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Deriving the Rosenfeld functional from the virial expansion
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In this article we replace the semiheuristic derivation of the Rosenfeld functional of hard convex particles
with the systematic calculation of Mayer clusters. It is shown that each cluster integral further decomposes into
diagrams of intersection patterns that we classify by their loop number. This extends the virial expansion of
the free energy by an expansion in the loop order, with the Rosenfeld functional as its leading contribution.
Rosenfeld’s weight functions then follow from the derivation of the intersection probability by generalizing the
equation of Blaschke, Santalo, and Chern. It is found that the 0-loop order can be derived exactly and reproduces
the Rosenfeld functional. We further discuss the influence of particle dimensions, topologies, and geometries on
the mathematical structure of the calculation.
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I. INTRODUCTION

Hard particle systems serve as reference fluids for soft,
granular, and cellular matter. They interpolate the phase
diagrams of molecular particles in the limits of low and
high particle densities, where the influence of the smooth and
attractive interactions is of secondary order. Phase transitions,
as nematic and smectic, can be understood as entropic effects
of the excluded volume [1]. This distinguishes hard particle
systems as the ideal starting point for perturbation theory.
However, it also requires an analytic representation, or at
least detailed knowledge, of the free-energy functional. This
requirement limits the usefulness of computer simulations,
as the minimization procedure needs the functional form of
the free energy and not its function. To obtain a theoretical
understanding of the liquid, crystalline, amorphous, and glassy
states [2] we therefore need better analytical tools than are
currently available.

During the last decades, several interesting approximations
have been developed to derive analytical expressions of the
free energy or the pair-correlation function [3]. However,
most of them are restricted to hard spheres, such as the
well-known solution of Thiele and Wertheim [4–6] of the
Ornstein-Zernicke equation in the Percus-Yevick approxima-
tion. A different approach was suggested by Reiss, Frisch, and
Lebowitz [7], who used the result of Isihara and Kihara [8–10]
for the second virial coefficient for convex particles. Their
scaled particle theory motivated Rosenfeld [11–15] to develop
the fundamental measure theory (FMT), which is based on the
local decoupling of the second virial integral, on the invariance
of the free-energy functional under coordinate rescaling and
on its solution of the scaled particle differential equation.
The Rosenfeld functional is therefore a semiheuristic result,
valid under the same assumptions as the scaled particle theory.
Nevertheless, its advantage is the explicit dependence on the
particle geometry through the weight functions and its local
representation of the free-energy functional as the convolute
of weight densities.

Later it was shown by Rosenfeld and Tarazona [16–20]
that the functional leads to an inconsistency when the volume,
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filled with spheres, is restricted to a single layer, a tube or
a one-particle cavern. This led to a geometrically motivated
correction of the original form and resulted in a highly accurate
functional for the fluid phase of hard spheres up to the freezing
point [17,21]. A different strategy made use of simulation data
to go beyond the Percus-Yevick approximation [22,23]. The
simple structure of the functional led to further applications
for cylinders, disks, needles, and their mixtures [24–30] and
alternative representations of the weight functions [31,32]. For
a recent review see also [33]. However, despite its success, it is
not clear how to extend Rosenfeld’s approach further and how
to go beyond the semiheuristic construction of the functional.

In this article we will begin an investigation to clarify
the underlying mathematical and physical assumptions of the
fundamental measure theory. In a first step it will be shown that
the Rosenfeld functional is only the leading order of an infinite
expansion of the free energy in intersection diagrams, which
will be classified by their number of loops and intersection
centers. The 0-loop order corresponds to sets of particles that
intersect in at least one common point and can freely rotate
around this center. This intersection pattern corresponds to an
infinite subset of Mayer clusters and will be derived in this
work by generalizing the equation of Blaschke, Santalo, and
Chern [34–38]. It will be shown that the infinite number of
terms of the 0-loop contribution requires only the calculation
of three Euler forms. The relation between the intersection
probabilities and their corresponding subsets of Mayer clusters
then allows the calculation of the free-energy functional via
the virial expansion. However, instead of the virial series in the
single-particle density, we have to interpret the expansion in
Rosenfeld’s weight densities. This reformulation of the virial
expansion not only reproduces the Rosenfeld functional as the
0-loop order but applies also to all further loop orders.

The article is divided into two sections. The scope of Sec. II
is more general. Here, we introduce the concept of the loop
expansion, Sec. II A, give some background information on
differential and integral geometry, Sec. II B, and lastly derive
the weight functions from integral geometry in Sec. II C.
Section III considers the 0-loop contribution of the free energy.
Section III A recapitulates Rosenfeld’s ideas leading to the
semiheuristic formulation of the fundamental measure theory
and Tarazona’s corrections. This approach is compared in
Sec. III B to our new ansatz via the virial expansion, where
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we derive the 0-loop contribution of the free energy and prove
its equivalence to Rosenfeld’s functional. We end the article
in Sec. IV with a discussion of the convergence of the loop
expansion.

II. THE INTERSECTION PROBABILITY OF
PARTICLE STACKS

A. Intersecting particle stacks

So far, little attention has been paid to the approximation
scheme leading to Rosenfeld’s free-energy functional. Instead,
FMT is based on a tower of three postulates that fix the
functional’s overall structure: (1) The free-energy functional
density is assumed to be a polynomial in weight densities, (2)
uniquely determined by its homogeneous scaling dimension
and (3) its solution of the empirical scaled particle differential
equation. Actually, there is no physical argument that justifies
these assumptions from first principles, and the failure of only
one postulate could cause the downfall of the remaining parts.
A first step in generalizing Rosenfeld’s approach is therefore
to test these three postulates and, if necessary, to replace them.
This will be done in the following by comparing the third virial
order of Rosenfeld’s functional to its exact integral.

Rosenfeld’s truly remarkable step in developing a weighted
density functional for spheres is the local splitting of Mayer’s
f function into weight functions and to recognize its relation to
the Gauss-Bonnet equation and thus to the Gaussian curvature
K [11,39,40]. For two particles Di,Dj , intersecting in a
domain A = Di ∩ Dj of coordinate vector �rA ∈ Di ∩ Dj , the
f function decouples into the convolute

fij (�rij ) = − 1

4π

∫
∂(Di∩Dj )

K(A) dSA

= − 1

4π

∫
Di∩Dj

K(A) δ(�n�rA) d3rA (1)

=
∫

Di∩Dj

CA1A2ωi
A1

(�rA)ωj

A2
(�rA − �rij ) d3rA

=
∫

Di∩Dj

CA1A2ωi
A1

(�rA − �ri)ω
j

A2
(�rA − �rj ) d3rA (2)

depending on the particle positions �ri ∈ Di , �rj ∈ Dj and the
distance vector �rij = �rj − �ri . In (1) the integration over the
surface SA has been transformed into a volume integral at
normal vector �n by Eq. (B12) and finally arranged in the
symmetric form (2), assuming that the embedding space of
the particles is of infinite volume.

The derivation of the local decoupling of the f function
(2) and its relationship to the Gauss-Bonnet equation will
be explained in the following sections and deduced from
the Blaschke, Santalo, Chern equation of integral geometry
[34–37]. It provides an exact identity for the intersection
probability of convex particles and determines the prefactor
1/(4π ) uniquely. Based on this result, any Mayer diagram can
be transferred into weight functions.

The third virial cluster in this representation is now
an integral over three intersection centers A,B,C, particle
positions �ri , �rj , �rk , and their corresponding rotations ��. Let us

introduce the notation

�(D) := { γ = (�r , ��) | �r ∈ D , �� ∈ SO(3) },
dγi := d3ri d

3�i (3)

for the differential volume element. The exact third virial
integral has thus the form

β
(1)
2 = 1

2V

∫
CA1A2ωi

A1
(�rA − �ri)ω

j

A2
(�rA − �rj )

×CB1B2ω
j

B1
(�rB − �rj )ωk

B2
(�rB − �rk)

× CC1C2ωk
C1

(�rC − �rk)ωi
C2

(�rC − �ri)

× δ(�rAB + �rBC + �rCA) d3rAd3rBd3rC

× ρi(�ri)ρj (�rj )ρk(�rk) dγidγjdγk (4)

restricted by the loop constraint

�rAB + �rBC + �rCA = 0 (5)

of their distance vectors �rAB = �rB − �rA. Collecting terms
according to their particle number and introducing Wertheim’s
2-point density [41–44]〈
ωi

Aωi
Bρi

〉
(�rAB) =

∑
i

∫
�(Di )

ωi
A(�rA − �ri)ω

i
B(�rB−�ri)ρi(�ri) dγi

(6)

for �rA,�rB ∈ Di , Eq. (4) can be written in the more symmetric
form

β
(1)
2 = 1

2V
CA1A2CB1B2CC1C2

×
∫ 〈

ωi
A1

ωi
C2

ρi

〉
(�rCA)

〈
ω

j

B1
ω

j

A2
ρj

〉
(�rAB)

× 〈ωk
C1

ωk
B2

ρk

〉
(�rBC)

× δ(�rAB + �rBC + �rCA) d3rABd3rBCd3rCA. (7)

This is to be compared to the corresponding third virial integral
obtained from Rosenfeld’s functional:

β
(0)
2 = 1

V

∫ [
1
2ωi

χ (�rA − �ri)ω
j
v (�rA − �rj )ωk

v(�rA − �rk)

+ Cα1α2 ωi
α1

(�rA − �ri)ω
j
α2

(�rA − �rj )ωk
v(�rA − �rk)

+Cα1α2α3ωi
α1

(�rA − �ri)ω
j
α2

(�rA − �rj )ωk
α3

(�rA − �rk)
]

× ρi(�ri)ρj (�rj )ρk(�rk) dγidγjdγk d3rA, (8)

which has a much simpler form, integrated over only one
intersection center A ⊂ Di ∩ Dj ∩ Dk and depends on three
weight functions only, instead of six in the exact expression (4).

The principal difference between these two integrals is illus-
trated in Fig. 1. Figure 1(a) displays the generic intersection
pattern of the third virial integral with pairwise overlapping
domains (4), whereas the corresponding figure Fig. 1(b) shows
the case of (8) with only one such center. Rosenfeld’s diagram
is a degenerate third virial coefficient, obtained in the limit
�rA = �rB = �rC , where the triangle of Fig. 1(a) shrinks to the
tree diagram of Fig. 1(b). The difference between the exact
and the approximated third virial integral is therefore the way
in which the particles intersect each other.
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FIG. 1. The third virial Mayer diagram in the particle (left) and
intersection representation (right): (a) pairwise intersecting particles
corresponding to the exact cluster integral and (b) its approximation
as the stack of third order.

Instead of the graphical representation of intersecting
particle domains, it is sufficient to symbolize the intersection
patterns in “intersection diagrams,” where the particles corre-
spond to lines and intersection centers to the position where
the lines join. The corresponding diagrams of the third virial
are shown on the right of Fig. 1.

Rosenfeld’s functional contains an infinite number of
further virial contributions. These are obtained by Taylor-
expanding the singular parts in powers of the weight function
ωv and have the generic form

Cα1α2α3 [ωα1ωα2ωα3 (ωv)n−3](�rA; �r1, . . . ,�rn) (9)

corresponding to Mayer diagrams, whose intersection domains
have been contracted into one single domain, as shown in
Fig. 2. However, only completely connected Mayer clusters
interact in such a way that each particle interacts with each
other. Rosenfeld’s functional is therefore the sum over an
infinite number of completely connected diagrams that are
further contracted into one intersection point.

The arguments, obtained so far, can be summarized in
the following way: The exact free-energy functional is not
representable by Rosenfeld’s weight densities alone. Instead,
the third virial integral (7) is a function of Wertheim’s 2-point
densities (6), and it is natural to assume that this result has
to be generalized to arbitrary k-point densities. Next, as the
Mayer function (2) is itself invariant under coordinate scaling,
it is not possible to restrict the functional form by its scaling
dimension. From this follows that the three postulates of FMT,
including the empirical scaled particle differential equation,
have no deeper physical basis. On the other hand, we have also
seen that Rosenfeld’s functional approximates and sums up a
certain class of Mayer diagrams contracted to one intersection
point, as shown in Fig. 1. This offers an alternative approach
to derive the functional and, most importantly, it also opens a
path to derive higher order corrections.

FIG. 2. The Rosenfeld functional is the 0-loop approximation
of the free energy. Each intersection diagram corresponds to a
completely connected Mayer cluster, contracted into a stack. The
sum over all such diagrams is symbolized by a crossed circle.

FIG. 3. Mayer clusters of the fourth virial order, translated into
intersection diagrams and ordered by the tuple (g,n): (a) (3,6), (2,4),
(0,1); (b) (2,5), (1,3); and (c) (1,4).

The central object of FMT is the sum of contracted inter-
section diagrams, shown in Fig. 2. Because of its importance,
let us introduce the name “stack” for individual parts and
“universal stack” for its sum, defined as follows:

Definition 1. A stack of order k = ord(Stk) is a set of i =
1, . . . ,k domains Di , intersecting in at least one common point
and free to translate and rotate around this center:

Stk =
k⋂

i=1

Di. (10)

The universal stack is the formal sum over all stacks intersect-
ing at the same point

USt =
∞⊕
i=2

Stk. (11)

In the following sections we will prove that the intersection
probability of the universal stack 0 reproduces Rosenfeld’s
functional R

R = 0. (12)

However, this is only the first hint to a more general
structure: When completely contracted intersection diagrams
correspond to a free-energy functional at low packing frac-
tion, it is natural to assume that diagrams, not completely
contracted, provide higher order corrections.

Rosenfeld’s functional is exact for the second virial order.
The third virial integral, however, is only an approximation,
as shown in Fig. 1. Adding the exact third virial diagram will
therefore result in an improved functional, corresponding to
three additional intersection centers and the loop constraint
(5). In principle, it is possible to add arbitrary intersection
diagrams to the functional, systematically derived from the
Mayer clusters. As an example consider Fig. 3 where the
4-particle Mayer diagrams are shown together with their
corresponding set of intersection diagrams and contractions,
ordered by their number of loops g and intersection centers n.

This classification by the tuple (g,n) comes natural as the
calculational complexity increases with both. However, they
have also a direct physical interpretation.

The loop order g counts the number of constraints,
restricting the coordinates of intersection domains:

�rA1A2 + · · · + �rAk−1Ak
= 0

�rB1B2 + · · · + �rBl−1Bl
= 0

. . .

⎫⎬⎭ g loop constraints (13)
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FIG. 4. The displacement of one particle causes a shift in the
position of all neighbors that are in direct and indirect contact,
resulting in long-range correlations between particles.

for g loops with k,l, . . . intersection centers. In this way,
correlations are generated between particles that otherwise do
not interact directly via a potential function. This distinguishes
the zero loop order g = 0, where no such constraints exist,
providing a plausible argument why Rosenfeld’s free-energy
functional describes only the fluid regime below the first
phase transition and predicts a maximum packing fraction at
nv = 1, independent of the particle geometry. The solid phase
region, on the other hand, requires long-range correlations
between particles, such that shifting one particle leads to the
displacement of others, as shown in Fig. 4.

These considerations make the number of loops g and
intersections n convenient indices to group the diagrams and
to define the “loop expansion” of the free-energy excess
functional:

ex =
∞∑

g=0

( ∞∑
n=1

g,n

)
=

∞∑
g=0

g, (14)

where each element g,n corresponds itself to an infinite
number of intersection diagrams. Examples are shown for
0,1 = 0 in Fig. 2 and for 1,3 in Fig. 5. It is worth
pointing out that some of the contracted 4-particle diagrams
of Fig. 3 turn up as corrections of the second and third virial
order. Actually, it will be shown in the following sections
that the calculational effort does not increase when additional
particles are added to an existing intersection point. Any
individual intersection diagram can therefore be replaced by a
“resummed diagram,” with each intersection point replaced by
the universal stack. Resummation is therefore a central aspect
of FMT, as it generates the pole structure in the free volume
1 − nv , which is so characteristic for Rosenfeld’s functional.

A natural extension of the current functional is the com-
bination K = 0,1 + 1,3, shown in Fig. 6. However, as
parts of 0,1 are already included in 1.3, it is necessary to
“regularize” the loop diagram by excluding the case |�rAB | =
|�rBC | = |�rCA| = 0, shown in Fig. 1, where the distances
between the intersection coordinates vanish. All loop diagrams
are understood in this way, excluding the case of collapsing
loops and thus ensuring that regularized diagrams are uniquely
defined.

FIG. 5. The resummed and regularized third virial integral:
Adding additional particles to an existing intersection point does
not increase the calculational effort.

FIG. 6. Going beyond Rosenfeld’s functional: A first approxima-
tion for the 1-loop order contains the resummed second virial integral
and the regularized third virial integral.

Apart from the resummation of intersection points, it is
also possible to sum up diagrams of identical loop order. One
example is displayed in Fig. 7. The analytical structure of
the generating function 1 can be derived from the virial
expansion, as the ring diagrams are formally identical to
Mayer clusters. With the symmetry factor (k − 1)!/2 for a
ring of k particles and the simplifying notation CABωAωB for
the f function (2), the 1-loop free energy yields the formal
expression

1 =
〈 ∞∑

k=1,k �=2

1

k!

1

2
(k − 1)(CABωAωBρ)k

〉
= − 1

2 〈ln (1 − CABωAωBρ)〉 + · · · , (15)

where the angular brackets indicate the integration over the
coordinates. The 1-loop free-energy contribution is therefore
of a completely different structure than Rosenfeld’s functional,
signaling a logarithmic divergence, depending on the particles’
geometry.

Having identified the approximation scheme behind Rosen-
feld’s functional, we will now begin with the development
of the mathematical framework necessary to derive the
intersection probability of the universal stack. In this way,
the hypothesis (12) will be proven by direct calculation, which
is the basis for the resummation of intersection points and
all further constructions that will be considered in following
papers.

B. Some relevant information on differential geometry

1. Intrinsic geometry

The derivation of the intersection probabilities requires the
introduction of some mathematical conventions [45–47] and
the discussion of physical constraints.

Let D denote a Euclidean, Riemannian manifold of 3
dimensions, sufficiently differentiable to allow for the cal-
culation of the Euler form. Manifolds of this type include
a variety of geometries such as convex and concave particles,
Klein’s bottle, tori, polyhedrons, cylinders, hollow spheres, but
also noncompact structures. The mathematical requirements
are therefore not very restrictive. However, we also have to
take into account the physical constraints. In the formulation
of Mayer’s f functions, the cluster integrals determine
the intersection probability between particles. However, the
physical particle domain is not only restricted by its surface.
Instead one has to determine the region that is inaccessible
for other particles. Figure 8 shows two examples, where the

FIG. 7. The unregularized free energy at 1-loop order is the sum
over the second virial and all further ring diagrams.
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FIG. 8. Physical constraints restrict the regions accessible for
other particles. Forbidden configurations are (a) linked tori and (b)
particles inside a cavern (bottle) with pore opening smaller than the
particles’ diameter.

corresponding mathematical intersection probability is zero
but not its physical one. Figure 8(a) shows two linked tori. In
a fluid of single tori, such a configuration has to be excluded
as the particles cannot penetrate each other. The same applies
to the system of a particle inside a concave domain, whose
opening is smaller than the particle’s smallest diameter, as
seen in Fig. 8(b). When the geometry of the first does not allow
entering the inner region of the second, it has to be excluded,
i.e., counted as part of the domain of the latter particle.

Although physically related, the mathematical nature of
these two examples is very different. The case of two tori
is related to Euler’s linking number [48,49] and belongs to
the topological class of homotopically nontrivial intersections.
Another example is the intersection of hollow spheres as
realized by fullerenes. Both cases are related to topological
classes that follow by successive variations of Euler forms [50].
And although they are not required for the current article, they
are interesting enough to give a short account further below.
The second case Fig. 8(b) is more difficult to solve. Here,
we have to introduce a fictitious membrane at the opening
of the pore, whose surface vector is always antiparallel to the
surface vector of the docking particle. Such configurations lead
to the vanishing of certain contributions of the intersection
probability between particles, as we will show in the next
section, and might give new insight into the isotropic-nematic
phase transition. Because of these additional complications,
we will exclude homotopically nontrivial particles as well
as concave geometries. The discussion simplifies further,
when boundaries are excluded, leaving us with 3-dimensional
convex particles embedded into the flat Euclidean space R3.

The geometry of a physical particle depends on intrinsic
and extrinsic properties, i.e., the properties independent of and
dependent on the embedding. It would be therefore sufficient
to consider 2-dimensional surfaces and their embedding
into R3. However, at this point it is worthwhile to discuss
Cartan’s formulation of differential geometry [45,46,51] for
general dimension, as some of the results degenerate for
low-dimensional spaces.

Let the particle � be a n-dimensional, orientable, differen-
tial Riemannian manifold without boundary. Suppose further
that the manifold can be covered by a set of open coordinate
patches � = ∪αUα , each one isomorphic to Rn and labeled
by a local, orthonormal coordinate frame (p,e

(α)
1 , . . . ,e(α)

n ) at
the point p ∈ Uα . The local frames at overlapping regions
Uα ∩ Uβ are related to each other by differentiable coordinate
transformations gαβ(p) : Uα ∩ Uβ → SO(n). The matrix val-
ued transition functions gαβ are invertible g−1

αβ = gβα and fulfill
the cyclic condition gαβgβγ gγα = 1 at triple intersections Uα ∩
Uβ ∩ Uγ . These preliminaries define the tangential bundle

T � with the local section (p,e1, . . . ,en) ∈ �(T �) and the
cotangential bundle T ∗� as its dual space, related to T � by
the metric of Rn

ei ej = ηij (16)

and its differential structure. The vielbein θi and connection
forms ωij are defined by

dp = eiθi, dei = ωij ej for p ∈ � (17)

and transform under the coordinate change e′
i = gij ej as

θ ′
i = gij θj , ω′

ij = g−1
ki ωklglj + g−1

ki dgkj , (18)

where summation over paired indices is understood. The
connection is therefore not a tensor and can be locally replaced
by a trivial gauge.

The vanishing of the second exterior derivative of (17)
defines the torsion and the curvature form

Ti = dθi − ωij ∧ θj , �ij = dωij − ωik ∧ ωkj , (19)

which transform as a first and second rank tensor

T ′
i = gijTj , �′

ij = g−1
ki �klglj . (20)

The constraint Ti = 0 of a Riemannian manifold is therefore
independent of the coordinate system and introduces a global
relationship between the vielbein and the connection forms.

Torsion and curvature carry local information about the
geometry of a manifold, always restricted to single coordinate
patches Uα and depending on the chosen coordinate system.
Globally defined forms, on the other hand, are necessarily
invariant under coordinate transformations. An important
class of such functions was introduced by Chern [47,52]
in extending the notion of class functions f (g−1xg) = f (x)
from group theory. From (19) follows that the curvature
form transforms under the adjoint representation of SO(n).
Natural choices are therefore the determinant and the trace of
a polynomial in �, whose differential form is of the same order
as the volume form of � or any submanifold thereof. Chern
defined the Euler form or Euler class

Pf(�) = 1

n!
εi1...in�i1i2 ∧ . . . �in−1in (21)

for even-dimensional manifolds n = 2k and its integral as the
Euler characteristic

χ (�) = (−1)k(2k)!

(4π )kk!

∫
�

Pf(�), (22)

with the normalization chosen such that its result is whole
numbered for the sphere χ (S2) = 2 and the g-holed torus
χ (T 2

g ) = 2 − 2g. The integral is a topological invariant and
central for many areas of mathematics and physics [49]. It is
therefore not surprising to discover that the Euler form also
enters the discussion of hard particle physics as the intersection
probability of particle stacks.

The Euler class is the highest possible form for even-
dimensional manifolds from which derives a series of invariant
differential forms by successive variation δω = g−1dg. The
resulting Chern-Simons classes [47,50] determine the failure
of the form to be invariant under the coordinate transformations
(18). As an example consider the case of n = 2 dimensional
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manifolds with the transition function g = exp (iλ) ∈ U(1).
The curvature reduces to the exterior derivative � = dω and
its variation δω = idλ to a iR valued function:

δ

∫
�

εij�ij = δ

∫
∂�

εijωij =
∫

∂�

idλ =
∫

∂∂�

iλ. (23)

When the first integrant is rewritten by the Gaussian curvature
K , the second by the geodesic curvature κg , and the last
integrant by the interior angles, we obtain from (22) the
Gauss-Bonnet equation for the 2-dimensional surface �

2πχ (�) =
∫

�

Kdσ +
∫

∂�

κgds +
∑

i

(π − αi) (24)

with noncontractible curves along ∂� and additional vertices
at the singular points. To get a better understanding of the
origin of these additional contributions, remember that the
Euler form counts the angular change of the normal vector,
while moving over the surface of the embedded manifold. For
smooth, Riemannian surfaces this is always 4π , but boundaries
and singular points contribute additional angular changes and
generate the Chern-Simons terms.

It can be shown [47,50] that the two equations � = dω,
δω = idλ generalize for the Euler form Q0

2k := Pf(�) for
arbitrary even dimension to a sequence of characteristic classes

δQ0
2k = dQ0

2k−1, δQm−1
2k−m = dQm

2k−m−1 (25)

for m = 1, . . . ,2k. Each variation now produces a new
characteristic form of one order less than its predecessor. And
in the same way as the geodesic curvature is an invariant form
for the 1-dimensional curve ∂�, it is natural to apply the odd
differential forms of Qm

2k−m−1 to odd-dimensional manifolds
of nontrivial homotopy group. Euler’s linking number and the
intersection number of hollow spheres are special cases of
these forms. In the notation of [50], they correspond to Q1

2 and
Q2

3 and derive from the Euler class of a 4- and 6-dimensional
manifold. However, for convex geometries, which we will
consider in the following, it is not necessary to take these
classes into account.

Apart from the geometric interpretation of a Riemannian
manifold, there is also the relation to Lie groups, whose
vielbein and connection forms constitute the basis of a Lie
algebra [35,45,53] represented by the matrix

σA =
(

ωij θi

−θj 0

)
∈ iso(n), (26)

whose elements satisfy the Maurer-Cartan equations

dσA = ωA
B ∧ σB = 1

2CA
BCσC ∧ σB,

(27)
d2σA = 0 = 1

2CA
BCCC

DEσB ∧ σD ∧ σE.

They are related by the inner derivation iBσA = σA(XB) =
ηAB to the more commonly used commutation relation
[XA,XB] = CC

ABXC and Jacobi identity. The corresponding
Lie group is the Euclidean or isometric group that locally splits
into the semidirect product ISO(n) = SO(n) � En of rotations
and translations. Its Lie algebra elements ωij and θi transform
under the mapping (18) and span a n(n + 1)/2 dimensional
space consisting of the n(n − 1)/2 connection and n vielbein
forms.

The integral over all rotations and translations is therefore
related to Haar’s measure of the isometric group

∧n
i<j=1ωij ∧n

i=1 θi

= ∧n−1
i=1 ωin ∧n−2

i=1 ωin−1 ∧ . . . ∧ ω12 ∧ dvol(En)

= dSn−1 ∧ dSn−2 ∧ . . . ∧ dS1 ∧ dvol(En)

= dvol(SO(n)) ∧ dvol(En), (28)

where we made use of the coset representation:

SO(k)/SO(k − 1) = Sk−1. (29)

Evaluating the integral yields then a product of volumes of
spheres, with values

Ok = vol(Sk) = 2π
k+1

2

�
(

k+1
2

) , (30)

whose first elements are O1 = 2π , O2 = 4π , ....

2. Extrinsic geometry

Up to now, we have only considered the intrinsic properties
of the particles’ geometry. However, the movement in a
background space requires the choice of a suitable embed-
ding. For physical reasons it is natural to consider the flat
Euclidean space and to imbed the k-dimensional particle,
e.g., into the first coordinate directions of the local frame
(e1, . . . ,ek,ek+1, . . . ,en) with the corresponding nontrivial co-
ordinate transformations ISO(n)/[ISO(k) × ISO(n − k)]. To
avoid the additional problems that occur when discussing this
complicated coset structure, we will restrict the dimension of
the embedding to k = n − 1. The group ISO(1) consists then
only of the translation in one direction and can be explicitly
separated in the following equations.

This choice is the simplest possible embedding and at the
same time also the physically most relevant one. The manifold
D ↪→ Rn is now a n-dimensional domain in Rn and bounded
by its surface ∂D. Following the outline of [36], we choose
the outward normal direction of the surface to point along
en, such that the tangential directions of ∂D correspond to
the first n − 1 elements of the local frame (e1, . . . ,en−1,en) of
Rn. The corresponding directions are differenced by the index
convention:

i,j = 1, . . . n and α,β = 1, . . . ,n − 1. (31)

The associated Pfaff system [45,51] of the integrable
submanifold is then defined by the constraint

θn = 0 on ∂D. (32)

Applied to the vanishing torsion of the Riemannian manifold

0 = dθn = ωnα ∧ θα = hαβθβ ∧ θα = κανα ∧ να, (33)

it allows an algebraical solution of the equation by the
symmetric matrix hαβ and to define the principal curvatures
κα and principal vectors να as its eigenvalues and orthonormal
eigenvectors. In the form den = καναeα , it is also known as
the Rodrigues formula.
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Splitting the n-dimensional curvature �(n) into normal and
tangential directions

�(n)
nα = dωnα − ωαβ ∧ ωβn

= D(n−1)ωnα,
(34)

�
(n)
αβ = dωαβ − ωαγ ∧ ωγβ − ωαn ∧ ωnβ

= �
(n−1)
αβ − ωαn ∧ ωnβ

yields the Gauss and Gauss-Codazzi equations [45], further
reducing to

�
(n−1)
αβ = ωαn ∧ ωnα and D(n−1)ωnα = 0 (35)

in the case of flat embedding. The first equation relates the
intrinsic curvature of the particle to the normal connection
forms of the embedding, whereas the vanishing of ωnα

under the n − 1 dimensional covariant derivative ensures the
decoupling of the normal coordinate transformations from the
tangential ones; the forms ωnα are therefore horizontal [45],
without the need of introducing equivariant differential forms
[54].

In the definition of the embedding we have assumed
that the normal vector en points outward from the compact
particle surface. This corresponds to a special gauge choice
in the O(n) coordinate transformations of Rn and restricts
the group to SO(n). But this local gauge does not extend
globally, where both orientations Z2

∼= O(n)/SO(n) have to
be taken into account. The Euler characteristic, derived by
the intrinsic curvature (19) and by Gauss’s equation (35), will
correspondingly differ by a factor of two:

χ (∂D) = 2χ (D ↪→ Rn). (36)

The kinematic measure (28) of an embedded particle
of odd dimension n = 2k + 1 can now be calculated by
combining (21), (22), (35), (36) and observing that the
normalization of the Euler characteristic is proportional to
O2k = 2(4π )kk!/(2k)!, as follows from (30):∫

∧2k+1
i<j=1ωij ∧2k+1

i=1 θi

=
∫

Pf(�) ∧ dvol[SO(2k)] ∧ dvol(E2k+1)

= χ (∂D) vol[SO(2k + 1)] vol(E2k+1). (37)

For a 3-dimensional manifold inR3, the corresponding integral
reduces to∫

ω12ω13ω23θ1θ2θ3 =
∫

κ1κ2ν1ν2

∫
ω12 dvol(R3)

=
∫

K(∂D)dSA 2π V

= 8π2V

∫
1

4π
K(∂D)δ(�n�rA)d3rA

= 8π2 V χ (∂D) (38)

with the volumes of vol(R3) = V and vol(SO(3)) = 8π2.
Note that the kinematic measure of a Riemannian manifold

would vanish for dimensional reasons, as the vielbein and
connection forms are not independent. It is therefore necessary
first to interpret the integrant as the Haar’s measure and only
afterward to incorporate the geometric constraints.

This equation is of course closely related to Chern’s original
derivation of the Euler class [52]. Here however, the difference
lies in the relation between geometry and isometric group,
which focuses on the alternative interpretation as the kinematic
measure of a particle, moving in a flat background. For
two intersecting particles it thus determines the intersection
probability, averaged over all rotations and translations. It is
therefore identical to the second virial integral and explains
the appearance of the Gauss-Bonnet equation (24) in the
calculations of Isihara and Kihara [9], Rosenfeld [39], and
Wertheim [41].

C. The one-, two-, and three-particle intersections

1. Comments on integral geometry

The generalization of (37) to two and more intersecting
particles leads us into the field of integral geometry, whose
differential geometric formulation goes back to Minkowski
[55], Weyl [56], Blaschke [34], Santalo [35], and Chern [36–
38], who observed that the invariant forms of integral geometry
can be traced back to the Euler class (37). One intriguing result
is the fundamental kinematic equation [35]

Vn

γn

∫
ISO(n)

χ (D1 ∩ gD2)dg =
n∑

k=0

(
n

k

)
Mk(D1)Mn−k(D2),

γn = vol[SO(n)], Vn = 1

n
On−1, (39)

and the observation that the coupled geometry of two in-
tersecting manifolds reduces to a simple pairwise product
of Minkowski measures or integrals of mean curvature Mk .
For n = 3 it reproduces the equation of Isihara and Kihara
of the second virial coefficient. Actually, they used for their
calculation an early result of Minkowski [55]. In fact, it was
the starting point for our current investigation and offers a
direct, albeit less general, approach of deriving the intersecting
probability, which is why we have added their calculation in a
somewhat clarified form in Appendix A.

There are several ways to derive the fundamental kinematic
equation (39). Probably the simplest one uses the expansion of
the Steiner polynomial [35], another one Blaschke’s cut and
paste construction [34] of subspaces. The most fundamental,
although more elaborate, approach is Chern’s explicit deriva-
tion [36] of the Euler class from the kinematic measure (37).
Its advantage is the explicit local formulation in connection
forms that will be important for its decoupling into Rosen-
feld’s weight functions. This ansatz is therefore the natural
starting point for relating Rosenfeld’s approach to integral
geometry.

The generalization of (37) to a particle stack Stk+1 is easily
achieved but requires some normalization to get a well-defined
result. First, we have to fix the position and orientation of
one particle in Stk+1 to remove the volume dependence on
the embedding space V = vol(R3), generated by moving the
stack in the background manifold. Furthermore, it is useful to
define the kinematic measures of the particle domain D and
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its surface �

dD = ω12ω13ω23 ∧ θ1θ2θ3,

d� = ω12 ∧ θ1θ2 (40)

analogously to (3). The kinematic measure of (37) or (38)
generalizes then to the integral average of k + 1 particles

1

8π2

1

V

∫
Stk+1

dD1 ∧ . . . ∧ dDk+1

= 1

4π

∫
Stk+1

K(∂Stk+1) δ(�n�rA) d3rA

× dγ2 ∧ . . . ∧ dγk+1, (41)

with the Gaussian curvature K integrated over the domain
A = Stk+1 at fixed kinematic measure γ , as defined in (3), and
integrated over the center of gravity, represented by γ1.

The boundary of the stack ∂Stk+1 can be determined by
the algebraic relations of the homology operator [48]. As an
example, consider two intersecting manifolds that itself have
no boundary ∂2D = 0. The application of ∂ to the second-order
stack

∂(D1 ∩ D2) = ∂D1 ∩ D2 + D1 ∩ ∂D2 + ∂D1 ∩ ∂D2 (42)

is thus a sum of intersections, wherein each successive
application of ∂ reduces the dimension by one. This restricts
the possible number of boundary operations to the dimension
of the embedding space by the constraint ∂4X = 0 for any
3-dimensional manifold X. The infinite number of virial
contributions, shown in Fig. 2, reduces therefore to the
derivation of three Euler forms, corresponding to one, two,
and three particles.

The calculation of (41) can be further simplified by
including the physical constraint of indistinguishable particles.
To obtain the correct combinatorial prefactors, let us define the
formal sum

n̂ =
M∑
i=1

Di ρi (43)

of 1-particle densities and domains. It is the homologous
operator of Rosenfeld’s weight densities and parallels the
notion of a divisor in algebraic geometry. The representation
of the free-energy functional in n̂ reduces the problem of
determining the boundary of the stack of k + 1 different
particles ∂Stk+1 to the corresponding analysis of a stack of
k + 1 identical manifolds, whose boundary reduces to a sum
of three terms

∂Stk+1 = (k + 1) � ∩ Stk + (k + 1)k � ∩ � ∩ Stk−1

+ (k + 1)k(k − 1) � ∩ � ∩ � ∩ Stk−2 (44)

in the shorthand notation � = ∂D. Using the linearity of the
Euler form and its vanishing for odd-dimensional manifolds,
it translates to the corresponding Gaussian curvature

K(∂Stk+1) = (k + 1) K(�) + (k + 1)k K(� ∩ �)

+ (k + 1)k(k − 1) K(� ∩ � ∩ �) (45)

that will be derived in the following. The first two terms
are known from Chern [36], who obtained the result for two
intersecting manifolds of arbitrary dimension. An independent

approach was used by Wertheim [41]. However, the three-
particle intersection is new and will be presented parallel to
the summary of the previous two cases. The corresponding
generalization of Chern’s approach to an arbitrary number of
particles and dimensions has been developed in [57] and will
now be applied to three dimensions.

2. The one-particle Euler form

Let us begin with the simplest case K(�) of one parti-
cle, moving in a background of k domains. Following the
derivation of (38) the product of the connection forms can
be rewritten in the principal basis ω13 ∧ ω23 = κ1κ2ν1 ∧ ν2,
reducing the kinematic measure of �

1

8π2

1

V

∫
�(D1)

dD1 = 1

8π2

1

V

∫
�(D1)

ω13ω23ω12θ1θ2θ3

= 1

4π

∫
A=D1

κG δ(�n�rA) d3rA (46)

with the Gaussian curvature κG and a factor of 2π from the
integral over ω12. The first part of the integral (44) for a stack
can now be written as

1

4π

∫
�(D2 × . . . × Dk+1)

× Stk+1

K(�1,�rA) δ(�n�rA) d3rA dD2 . . . dDk+1

=
∫

1

4π
κG(∂D1,�rA) δ(�n�rA) �(D2,�rA) . . . �(Dk+1,�rA)

× d3rA dγ2 . . . dγk+1

=
∫

ω(1)
χ ω(2)

v . . . ω(k+1)
v d3rA dγ2 . . . dγk+1 (47)

in the weight functions

ω(i)
χ = 1

4π
κG δ(∂Di), ω(i)

v = �(Di), (48)

where the integration domain has been formally extended to
the complete embedding space V by the Dirac and Heaviside
functions δ and �, with δ(∂Di) understood as restricting the
volume integration to the surface δ(�n�rA) at the intersection
point �rA ∈ Stk .

3. The two-particle Euler form

Some more efforts require the derivation of the second Euler
form K(�1 ∩ �2) that determines the angular change between
the two normal vectors at the 1-dimensional intersection
submanifold. It parallels the geodesic curvature κg of the
Gauss-Bonnet formula (24) and can be seen as the real-space
generalization of the Chern-Simons class. Its derivation begins
with the construction of a proper coordinate system at the
intersection space. Let us introduce the bases �1 : (e1,e

(1)
2 ,e

(1)
3 )

and �2 : (e1,e
(2)
2 ,e

(2)
3 ) with the common direction �1 ∩ �2 : e1

along the 1-dimensional submanifold and the intersection
angle

cos (φ12) = (
e

(1)
3 e

(2)
3

)
for 0 � φ12 < 2π. (49)

Following [57], we define the intersection determinant

Mk = det
(
e

(i)
3 e

(j )
3

)|ki,j=1 (50)

041150-8



DERIVING THE ROSENFELD FUNCTIONAL FROM THE . . . PHYSICAL REVIEW E 85, 041150 (2012)

for k intersecting surfaces. The first two cases are

M2 = 1 − c2
12 = s2

12,
(51)

M3 = 1 − c2
12 − c2

13 − c2
23 + 2c12c13c23,

where we used the shorthand notation

sij := sin (φij ), cij := cos (φij ),
(52)

s(γ ) := sin (γ ), c(γ ) := cos (γ ).

The local frame of the intersection manifold in R3 is
spanned by the vector field e1,e

(1)
3 ,e

(2)
3 for φ12 �= 0, from which

one obtains an orthonormal basis by the Gram-Schmidt process

v3 = e
(1)
3 ,

v2 = 1

s12

(
e

(2)
3 − c12 e

(1)
3

)
, (53)

v1 = e1.

As explained before, the Euler characteristic counts the angular
change of the normal vector, while moving from e

(1)
3 to e

(2)
3 . To

interpolate between those two vectors, we introduce a SO(2)
rotation in the range 0 � γ � φ12

η3 = c(γ )v3 + s(γ )v2,

η2 = −s(γ )v3 + c(γ )v2, (54)

η1 = e1.

One of the two equivalent vectors, η3 or η2, is now the new
outward pointing normal direction. Let us chose η3 and derive
the corresponding Euler density for the intersection �1 ∩ �2:

η1dη3 ∧ η2dη3 = 1

s12

[
s(φ12 − γ )ω(1)

13 + s(γ )ω(2)
13

] ∧ dγ,

(55)

with the definition ω
(i)
13 = e1de

(i)
3 of the new connection forms

for the particles i = 1,2. Integrating over γ∫
η1dη3 ∧ η2dη3 = 1 − c12

s12

[
ω

(1)
13 + ω

(2)
13

]
= K(�1 ∩ �2)d(�1 ∩ �2) (56)

yields the differential Euler form. Observe that the angular-
dependent factor (1 − c12)/s12 remains finite even in the limit
of antiparallel vectors φ12 → π when the remaining kinematic
measure is included, which will be derived below.

At the intersection �1 ∩ �2, a SO(2) transformation (18)
relates the vector frames of the two particles

e
(2)
3 = c12e

(1)
3 + s12e

(2)
2 ,

e
(2)
2 = −s12e

(1)
3 + c12e

(2)
2 , (57)

e
(2)
1 = e

(1)
1 ,

and the boundary condition θ
(i)
3 |∂�i

= 0 their corresponding
Pfaffian systems (32). The transformed differential forms

θ
(2)
3 = c12θ

(1)
3 + s12θ

(1)
2 ,

ω
(2)
13 = c12ω

(1)
13 + s12ω

(1)
12 , (58)

ω
(2)
23 = ω

(1)
23 + dφ12

are therefore understood modulo θ
(1)
3 , ω

(1)
α3 . With these re-

lations, the reduced kinematic measure of �1 ∩ �2 can be

derived, with the first particle fixed in the embedding space
and the second one free to move:

d(�1 ∩ �2) ∧ dD2

= θ
(1)
1 ∧ θ

(2)
1 θ

(2)
2 θ

(2)
3 ω

(2)
12 ω

(2)
13 ω

(2)
23

= (s12)2 θ
(1)
1 θ

(1)
2 ω

(1)
12 ∧ θ

(2)
1 θ

(2)
2 ω

(2)
12 ∧ dφ12

= (s12)2 d�1 ∧ d�2 ∧ dφ12, (59)

with the kinematic measure of the surface defined in (40). The
decoupling of the Euler form (56) and the kinematic measure
(59) for two intersecting particles is a central property of
integral geometry [35] and follows from the ISO(3) invariance.

Next, we transform (e(i)
1 ,e

(i)
2 ,e

(i)
3 ) into the orthonormal

coordinate system of the principal frame (�ν(i)
1 ,�ν(i)

2 ,�n(i)), chang-
ing the notation for the normal direction �n = e3 to be
consistent with Rosenfeld’s and Wertheim’s convention. The
3-dimensional cross product of the normal vectors

e1 = v1 = v2 ∧ v3 = 1

s12
�n(2) × �n(1) (60)

points now into the tangential direction of the intersection.
Combining the Euler form and the kinematic measure, we
obtain the intersection probability between two particles:

1

8π2

1

V

∫
�(D1×D2)

dD1 ∧ dD2

= 1

4π

∫
�(D2)

∫
�1∩�2

K(�1 ∩ �2)d(�1 ∩ �2)dD2

= 1

4π

∫
�(D2)

∫
�1∩�2

1 − c12

s12

[
ω

(1)
13 + ω

(2)
13

]
dD2 (61)

integrated over the intersection volume A = D1 ∩ D2 and the
kinematic measure with φ12 ∈ �(D2).

The transformation of the connection forms from the old
reference system to the principal frame was done by Chern
[36]. However, Wertheim’s tensorial representation [41] (see
also [30,39,40,58]) has the advantage to be more closely
related to Rosenfeld’s definition of weight functions. In
order to keep the discussion self-contained, we have included
Wertheim’s derivation in Appendix B and present here only
the result.

Using the diagonal form of the Euclidean metric I and the
curvature tensor K

I = �ν1 ⊗ �ν1 + �ν2 ⊗ �ν2 + �n ⊗ �n,
(62)

K = κ1 �ν1 ⊗ �ν1 + κ2 �ν2 ⊗ �ν2,

Rodrigues formula (33) yields the form

e1de3 = e1Ke1 ds = e1[κ̄(I − �n ⊗ �n) + �]e1 ds (63)

with the mean and tangential curvature

κ̄ = 1
2 (κ1 + κ2), � = 1

2 (κ1 − κ2)(ν1 ⊗ ν1 − ν2 ⊗ ν2).

(64)
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With this change of notations and Appendix B, we finally
obtain Wertheim’s representation of the kinematic measure

1

4π

∫
�(D2)

∫
�1∩�2

K(�1 ∩ �2)d(�1 ∩ �2)dD2

= 1

4π

∫
�(D2)

∫
A=D1∩D2

[
(I − �n(1) ⊗ �n(2))(κ̄ (1) + κ̄ (2))

− �n(1)�(2)�n(1) + �n(2)�(1)�n(2)

1 + �n(1)�n(2)

]
× δ(�n(2)�rA)δ(�n(1)�rA) d3rA dD2 (65)

integrated over �rA ∈ D1 ∩ D2 and �(D2).
Now it is a simple task to expand the denominator in the

geometric series

1

1 + �n(1)�n(2)
= 1 − �n(1)�n(2)) + (�n(1))⊗2(�n(2)))⊗2 ± . . . (66)

of tensor products and to rewrite the integral in the weight
functions

1

4π

∫
�(D2 × . . . × Dk+1)

×�1 ∩ �2

K(�1 ∩ �2)d(�1 ∩ �2)dD2 . . . dDk+1

=
∫

�(D2 × . . . × Dk+1)
× Stk+1

[
ω

(1)
κ0 ω

(2)
σ0 − ω

(1)
κ1 ω

(2)
σ1 −

∞∑
L=0

ω
(1)
�L+2ω

(2)
σL

+ (1 ↔ 2)

]
ω(3)

v . . . ω(k+1)
v d3rA dγ2 . . . dγk+1 (67)

with the extended basis set of Rosenfeld’s weight functions:

ωχ (D) = 1

4π
κG δ(∂D),

ωκL(D) = 1

4π
κ̄(n)⊗L δ(∂D),

ω�L(D) = 1

4π
�(n)⊗L δ(∂D), (68)

ωσL(D) = (n)⊗L δ(∂D),

ωv(D) = �(D),

with the abbreviation

δ(∂D) = δ(�n�r,∂D). (69)

The normalization of the curvature-dependent terms has been
chosen to absorb the overall constant of 4π . In the following
we will see that these are all basis functions for 3-dimensional,
convex particles.

4. The three-particle Euler form

The third and last case is the Euler form for three
intersecting particles. Its intersection �1 ∩ �2 ∩ �3 consists
of points, whose corresponding Euler class is a 0 form and
independent of ωij . It therefore parallels the angular-dependent
part of the Gauss-Bonnet equation (24).

As before (53), the three normal vectors e
(1)
3 ,e

(2)
3 ,e

(3)
3 are

converted into an orthonormal basis by the Gram-Schmidt

method:

v1 = e
(1)
3 ,

v2 = 1√
M2

[
e

(2)
3 − (e(2)

3 v1
)
v1
]
, (70)

v3 = M2√
M3

[
e

(3)
3 − (e(3)

3 v2
)
v2 − (e(3)

3 v1
)
v1
]
,

and extended to the local frame

ηi = Rij (γ1,γ2,γ3)vj , Rij ∈ SO(3), (71)

interpolating between the three normal directions. Here, we
can use the same argument that led to the simplification of
(28) and replace the product of the connection forms by the
volume of SO(3) in Euler angles:

K(�1 ∩ �2 ∩ �3) =
∫

sin (γ2)dγ1dγ2dγ3. (72)

However, γ2 measures the angle between the vector and the
x2 axis and not the angle between the normal vectors. We
therefore introduce a new coordinate system

e
(1)
3 =

⎛⎝0
0
1

⎞⎠ , e
(2)
3 =

⎛⎝ 0
s(α1)
c(α1)

⎞⎠ ,

e
(3)
3 =

⎛⎝ s(α3)s(α2)
s(α3)c(α2)

c(α3)

⎞⎠ (73)

that is related to the Euler angles by

c(γ2) = s(α1)c(α2)s(α3) + c(α1)c(α3),
(74)

c(γ1) = c(α1), c(γ3) = c(α3).

The new representation of the Euler form (72)

K(�1 ∩ �2 ∩ �3)

=
∫

sin (α1) sin (α2) sin (α3)dα1dα2dα3

= [1 − cos (φ12)][1 − cos (φ13)][1 − cos (φ23)]

= (1 − �n(1)�n(2))(1 − �n(1)�n(3))(1 − �n(2)�n(3)) (75)

is a symmetric polynomial in the normal vectors. The re-
maining integration over the intersection space �1 ∩ �2 ∩ �3

reduces to a finite sum over its intersection points∫
K(�1 ∩ �2 ∩ �3)d(�1 ∩ �2 ∩ �3)

= 1

2

∫
St3

(1 − c12)(1 − c13)(1 − c23)

× δ(�n(1)�rA)δ(�n(3)�rA)δ(�n(3)�rA) d3rA

= 1

2

∑
pt∈�1∩�2∩�3

1 − c12

s12

1 − c13

s13

1 − c23

s23
, (76)

where relation (B14) and the vector basis (73) for the normal
directions have been used:

|�n(1)(�n(2) × �n(3))| = s12s13s23. (77)

Furthermore, a factor 1/2 has been added to compensate for the
double covering of the integration range, when instead of the
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Euler angles 0 � φ, ψ < 2π , and 0 � θ < π the symmetric
choice of the intersection angles

0 � φ12,φ13,φ23 < 2π (78)

is used.
Next, we have to determine the kinematic measure with one

of the three particles fixed in space. The derivation parallels
that of (59) and begins with the coordinate transformation of
dD2 ∧ dD3. Following the approach of [57], we rotate the
local frame of particle D3 by the matrix

R1(γ1) =
⎛⎝1 0 0

0 c1 s1

0 −s1 c1

⎞⎠ (79)

in the 3 → 1 direction and derive the new vielbein and
connection forms for D1:

ω
(3)
13 = c1ω

(1)
13 − s1ω

(1)
12 ,

ω
(3)
23 = ω

(1)
23 − dγ1, (80)

θ
(3)
3 = −s1θ

(1)
2 + c1θ

(1)
3 .

The same calculation has to be done for particle D2, where
the matrix

R23(γ2,γ3) =
⎛⎝ c2 s2c3 s2s3

−s2 c2c3 c2s3

0 −s3 c3

⎞⎠ (81)

generates a 2 → 1 rotation

ω
(2)
23 = s2s3ω

(1)
12 − s2c3ω

(1)
13 + c2ω

(1)
23 − c2dγ3,

ω
(2)
12 = c3ω

(1)
12 + s3ω

(1)
13 − dγ2, (82)

θ
(2)
2 = −s2θ

(1)
1 + c2c3θ

(1)
2 + c2s3θ

(1)
3 .

The forms in the normal direction of D1 vanish by the
constraint (32). We can therefore set the corresponding terms
of θ

(1)
3 ,ω

(1)
13 , and ω

(1)
23 to zero and insert the transformed ele-

ments into dD2 ∧ dD3. Performing an additional coordinate
shift γ2 → γ2 + π/2 and the change of basis (74) to transform
from the Euler into the intersection angles, we finally obtain
the reduced kinematic measure

dD2 ∧ dD3 = (s12s13s23)2d�1d�2d�3dφ12dφ13dφ23 (83)

with the kinematic measure of the surface d� defined in (40).
Collecting terms, the Euler form (76) intersecting with

k − 2 further particles is determined by

1

4π

∫
�(D2×...×Dk+1)

∑
{pt}

K(�1 ∩ �2 ∩ �3)dD2 . . . dDk+1

= 1

8π

∫
�(D2 × . . . × Dk+1)

× Stk+1

× (1 − �n(1)�n(2)) (1 − �n(1)�n(3)) (1 − �n(2)n(3))

× δ(�n(1)�rA)δ(�n(2)�rA)δ(�n(3)�rA) d3rAdγ2 . . . dγk+1 (84)

and can be rewritten in the basis of the weight functions,
defined in (68), after expanding the product of (84):

1

4π

∫
�(D2×...×Dk+1)

∑
{pt}

K(�1 ∩ �2 ∩ �3)dD2 . . . dDk+1

= 1

8π

∫
�(D2 × . . . × Dk+1)

× Stk+1

[
ω

(1)
σ0ω

(2)
σ0ω

(3)
σ0

−ω
(1)
σ0ω

(2)
σ1ω

(3)
σ1 − ω

(2)
σ0ω

(1)
σ1ω

(3)
σ1 − ω

(3)
σ0ω

(1)
σ1ω

(2)
σ1

(85)

+ω
(1)
σ2ω

(2)
σ1ω

(3)
σ1 + ω

(2)
σ2ω

(1)
σ1ω

(3)
σ1 + ω

(3)
σ2ω

(1)
σ1ω

(2)
σ1

−ω
(1)
σ2ω

(2)
σ2ω

(3)
σ2

]
ω(4)

v . . . ω(k+1)
v d3rA dγ2 . . . dγk+1.

As required, the result is invariant under cyclic permutations
of the indices (1,2,3).

For the first two integrals (67), (47) it was possible to scale
the prefactor to one by a suitable definition of the weight
functions. The same is not possible for (85), as it depends only
on the previously defined weights. The three-particle integral
has therefore an overall prefactor of 1/8π .

The three intersection probabilities (67), (47), (85) are
complicated polynomials in the weight functions. However,
here we have shown, by explicit calculation, that these
three cases are all we have to consider under the given
restrictions on the manifolds. The five different types of weight
functions (68) are complete in this sense and provide the
basis for higher loop orders. The grouping of the weight
functions into five classes can be stated more formally by
their scaling dimension under the coordinate transformation
�r → λ�r .

Let us summarize the results of this section:
Theorem II.1. The Euler form ωχ of the kinematic

measure of a stack Stk of 3-dimensional, convex Rie-
mannian manifolds decomposes into a symmetric sum of
weight functions

ωχ (�1 ∩ . . . ∩ �k) = CA1...Ak
ωA1 (�1) . . . ωAk

(�k)

ωχ (�1 ∩ . . . ∩ Dk−1 ∩ Dk)

= ωχ (�1 ∩ . . . ∩ Dk−1)ωv(Dk)

ωχ (� ∩ D) = ωχ (�)ωv(D), (86)

where an implicit summation over the multi-index A ∈
{χ,v,κL,�L} for L = 0,1,2, . . . is understood. The numerical
values of the coefficients CA1A2... follow from (67), (47), (85).
They depend on the dimension of the embedding space and
the particle but are otherwise independent of the manifold’s
geometry.

The weight functions (68) provide a complete basis
set, in which the intersection integrals can be expanded.
They are unique with respect to the Euler form. Their
scaling dimensions group the weight functions into four
subclasses:

[
ωi

χ

] = 3,
[
ωi

κL

] = [
ωi

�L

] = 2,
[
ωi

σL

] = 1,
[
ωi

v

] = 0. (87)
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III. RESUMMATION AND THE ROSENFELD
FUNCTIONAL

A. The functional of Rosenfeld and Tarazona

1. Rosenfeld’s three postulates

The local decomposition of the kinematic formula for one-,
two-, and three-particle intersections clarifies the mathematical
aspects of Rosenfeld’s approach. However, it remains to
combine the resulting weight functions into the free-energy
functional. A first naive attempt of inserting the reduced virial
integrals into the corresponding expansion of the chemical
potential

βμ = βμid +
∞∑

n=1

βnρ
n,

(88)
βF =

∫
μ(�r)dρ(�r)d3r

fails. The reason lies in the decoupling of the particle density ρ

from its geometric properties ωA that allows adding a particle
by the integration of (88) without adding the particle’s volume
ωv . To find a corresponding generalization, let us reconsider
Rosenfeld’s derivation of the functional [12] (see also [3]).

The infinite number of weight functions (68) reduces to
a finite subset for spheres, whose principal curvatures κ1 =
κ2 cause the �-dependent terms to vanish. The second virial
integral of a mixture of hard spheres with M components
reduces therefore to a finite sum of only six weight functions:

−fij (|�ri − �rj |) =
∑
A1,A2

CA1A2 ωi
A1

⊗ ω
j

A2

= ωi
χ ⊗ ωj

v + ωi
κ0 ⊗ ω

j

σ0 − ωi
κ1 ⊗ ω

j

σ1

+ (i ↔ j ), (89)

where i,j = 1, . . . ,M runs over all types of spheres. The
tensor product is a short form of the convolute integral

ωi
A1

⊗ ω
j

A2
=
∫

Di∩Dj

ωi
A1

(�rA − �ri) ω
j

A2
(�rA − �rj ) d3rA (90)

depending on the particle positions �ri,�rj in the embedding
space R3 and the intersection point �rA ∈ Di ∩ Dj . From the
decoupling of the integral measure (89) into single-particle
contributions follows the splitting of the entire second virial
integral, weighted by the 1-particle densities ρi(�ri):

−1

2
β1(Di,Dj )

=
∑

A1,A2,i,j

CA1A2

∫
ρ(i)ρ(j )

(
ωi

A1
⊗ ω

j

A2

)
dγidγjd

3rA

=
∑
A1,A2

CA1A2

∫
Di∩Dj

nA1 (�rA) nA2 (�rA) d3rA (91)

written in the weight densities:

nA(�rA) =
M∑
i=1

∫
�(Di )

ρi(�ri) ωi
A(�rA − �ri) dγi. (92)

As has been discussed (Sec. II A), the pairing of one
weight function with the 1-particle density is a consequence

of the single intersection domain of the second virial cluster.
However, it is natural to generalize this construction further
to particles with k intersection centers. The corresponding
integral then combines k weight functions with the 1-particle
density:

nA1,...,Ak
(�rA1, . . . ,�rAk

)

=
M∑
i=1

∫
�(Di )

ρi(�ri)
k∏

ν=1

ωi
Aν

(�rAν
− �ri) dγi (93)

generalizing the 2-point densities of the exact third virial
integral (4). Such “k-point densities” are the central objects
in analyzing higher loop diagrams. With increasing loop order
increases also the order of the k-point densities. This can be
seen by assuming that all g loops begin and end at the same
particle. The loop diagrams then decouple into sets of k-point
densities for 2 � k � 2g. The only diagrams that contain
1-point densities are therefore the intersection stacks of g = 0,
as has been explained (Sec. II A).

From the observation that the leading contribution of
the free energy factorizes into products of weight densities,
Rosenfeld postulates three assumptions about the structure of
the functional: First, the free energy is an analytic function
in the weight densities; i.e., it allows a polynomial expansion
in nA

βF ex([nA]) =
∫

ex
R ([nA]) d3r. (94)

Of course, we have seen in Sec. II A that this assumption
is not true in general. However, the functional form of F ex

can be further restricted by observing that the integral (94)
has to be invariant under coordinate scaling. The second
assumption is therefore that the free-energy functional is a
homogenous polynomial under the transformation �r → λ−1�r
with the scaling dimension[

ex
R

] = −[d3r] = 3 (95)

of the free energy. The possible combinations of weight
functions are therefore constrained by their scaling dimensions
(87) with the exception of the scale-independent ωv:

ex
R ([nA]) = f1(nv)nχ + f2(nv)nκ0nσ0 + f3(nv)nκ1nσ1

+ f4(nv)n3
σ0 + f5(nv)nσ0nσ1nσ1. (96)

With the third postulate, Rosenfeld further assumes that the
functional is a solution of the scaled particle differential
equation [3,11]. In this way it is possible to determine
the dependence of the unknown functions f1, . . . ,f5 on the
scale-invariant weight density nv . The free-energy functional
is then known up to the integration constants of the solutions
of the differential equation. For f1,f2,f3, they can be read off
from the second virial contribution; but the constants for f4

and f5 have to be determined by comparison with analytical
results obtained by alternative methods. The functional has
thus the preliminary form [39]

ex
prelim([nα]) = −nχ ln (1 − nv) + nκ0nσ0 − nκ1nσ1

1 − nv

+ 1

24π

n3
σ0 − 3nσ0nσ1nσ1

(1 − nv)2
. (97)
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Later on, it has been shown that this functional leads to an
unphysical singularity, when the positions of the spheres were
constrained to lower dimensions [16,19]. The source for the
occurring divergence is the third term in the functional. This
led Rosenfeld and Tarazona to look for alternative third-order
polynomials compensating the singularity. Several suggestions
were made [16,17,20] and compared to simulations. The most
promising modification today is Tarazona’s [17] replacement:

3 = 1

16π

[∏
(ij )

(
1 − e

(i)
3 e

(j )
3

)− [e(1)
3 ,e

(2)
3 ,e

(3)
3

]2]

= 1

16π
[(1 − c12)(1 − c13)(1 − c23) − M3] (98)

with M3 from (51). Comparing this semiheuristic result to
Eq. (75) identifies the first term as the three-particle intersec-
tion probability of the stack. In [16,21] it has been shown
that the corresponding correction of the functional (97) by this
term alone is in excellent agreement with simulation data of
the bulk-fluid free energy of hard spheres. The fluid phase
is therefore well described by the intersection probability of
stacks. However, it has been shown in [16] that the Lindemann
ratio for the fcc lattice is underestimated by this functional.
This is corrected by the second part of (98), improving the
equation of state for the solid region [17]. In the next section
we will argue that this term is part of the 1-loop correction of
the third virial diagram.

The final form of the Rosenfeld functional for hard spheres
[17] is obtained by replacing the third term of (97) by
Tarazona’s expression (98):

ex
R ([nα])

= −nχ ln (1 − nv) + nκ0nσ0 − nκ1nσ1

1 − nv

− 3

16π

×nσ0nσ1nσ1 − nσ1nσ2nσ1 + nσ2nσ2nσ2 − nσ0nσ2nσ2

(1 − nv)2
.

(99)

This result provides one of the currently best approximations
of the fluid phase structure of hard spheres, only surpassed by
the White Bear version [22,23]. However, this improvement
has been obtained by adjusting the functional to simulation
data, whereas the correction (98) is geometrically motivated.
Apart from the M3 term in (98), we have already derived all
of its contributions and prefactors from the 0-loop order.

2. Replacing the scaled particle differential equation

The chemical potential enters the fundamental measure
theory via the scaled particle differential equation. Its origin
is a semiheuristic relation between the chemical potential and
the pressure μex

i → pvi in the low-density limit that becomes
exact at diverging particle volume vi → ∞. This limit allows
us to relate the chemical potential of the free energy F to the
pressure representation of the grand potential −pV = � =
F − ρiδF/δρi . Introducing the functional derivative

δρi(�ri)

δρj (�rj )
= δij δ(�ri − �rj ), (100)

which selects the weight function when applied to a weight
density

δ

δρj (�rj )
nA(�rA) =

∫ ∑
i

ωi
A(�rA − �ri)δij δ(�ri − �rj )d3ri

= ω
j

A(�rA − �rj ), (101)

the chemical potential μex
i of the free-energy functional has

the form

βμex
i (�r,�ri) = δex

R (�r)

δρi(�ri)
=
∑
A

∂ex
R

∂nA

δnA(�r)

δρi(�ri)

= ∂ex
R

∂nv

ωi
v(�r,�ri) +

∑
A �=v

∂ex
R

∂nA

ωi
A(�r,�ri)

=
vi→∞ (β pex + ρ)ωi

v(�r,�ri)

=
(
−ex

R +
∑
A

nA

∂ex
R

∂nA

+ nχ

)
ωi

v(�r,�ri), (102)

assuming that all contributions of ωi
A vanish in the vi → ∞

limit except for ωi
v . From this follows the scaled particle

differential equation:

ex
R + ∂ex

R

∂nv

−
∑
A

nA

∂ex
R

∂nA

= nχ . (103)

The arguments leading to this result are by no means
trivial: The scaled particle limit allows the identification of
the particle volume vi as the embedding volume V , resulting
in the unpaired index v in the last two lines of (102). Another
striking feature is the dependence of the chemical potential on
the two different coordinate systems of the particles �ri ∈ Di

and those of the intersection region �r ∈ Stk . This indicates a
further difficulty in identifying the chemical potential as an
external potential coupled to the particle density. To obtain a
symmetric formulation in the densities ρi and nA, let us define
the chemical potential for the particle volume nv:

�v(�r) := β
δF ex([nA])

δnv(�r)
. (104)

In principle it is possible to define an infinite set of chemical
potentials for the weight functions ωi

A. However, �v is the
only physically relevant one. This can be realized in two
different ways: First, δnv is again scale invariant, which follows
from [ρi] = −[d3r] = 3 and [ωv] = 0. �v has therefore the
same scale dependence as the free energy. This complies
with the interpretation as the energy change by inserting a
particle into the system and the observation that ωi

v is the only
scale-invariant weight function. Second, it follows from (45)
that the intersection probability of a stack Stk of order k > 3
will only change by a factor ωi

v , when an additional particle
is inserted. This corresponds to a formal integration over ωi

v

coupled to the particle density ρi .
The functional derivative (104) can be inverted by integra-

tion

βF ex =
∫

�v(�r)δnv(�r) :=
∫

�vdnvd
3r

=
∫

ex(�r)d3r (105)
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and relates the chemical potential to Rosenfeld’s free-energy
density. It also allows a natural interpretation of �v as the
integral of the functional derivative

μiv(�ri,�r) = δ

δρi(�ri)

F ex([nA])

δnv(�r)
. (106)

The two derivatives with respect to ρi and nA = ρiω
i
A are of

course not independent from each other and do not commute
μiv �= μvi . It is therefore important not to interchange the order
in the integration

F ex =
∫

�vδnv =
∫

(μiv δρi)δnv. (107)

Now, μiv has the right structure for generalizing the
virial expansion (88) to the weight-function-dependent terms
βn(ωi

A)ρn
i . Furthermore, it is extensible to arbitrary loop

orders. Inserting the expansion (88) into (107) with subsequent
integration over ρi gives a general relation between the virial
expansion and the free-energy density (105):

ex([nA],�r) = cnv +
∞∑

k=1

1

k + 1

∫
ρk+1βkdnv. (108)

The integration constant c is itself a functional of the remaining
weight densities nA for A �= v to be determined by comparing
ex to the low-density limit. However, the scaling dimension
restricts the possible dependence to c ∝ nχ , with a universal
constant to be determined in the next section.

Equation (108) generalizes the virial expansion (88) of
the free energy to the functional form depending on the
weight densities. It is an exact relation and independent
of the semiheuristic scaled particle theory. Once the virial
coefficients are known, we can derive the functional by a
simple integration over nv for any loop order.

B. The 0-loop order of the free-energy functional

With the derivation of the intersection probability of particle
stacks (86) and the virial expansion of the free energy in
terms of the weight densities (108), we can finally put the
pieces together and prove our hypothesis (12) that Rosenfeld’s
functional ex

R corresponds to the leading order 0 of the loop
expansion (14). This is done in two steps: deriving the virial
integrals for any diagram of zero order, and then adding them
up into a generating function.

In Sec. II A we have seen that a Mayer cluster of loop order
g decomposes into a series of topological diagrams

βk =
g∑

n=0

βn
k , (109)

of which the leading order β0
k corresponds to the intersection

probability of a stack Stk+1. Following the discussion from
Sec. II C, the corresponding cluster integral

β0
k = 1

V

σ

k!

∫
�(D1×...×Dk+1)

f1,2 . . . fk,k+1 dγ1 . . . dγk+1

= 1

k!

∫
�(D2 × . . . × Dk+1)

× Stk+1

K(∂Stk+1)d3rA dγ2 . . . dγk+1

(110)

is identical to the averaged Euler form, integrated over the
kinematic measure of k + 1 particles. Here we have used that
the symmetry coefficient is σ = 1 and that the volume factor
V cancels after integrating over the coordinates of the center
of gravity. In principle it is possible to extend the integral
to mixtures of particles by including an additional index.
However, this is not necessary, as the final result will depend on
the weight densities (92), which automatically include the right
combinatorial factors. We can therefore restrict the discussion
to a single class of particles without loss of generality.

The boundary of a stack of identical, 3-dimensional
particles has been derived in (44) and reduces to the sum
of three contributions. The branching rules of (86) can then
be used to algebraically split the Euler form of (110) into the
volume-dependent weight functions

ωχ (∂Stk+1) = (k + 1) ωχ (�)ωk
v + k(k + 1) ωχ (� ∩ �)ωk−1

v

+ k(k + 1)(k − 1) ωχ (� ∩ � ∩ �)ωk−2
v

(111)

and further into the decoupled product of weight densities:

ωχ (� ∩ � ∩ �) = CA1A2A3ωA1ωA2ωA3 ,

ωχ (� ∩ �) = CA1A2 ωA1ωA2 , (112)

ωχ (� ∩ D) = Cχv ωχωv,

where an implicit sum over the paired indices is understood.
We also introduced the trivial constant Cχv = 1 to keep
the notation symmetrical. In anticipation of the following
derivation of the Rosenfeld functional (99), it is useful to
separate the dependence on the highest and lowest weight
functions ωχ,ωv from the Euler form and to introduce the
index notation

A = (χ,v,α) = (χ,v,κL,�L) (113)

deduced from Theorem II.1.
Inserting (111) and (112) into (110) yields the virial integral

for a stack

β0
k = (k + 1)

∫ [
Cχv ωχωk

v + k Cα1α2ωα1ωα2ω
k−1
v

+ k(k − 1) Cα1α2α3 ωα1ωα2ωα3 ωk−2
v

]
d3rA

k+1∏
i=2

dγi

(114)

of k + 1 indistinguishable particles. The virial coefficient is
a homogeneous polynomial of order k + 1 in the weight
functions and combines with the particle density ρk+1 to a
polynomial of weight densities. Inserted into (108), we obtain
the result:

�0
v ([nA]) = c +

∑
k=1

1

k + 1
ρk+1β0

k

= c + Cχv nχ

[
1

1 − nv

− 1

]
+ Cα1α2

nα1nα2

(1 − nv)2

+ 2 Cα1α2α3

nα1nα2nα3

(1 − nv)3
. (115)

The integration constant c can now be uniquely determined by
comparing it to the ideal gas limit, where the nv dependence
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has to vanish. Inserting the value c = Cχvnχ and integrating
over the nv density gives the final excess free-energy functional
of the 0-loop order:

ex
0 ([nA]) =

∫
�0

v dnv

= −Cχv nχ ln (1 − nv) + Cα1α2

nα1nα2

1 − nv

+Cα1α2α3

nα1nα2nα3

(1 − nv)2
. (116)

Comparing this result to the Rosenfeld functional (97), we
have finally proved our hypothesis (12).

This result also allows a formal extension to D-dimensional
particles embedded into the odd-dimensional RD . Because
the Mayer expansion is independent of the dimension of the
physical system, nothing will change by this generalization.
Extending the boundary stack (44) to D dimensions and the
corresponding splitting of the Euler form (86) results in a
free-energy functional

ex
0 ([nα]) =

D∑
k=1

Cα1...αk
nα1 . . . nαk

∂k

∂nk
v

φ(nv),

φ(nv) = (1 − nv) ln (1 − nv) + nv (117)

that can conveniently be written by the generating functional
φ. The same observation has been made before in [20], where
φ(nv) has been derived in the freezing limit, when the particles
are located in caverns. Here, we can see that the generating
functional carries the volume-dependent parts of the boundary
of the universal stack as given in Definition 1. The Rosenfeld
functional has now the simple interpretation as the intersection
probability of USt.

Thus we have shown that the 0-loop order of the virial
expansion leads to the Rosenfeld functional. However, it
only reproduces the first term of Tarazona’s correction (98).
Therefore, one might guess that the M3-dependent part belongs
to the 1-loop correction of the third virial order (4) as will be
investigated in a subsequent article.

IV. DISCUSSION AND CONCLUSION

In this article it has been shown that the Euler form
K(∂Stk) determines the intersection probability of a particle
stack of order k and that its generating function reproduces
Rosenfeld’s functional. These results explain and generalize
Rosenfeld’s previously unproven observation [11,39,40] that
the second virial integrand is related to the Gauss-Bonnet
equation. For two intersecting convex particles the results
of Wertheim [41] and Hansen-Goos and Mecke [30,58] are
confirmed by explicitly deriving the Euler form from first
principles. However, going beyond the second virial, we
further derived the previously unknown Euler forms for k � 3
and their splitting into weight functions.

Motivated by the success of Rosenfeld’s functional for
the liquid region, we made the Euler form the foundation of
the fundamental measure theory and its extension beyond the
currently known functional. It has been shown that the Mayer
clusters of hard particles split into intersection diagrams that
can be classified by their number of loops and intersection
points, where the latter corresponds to a particle stack. The

leading contribution, the 0-loop order, is then the only part of
the free energy that can be represented by a functional with
only one intersection point.

From this follows that the fundamental measure theory
allows the systematic derivation of the free-energy functional
for each loop order, a result that is in fundamental contrast
to DFT in quantum mechanics, where the development of
a functional is only restricted by the existence theorem of
Hohenberg and Kohn [59]. This property of hard particle
physics is probably a consequence of the invariance of the
Euler form under geometric deformations. As long as the
homotopy type and therefore the topology does not change,
we obtain the same functional form. And even if we include
complex geometries such as tori or hollow spheres, the
additional terms still derive from an Euler form. The only
constraints we have to consider are of physical nature and are
related to concave geometries.

The infinite number L = 0,1, . . . of tensorial weight func-
tions provide a practical problem in the calculation of higher
loop orders. Since we cannot derive an infinite set of integrals,
it is necessary to stop at a certain order. A first hint gives
Wertheim’s calculation of the third virial integral for prolate
and oblate spheroids [43,44]. He shows that the aspect ratio
λ � 10 differs from the simulated result by less than 3%, when
the L � 2 terms are included. This indicates that the expansion
of the denominator 1 + �n(1)�n(2) is fast converging for most of
the physically interesting cases.

Also of importance is the influence of the number of
loops and intersection points. As explained in Sec. II A, each
intersection point of a diagram is dressed by the universal
stack, as shown in Fig. 2, whose free-energy contribution
is already known from the 0-loop order. Consequently, each
intersection carries a factor of (1 − nv)−1 and (1 − nv)−2. From
this follows that the divergence of the resummed third virial
integral (1,3) of Fig. 5 is at least of order (1 − nv)−3. The
influence of diagrams decreases therefore significantly with
their number of intersection points. We therefore expect no
new physical effects by including higher intersection orders.
This is consistent with our hypothesis that only higher loop
orders correspond to long-range effects between particles, as
indicated by the generating function of all 1-loop diagrams.

Another aspect worth considering is the dimensional
influence of the particles and their embedding space. If the
codimension is larger than 1, the particles do not necessarily
intersect, while approaching each other. The mathematical
formulation is then more complicated and requires the intro-
duction of equivariant differential forms [54]; in the physical
literature this is known from BRST quantization [60]. We have
also seen that the Euler form vanishes for odd dimensions
and gets replaced by higher order invariant forms. This is a
consequence of the Bott periodicity [61] and offers a direct
link between the mathematical and physical properties. It is
even possible that this relation can be further extended to a
more detailed understanding of the relation between topology,
geometry, and the physical phase structure of particles. For
example, one might ask whether the geometry of a particle
and its mixtures can be tested by their phase diagrams.

An important step in this direction is the numerical
calculation of weight functions and the minimization of the
grand potential functional [3]. For the 3-dimensional particles
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it is possible to reduce the problem to a triangulation of
the surface and to replace the connection form by a sum
over the outward angles, analogously to the derivation of the
Gauss-Bonnet equation. The resulting polyhedrons are then
placed into a Voronoi diagram, whose boundaries are varied
until the minimum of the free energy has been obtained. This
approach would allow the analysis of even more complicated
particle distributions than the isotropic or periodic structures
investigated so far. In addition, it would also allow a better
understanding of the origin of phase transitions. For instance,
the particles in the nematic and smectic phase are parallel
oriented, minimizing the 0-loop contribution of the free energy
by setting one or more of the intersection angles to zero.
However, understanding such effects requires the derivation
of higher loop orders and will therefore be postponed to the
next article.
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APPENDIX A

It is enlightening to compare the local formulation of
Chern [36] to the approach of Minkowski [55], which was
the basis for the calculation of Isihara and Kihara [8,9]. We
will therefore give a short summary of their derivation that led
to the first general equation of the second virial coefficient
of convex particles. Let pi ∈ Di be the coordinate vector
of the two convex particles i = 1,2. The excluded volume
under translation and rotation of the particles is then calculated
by first deriving the differential volume element dV12 of the
shifted coordinates followed by the rotational averaging. We
first obtain

dV12 = 1

3!
d3(p1 + p2)

= 1

3!
(d3p1 + 3dp2 ∧ d2p1 + (1 ↔ 2))

= dV1 + 1
2d[p2,dp1,dp1] + (1 ↔ 2)

= dV1 + H2dS1 + (1 ↔ 2) (A1)

with an implicit integration in the second part and the support
function H = pe3. The orientation has been chosen such that
the normal surface vector of particle D2 at contact is −e3. This
allows us to simplify the determinant, indicated by the square
brackets, via the relation [p2,dp1,dp1] = [p,θαeα,θβeβ] =
θ1 ∧ θ2(pe3) as shown in [46]. The rotational averaging over
the coset space SO(3)/SO(2) reduces again to the multiplica-
tion by the connection form ω 3

1 ∧ ω 3
2 = κ1κ2θ1 ∧ θ2 = KdS:∫

〈dV12〉rot =
∫

K2dS2 ∧ dV1

+
∫

H2K2dS2 ∧ dS1 + (1 ↔ 2). (A2)

The product between the support function and the Gauss
curvature can further be simplified by the substitution [46]

0 =
∫

d[p,e3,de3] =
∫

[dp,e3,de3] − [p,de3,de3]

= 2
∫

(HK − M)dS. (A3)

Inserting into Eq. (A2) finally gives the result of Isihara and
Kihara as a special case of Minkowski’s formula [55]

1

4π

∫
〈dV12〉rot = χ2V1 + 1

4π
κ2S1 + (1 ↔ 2). (A4)

This result can also be obtained in a coordinate-free represen-
tation by the Lie transport exp (LX2 )dV1 = dV12 of the volume
form and Stokes formula∫

D

LX1�2 =
∫

D

d(iX1�2) =
∫

∂D

iX1�2. (A5)

APPENDIX B

In the following, we will give a short account of how to
transform the two-particle Euler form (56) to the coordinate-
dependent representation (65) of Wertheim, as used in [41].

The Euclidean metric (16) in the orthonormal principal
frame (�ν1,�ν2,�n) is the diagonal tensor

ηij = ei ⊗ ej = Iij

= (�ν1 ⊗ �ν1 + �ν2 ⊗ �ν2 + �n ⊗ �n)ij (B1)

of (62). The related connection tensor (62) then follows from
the exterior derivative of the normal vector e3 = �n:

de3 = ω3αeα = καθα ⊗ eα = καeα ⊗ eαd �p
= (καeα ⊗ eα)�t ds

= (κ1�ν1 ⊗ �ν1 + κ2�ν2 ⊗ �ν2)�t ds

= K �tds (B2)

using Rodrigues formula (33), the representation of the viel-
bein θα = eαd �p, and by observing that the tangential vector at
each point �p ∈ �1 ∩ �2 lies in the direction of �t ∼ �n(1) × �n(2).
The derivative d �p = �t ds therefore is the differential line
element ds pointing into the direction of �t .

In order to separate the normal vectors from the principal
frame, Wertheim rewrites the connection form [41]:

K = Y 1
2K + 1

2K

= 1
2 (κ1�ν1 ⊗ �ν1 + κ2�ν2 ⊗ �ν2)

+ 1
2κ1(I − �n ⊗ �n − �ν2 ⊗ �ν2)

+ 1
2κ2(I − �n ⊗ �n − �ν1 ⊗ �ν1)

= 1
2 (κ1 + κ2)(I − �n ⊗ �n)

+ 1
2 (κ1 − κ2)(�ν1 ⊗ �ν1 − �ν2 ⊗ �ν2)

= κ̄ (I − �n ⊗ �n) + � (B3)

with the mean and tangential curvatures defined in (64). The
connection then yields the form

ω13 = e1de3 = �t K �t ds (B4)
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of (56). In a second step, the normal vector �n(2) is separated
from the curvature-dependent parts of particle 1:

(�n(1) × �n(2)) K(1) (�n(1) × �n(2))

= −�n(2) × �n(1)(κ1�ν1 ⊗ �ν1 + κ2�ν2 ⊗ �ν2)�n(1) × �n(2)

= −�n(2)(κ1�n(1) × �ν1 ⊗ �ν1 × �n(1)

+ κ2�n(2) × �ν2 ⊗ �ν2 × �n(1))�n(2) (B5)

= �n(2)(κ1�ν2 ⊗ �ν2 + κ2�ν1 ⊗ �ν1)�n(2)

= �n(2) K†
(1) �n(2),

using the orthonormal relation �ν1 × �ν2 = �n and introducing
the adjoint connection tensor:

K† = κ̄ (I − �n ⊗ �n) − �. (B6)

Inserting these results into (56)

1 − c12

s12
ω

(1)
13 = 1 − c12

s12
�t K(1) �t ds

= 1 − c12

s12

[ �n(1) × �n(2)

s12
K(1)

�n(1) × �n(2)

s12

]
ds

= 1 − c12

s2
12

�n(2)K†
(1)�n(2) ds

s12

= 1

1 + c12
�n(2)K†

(1)�n(2) ds

s12

= 1

1 + c12
�n(2)[κ̄ (1)(I − �n(1) ⊗ �n(1)) − �(1)]�n(2) ds

s12

= 1

1 + c12

[
κ̄ (1)
(
1 − c2

12

)− �n(2)�(1)�n(2)
] ds

s12

=
[

(1 − �n(1)�n(2))κ̄ (1) − �n(2)�(1)�n(2)

1 + �n(1)�n(2)

]
ds

|�n(1) × �n(2)|
and using the integral representation by δ functions

1 − c12

s12
ω

(1)
13

=
∫

D1∩D2

[
(1 − �n(1)�n(2))κ̄ (1) − �n(2)�(1)�n(2)

1 + �n(1)�n(2)

]
× δ(�n(1)�rA)δ(�n(2)�rA) d3rA, (B7)

this reproduces the first part of Wertheim’s equation (65).
The second part follows accordingly by replacing the particle
indices 1 ↔ 2.

The integral representation used in (B7) extends the
integration along the line element ds to the entire embedding
space. This and similar relations are readily derived from the
linear coordinate transformation

η = �n �p, ζ = �m �p, ξ = �e1x + �e2y + �e3z (B8)

at the point �p = (x,y,z) and its corresponding Jacobi determi-
nant:

dη ∧ dζ ∧ dξ = | det (�n, �m,�e)| dx ∧ dy ∧ dz

= |�n × �m| d3p. (B9)

Applied for the integral of an arbitrary test function F and two
δ functions ∫

F ( �p) δ(�n �p) δ( �m �p) d3p

=
∫

F (η,ζ,ξ ) δ(η) δ(ζ )
dη dζ dξ

|�n × �m|
=
∫

F̃ (ξ )
dξ

|�n × �m| , (B10)

it reduces to the line integral along ξ , as used in Eq. (B7).
With one δ function included, the corresponding transfor-

mation

η = �n �p , ζ = ξ = �e1x + �e2y + �e3z (B11)

and �e ∧ �e = �e yields the result∫
F ( �p) δ(�n �p) d3p

=
∫

F (η,ζ,ξ ) δ(η)
dη dζ dξ

|�e �n|
=
∫

F̃ (ζ,ξ )
dSn

|�e �n| =
∫

F̃ (ζ,ξ ) dS (B12)

with det (�n,�e,�e) = �e �n and the differential surface element dSn

in the outward pointing �n direction.
Analogously, the integral of three δ functions reduces to a

sum of intersection points {pt} in the variables

η = �n �p , ζ = �m �p , ξ = �l �p , (B13)

solving the algebraic equation η = ζ = ξ = 0∫
F ( �p) δ(�n �p) δ( �m �p) δ(�l �p) d3p =

∑
{pt}

F̃ (pt)

|(�n × �m) �l | (B14)

as appears in the equation of the intersection probability of
three particles (76).
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