
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FIG. 11. (Color online) Statistical properties of M2 computed
over the frequency range of the experiment as a function of humidity.
(Top) Average; (bottom) standard deviation.
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FIG. 12. (Color online) Locations of the normal-mode frequen-
cies which contribute to the pole expansion of the effective mass data
for the tungsten granules measured at a relative humidity of 89%.
Same conventions as in Fig. 4. This system has one overdamped and
one heavily damped mode.

effective mass data for a relative humidity of 89%. Clearly,
this system differs from those with PDMS coating.

In addition to the weakly damped modes that we have
discussed previously, there is a heavily damped mode at
fn = [±2726 − 3498i] (Hz) and an overdamped mode at fn =
−5612i (Hz), each of which has a large magnitude residue.
In Fig. 13 we show the decomposition of this data set into its
pole constituents and we explicitly show the contribution that
these two damped modes make to the total. [There are also two
other modes whose frequencies are purely imaginary, but their
residues are so small they make little contribution to M̃(ω).]
As can be seen from Fig. 13 the contribution of these heavily
damped modes to M̃(ω) is considerable. We have not seen
anything like this in any of our other data sets. We surmise
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FIG. 13. (Color online) Comparison of measured effective mass
data for the 89% relative humidity sample against that deduced from
the pole decomposition algorithm of Sec. IV. Same conventions
as in Fig. 3 except that we explicitly show the contribution of the
overdamped and heavily damped modes separately.

that the water has interacted chemically with the tungsten
and formed a material whose attenuative properties are not
simply related to the macroscopic viscosity of water. In fact,
if the grains are exposed to water for about 1 week, then their
appearance becomes visually changed. An elemental analysis
of the surface chemistry indicates the presence of oxygen,
presumably in the form WO3. (The data presented in Fig. 13
were taken just under 24 h after sample preparation.) Our
conclusion is that there is an attenuation mechanism at play
in the high-humidity systems which is not simply related to
the bulk viscosity of water but is due, perhaps, to a complex
hydrated species of tungsten.

VI. CONCLUSIONS

By means of a combination of experimental and theoretical
results on the properties of the effective mass of granular media
to attenuate sound we have learned the following:

(i) There exists a level of attenuation apparent in the
fundamental mode of the granular medium which is inde-
pendent of the properties of any adsorbed or coating film.
This value, seen in the attenuation of heat-treated tungsten
grains, is about the same as that seen in the PDMS-coated
grains, extrapolated to zero viscosity, and in that seen in the
humidity-controlled studies, extrapolated to zero humidity.
We suppose this attenuation is due to physically bonded
adsorbents, analogous to the situation seen in the attenuation
of rocks. If so, these adsorbents can be removed by heat
treating, at high temperatures, in vacuum, for lengthy periods
of time [16].

(ii) The attenuation, not only of the fundamental resonance
but also those of the others, can be significantly increased either
by increasing PDMS viscosity, for a fixed volume of coating
fluid in the one set of experiments, or by increasing the volume
of adsorbed water by increasing the relative humidity in the
other.

(iii) All the modes in the PDMS systems and most of the
modes in the humidity-controlled systems are in the weak
damping limit in the sense of Sec. III B. The humidity-
controlled systems typically have one or more heavily damped
modes in addition to the weakly damped ones. In the case of
the 89% relative humidity data the contributions of heavily
damped and overdamped modes to M̃(ω) is quite significant.
None of these granular media systems can be said to be
equivalent to a high-viscosity fluid as we had hypothesized
earlier [3], as this situation would correspond to a sequence
of poles on the negative imaginary axis as we discuss in
Appendix B.

(iv) The DC viscosity of PDMS increases as the chain length
of the constituent molecules increases. This behavior manifests
itself in an increase in the attenuation of each of the modes
in M̃(ω) up to a point. For long-enough chain lengths the
dynamic viscosity of PDMS for frequencies in the range of
our normal-mode frequencies stops increasing with further
chain length increase. It is for this reason that the measured
attenuation of the granular normal modes also stops increasing.

(v) The (real part of) the fundamental resonance frequency
in the PDMS-controlled experiments does not exhibit any
systematic dependence on PDMS chain length, which is
understandable on general grounds based on Eq. (51) and the
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discussion following. The shear modulus of any of the PDMS
fluids is too small to make a significant contribution to the
stiffness of the contact and the surface tension of all these films
is about the same. In the humidity-controlled experiments there
does seem to be a more significant effect on this resonance
frequency, as we have observed previously [3]. We suppose
this is due to the changing geometry of the adsorbed film and
the resulting change in surface tension effects on the contact
stiffnesses.

(vi) The attenuation of the fundamental mode in the sample
at 89% relative humidity is significantly larger than that of
any of the PDMS-controlled experiments, even though the
volumes of fluid films are quite similar. Overall, the average
values for 〈M2〉 are fairly similar, as one might expect for the
weak damping limit.

We are puzzled by two observations. One is that the
attenuation of the fundamental mode in the 89% humidity
sample is much larger than those of any of the PDMS-coated
samples, even though the fluid volumes are nearly the same
and all the PDMS fluids are much more viscous than water.
Furthermore, we observe a heavily damped and an overdamped
mode in the 89% humidity data, but no such modes in any of
the PDMS samples. We have ensured that our measurements
are always in the small-amplitude limit where linear response
theory applies. This fact rules out any nonlinear attenuation
mechanism, such as the making and breaking of capillary
bonds, as being a major contributor to the attenuation. We
understand that the distribution of fluid in the region of the
contacts in the PDMS system is not literally the same as in
the humidity-controlled one; the latter is at an undersaturated
vapor pressure so the liquid forms only in the narrowest of
crevices and does not coat the grains.
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APPENDIX A: SPECIFIC EXAMPLE OF THE POLES
AND RESIDUES OF A DISCRETE SYSTEM

We consider a one-dimensional string of point masses,
separated a distance b from each other, each of which
experiences a drag force proportional to the difference between
its velocity and its neighbor’s, viz.: F = γ [vj − vi]. This leads
to the equation of motion for the following ensemble:

−mω2uj = −iωγ (uj+1 − 2uj + uj−1) j = −N, . . . N,

(A1)

subject to the boundary condition at the side walls

u±(N+1) = W. (A2)

Equation (A1) is a simple example of Eq. (5) in which Bij = γ

if i and j are nearest neighbors and Kij ≡ 0. We introduced
this model in Ref. [3] as a discrete version of the Navier-Stokes
equation appropriate to a viscous fluid entrained between two
parallel walls. In this appendix we use it to demonstrate,
explicitly, the decomposition of the effective mass into the sum

of its pole contributions, Eq. (22). This model is an example
of those discussed in Sec. III C.

It is simple enough to solve for the effective mass implied
by this toy model. There are solutions to Eq. (A1) given by

uj = Ay
j
+ + By

j
−, (A3)

where

y± = 2γ − imω ± i
√

m2ω2 + 4imωγ

2γ
. (A4)

Note that y− = 1/y+. The constants A and B are determined
by the boundary conditions, Eq. (A2),

A = B = W

yN+1
+ + yN+1

−
. (A5)

The dynamic effective mass is determined from the definition,
Eq. (7), using Eqs. (A3)–(A5). The result is

M̃1D(ω) = 2iγ

ω

[
yN+1

+ + yN+1
− − yN

+ − yN
−

yN+1
+ + yN+1

−

]
. (A6)

As there are 2N + 1 particles in the system there are 2N + 1
normal modes. Of these, N of them are antisymmetric (uj =
−u−j ). They do not contribute to the effective mass, so we do
not consider them here. The remaining N+1 normal modes are
symmetric (uj = +u−j ); they correspond to the vanishing of
the denominator of Eq. (A6):

yN+1
+ = −yN+1

− . (A7)

Let

θk = (2k + 1)π

N + 1
k = 0,1,2, . . . ,N − 1,N. (A8)

Then a symmetric normal mode is defined by taking the N + 1
root of Eq. (A7):

y+ = eiθk y− = eiθk/2, (A9)

where the second equation follows because y+ = 1/y−. By
means of the definitions given in Eq. (A4), we may solve for
the normal-mode frequencies all of which lie on the negative
imaginary axis, ωk = −iβk . We find

βk = 4γ

m
sin2(θk/4) k = 0,1,2, . . . ,N − 1,N. (A10)

The k-th (un-normalized) symmetric normal mode is given by
Eq. (A3) with A = B: uj = y

j
+ + y

−j
+ , i.e.,

e
(k)
j = cos(jθk/2) j = −N, . . . ,N. (A11)

It is straightforward, if tedious, to derive closed form expres-
sions for all the sums over particle displacements indicated in
Eqs. (23) and (38). The result is

Ak = i4γ
sin[(N+1/2)θk/2] sin(θk/2) cos(Nθk/2)

sin(θk/4){sin[(2N+1)θk/2] + (2N+1) sin(θk/2)} .
(A12)

The pole decomposition of Eq. (A6) is

M̃pole(ω) =
N∑

k=0

Ak

ω + iβk

. (A13)
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FIG. 14. (Color online) Comparison of two equivalent expres-
sions for the effective mass of the 1D model, Eqs. (A6) and (A13),
plotted on the negative imaginary frequency axis. Here, N = 18,
γ = 1.20 × 106, and m = 5.65. The imaginary part of M̃ is zero on
the imaginary axis.

These two functions, given by Eqs. (A6) and (A13), are plotted
together in Fig. 14 for frequencies on the negative imaginary
axis where all the poles reside. We see that they do, indeed,
overlie each other.

APPENDIX B: A TEST OF THE DECOMPOSITION
ALGORITHM

In Sec. IV we have presented an algorithm with which we
deduce the poles and residues of a causal response function
from experimental data taken at a finite number of real-valued
frequencies. In this Appendix we test the validity of this
procedure on an analytic function whose poles and residues
can also be derived analytically. The function we use is one
which has some of the features of our actual experimental data,
namely the function denoted as Model I in Ref. [3]. It is

M̃I (ω) = M0
tan(qL)

qL
, (B1)

where q = ω

c0
√

(1−iωτ )
. This function describes reasonably well

the effective mass of a simple liquid, having sound speed c0

and damping parameter τ , and which fills the cavity to a height
L.

If the damping parameter, τ , vanishes, then the resonance
frequencies are all real-valued and have the simple form:

ω0
n = (2n − 1)

π

2

c0

L
n = 1,2,3, . . . , (B2)

and the negatives thereof. If τ �= 0, then for large enough n

Eq. (B2) cannot be even approximately correct. It is simple
enough to solve for those normal-mode frequencies by setting
the argument of the tangent function equal to an odd multiple
of π/2. The result is

ω±
n = ±ω0

n

√
1 − (

ω0
nτ

/
2
)2 − i

(
ω0

n

)2
τ/2. (B3)
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FIG. 15. (Color online) Poles and the corresponding residues of
the simple effective mass, Eq. (B1). The exact locations are given
by Eqs. (B3) and the exact residues by (B6). The area of each solid
circle is proportional to |A±

n | and the color is its phase according to
the color bar (in radians).

In order to deduce the residues of these poles we use the
identity [17],

tan(θ ) =
∞∑

n=1

2θ

[(2n − 1)π/2]2 − θ2
. (B4)

After a bit of rearranging Eq. (B1) may be written in terms of
its pole contributions as

M̃I (ω) =
∞∑

n=1

[
A+

n

ω − ω+
n

+ A−
n

ω − ω−
n

]
, (B5)

where

A±
n = ±M0c

2
0

L2

(ω±
n )2

(
ω0

n

)3
√

1 − (
ω0

nτ
/

2
)2

. (B6)

For a specific choice of the three parameters M0 = 149 g,
c0 = 171 m/s, τ = 35 μs, and L = 3.07 cm, we plot the
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FIG. 16. (Color online) Poles and residues of the simple effective
mass, Eq. (B1), using numerically generated data. This picture is
virtually identical to that of Fig. 15.
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exact expressions for the poles and their residues in Fig. 15.
Although M̃I (ω) is intended to describe a continuum effec-
tive mass we see that, for small-enough values of n, the
normal-mode frequencies are nearly real valued, but, for
n > [1 + 4L/(c0τπ )]/2, the normal-mode frequencies and
their residues are purely imaginary, as we hypothesized at
the end of Sec. III. We note that for weak damping ω0

nτ 	
1, the poles and their residues follow Eqs. (32) and (33),
respectively. For large enough n, ω0

nτ 
 1, the “ + ” branch
has an accumulation point: ω+

n→∞ = −i/τ . In this limit the
residues of those poles, however, tend to zero A+

n→∞ ∝ n−4

and they make a negligible contribution to M̃I (ω). In this same
large n limit, the other, “−”, branch has poles and residues
which follow Eqs. (37) and (39). It is these poles and residues
that give rise to the high-frequency behavior of Eq. (B1) on
the real axis: limω→∞ M̃I (ω) ∝ (−iω)−1/2.

We have proposed a means of deducing the normal-mode
frequencies and their residues from our experimental data,
in Sec. IV. In order to test the validity of this procedure
we have generated 1500 data points directly from Eq. (B1)
which are equally spaced between 100 Hz and 15 kHz,
as for our experimental procedure. We use these “data” as
input to the procedure of Sec. IV. The results are shown in
Fig. 16, which are to be compared against the exact results
shown in Fig. 15. Except for the modal frequency around
−i50 kHz, our procedure works well in determining the
complex-valued normal-mode frequencies and their residues.
The procedure even works well in determining some of the
small residue poles of the “ + ” branch. Thus, we conclude
that, as long as the sought-after poles lie within the rectangle
[±15 kHz, ± i15 kHz], our procedure will determine their
properties with a reasonable accuracy.
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