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Random reverse-cyclic matrices and screened harmonic oscillator
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We have calculated the joint probability distribution function for random reverse-cyclic matrices and shown
that it is related to an N -body exactly solvable model. We refer to this well-known model potential as a screened
harmonic oscillator. The connection enables us to obtain all the correlations among the particle positions moving
in a screened harmonic potential. The density of nontrivial eigenvalues of this ensemble is found to be of the
Wigner form and admits a hole at the origin, in contrast to the semicircle law of the Gaussian orthogonal
ensemble of random matrices. The spacing distributions assume different forms ranging from Gaussian-like to
Wigner.
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I. INTRODUCTION

Connections between random matrix theory and exactly
solvable models are very important and interesting [1–5]. It
is well known that the invariant random matrix ensembles are
related to some exactly solvable many-body problems in one
dimension, as was found by Calogero and Sutherland [6–8]. In
particular, the joint probability distribution function (JPDF) of
the eigenvalues of random matrices shares the functional form
with the probability density corresponding to the quantum
ground state of the N -body problem. This observation is
important as it allows one to obtain the correlation functions of
one problem by knowing those for the other, comparing terms
using a dictionary. In the same vein, even for the explanation
of intermediate statistics [9], a random matrix model was
found [10] which, in turn, was related to an N -particle system
with an inverse-square, repulsive two-body interaction and an
inverse-square, attractive three-body interaction [4,5]. Even for
pseudo-Hermitian Hamiltonians (where there exists a metric η

such that H † = ηHη−1), a random matrix theory can be built
[11,12]. The connection of this with exactly solvable models
is explored in [3]. In turn, the models found in [2,6,8] and [4,5]
can be mapped to integrable [13] and chaotic systems [14] for
which, quite remarkably, analytically exact eigenfunctions are
obtained.

In this work, we study random, reverse-cyclic matrices that
are real symmetric,

H =

⎛
⎜⎜⎜⎜⎝

a1 a2 · · · aN

a2 a3 · · · a1

... · · · ...

aN a1 · · ·

⎞
⎟⎟⎟⎟⎠, (1)

with matrix elements chosen from an appropriate distribution
function. Bose et al. [15] derived the limiting spectral
distribution for reverse-cyclic matrices, but the JPDF and
the spacing distribution function remain open problems. In
fact, it will be interesting to see how the special symmetric
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matrices having a very small degree of freedom (only N in
this case) differ from the results known for their counterparts
having a full degree of freedom [i.e., N(N+1)

2 ]. We have
recently obtained the JPDF for the cyclic matrices, which
forms another example in which the degree of freedom of
the matrix is constrained (again only N ) in an asymmetric
matrix for which a spectrum of a spacing distribution from
Gaussian to Wigner and not-so-Wigner type [16] is obtained.
The results were also used to study a random-walk problem on
a one-dimensional disordered lattice [17] where the evolution
matrix is cyclic. On the one hand, there is a vast literature
about different results for random cyclic matrices (see [18,19],
etc.). However, the same is not true for random reverse-cyclic
matrices. Interestingly, reverse-cyclic matrices appear (albeit
with the name reverse circulant and retrocirculant) in models
for particle masses, flavor mixing, and charge conjugation
and parity (CP) violation. Here, families of particles can be
shown to emerge by a spontaneous breakdown of discrete
Z6 chiral symmetry by the Higgs sector [20]. The presence
of reverse-cyclic matrices is due to S3 cyclic permutation
symmetry of the Lagrangian. Quoting Adler, “...in the limit
of S3 cyclic permutation symmetry, we shall find that the
fermion mass matrices in both the three and six doublet
models are retrocirculants...” [20]. In another instance, while
exploring whether discrete flavor symmetry S3 can explain
the pattern of neutrino masses and mixings, reverse-cyclic
matrices (again referred to as retrocirculant) have been used
as a perturbation matrix [21]. It was also shown in [21] that
after third-order perturbation, neutrino mixing depends only
on perturbation parameter, consistent with experimental data.
One may speculate that the background and statistical errors
may make these matrices random.

In the following, we present the JPDF for the random
reverse-cyclic matrices and an exactly solvable model related
to this problem. The form of potential (for a single particle)
has been discussed in quite a few physical situations. It has
been interpreted as a screened, two-dimensional isotropic
harmonic oscillator in a different context [22]. It has found
use in explaining rotovibrational states in the case of diatomic
molecules by considering a five-dimensional version of the
Davidson oscillator [23], and in a different context of dynam-
ical symmetries [24] and uncertainty relations [25]. In the
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context of many-body physics, we might imagine the above
Hamiltonian describing bosons in a harmonic trap (r2 term),
interacting via a dipolar electric field (r−2 term).

We collect some known results related to the eigen-
decomposition of reverse-cyclic matrices. A known eigen-
decomposition becomes a very advantageous tool to derive
the joint probability distribution function for eigenvalues.
Karner et al. [26] have shown that the eigen-decomposition
for an odd-dimensional reverse-cyclic matrix is given
by

H = F †

(
1 0

0 R

)
�

(
1 0

0 R†

)
F,

(2)
� = (E1,|E2|, . . . ,|E(n−1)/2|, − |E(n−1)/2|, . . . , − |E2|),

Fr,s(n) = 1√
n
e2πi(r−1)(s−1)/n,r,s = 1,2, . . . ,n, (3)

R :=
(

E† iE†Îk

ÎkE −iÎkEÎk

)
∈ C2k×2k

(4)

with E = 1√
2

diag(eiφ1/2, . . . ,eiφk/2).

Îk is an antidiagonal identity matrix, and 0 � φj < 2π . The
eigen-decomposition for an even-dimensional reverse cyclic
matrix takes the following form:

H = F †
(

1 0

0 R

)
�1

(
1 0

0 R†

)
F,

(5)
�1 = (E1,|E2|, . . . ,|E(n−2)/2|,En/2, − |E(n−2)/2|, . . . , − |E2|)
with

R :=

⎛
⎜⎝

E† 0 iE†Îk

0 1 0

ÎkE 0 −iÎkEÎk

⎞
⎟⎠ ∈ C2k+1×2k+1. (6)

II. JOINT PROBABILITY DISTRIBUTION FUNCTION
AND SPECTRAL STATISTICS

Consider an ensemble of reverse-cyclic (RC) matrices,
drawn from a Wishart distribution,

P (H ) ∼ exp(−ATrH †H ). (7)

Let us start with the simplest case, namely an ensemble of
3 × 3 reverse cyclic matrices,

H =

⎛
⎜⎝

a b c

b c a

c a b

⎞
⎟⎠. (8)

The JPDF in matrix space will be given, using (7), by

P (a,b,c) =
(

3A

π

)(3/2)

exp[−3A(a2 + b2 + c2)]. (9)

From Eq. (2), we can diagonalize H and it is also clear that
there are only (n + 1)/2 independent eigenvalues for odd-
dimensional matrices. For the 3 × 3 case, the explicit form

of R is

R =

⎛
⎜⎝

1 0 0

0 1√
2

exp(−iθ/2) i√
2

exp(−iθ/2)

0 1√
2

exp(iθ/2) − i√
2

exp(iθ/2)

⎞
⎟⎠. (10)

It takes a simple algebra then to show that

a = 1
3 (E1 + 2|E2| cos θ ),

b = 1
3 [E1 − |E2|(cos θ +

√
3 sin θ )], (11)

c = 1
3 [E1 − |E2|(cos θ −

√
3 sin θ )].

Using (11) in Eq. (9), we can find the JPDF for eigenvalues and
an independent parameter θ coming from the eigenvector. Note
that in H , the independent parameters are three in number,
namely a, b and c, while in the eigen-decomposition we have
E1, E2, and θ . The Jacobian for the transformation (11) is
given by 2|E2|

3
√

3
. The JPDF for eigenvalues is

P (E1,|E2|,θ ) = 2|E2|
3
√

3

(
3A

π

)(3/2)

exp
[−A

(
E2

1 + 2E2
2

)]
,

(12)
where E1 ∈ (−∞,∞),|E2| ∈ [0,∞), θ ∈ [0,2π ).

Notice that the domain of |E2| is [0,∞), and that the function
on the right-hand side is an even function of E2, thus we can
rewrite the JPDF after an integration over θ in the following
form:

P (E1,E2) = 2π
|E2|
3
√

3

(
3A

π

)(3/2)

exp
[−A

(
E2

1 + 2E2
2

)]
.

(13)

The density of E1 (the trivial eigenvalue) [27] comes out to be
Gaussian as expected because of E1 being a sum of Gaussians.
On the other hand, the density of nontrivial eigenvalue E2 is
given by (14),

ρ(E) = 2A|E| exp(−2AE2). (14)

Also, due to the product structure of the JPDF, the density
of the nontrivial eigenvalue will remain the same for higher-
dimensional matrices. The presence of |E| ensures that there
are no nontrivial eigenvalues present at the origin while they
increase linearly along both the positive and negative real axis.
It is as if there is a hole in the density of nontrivial eigenvalues
(see Fig. 1). This has been independently derived by Bose
et al. [15] without obtaining the JPDF. Also notice that it is the
limiting distribution in the case of [15] while here it is an exact
result for any dimension (matrix). The spacing distribution
between E1,E2 can now be calculated as

P (s12) =
∫ ∞

−∞

∫ ∞

−∞
P (E1,E2)δ(s12 − |E1 − E2|)

= 12
√

Ae−As2
12

9
√

π
+

4Ae−2A
s2
12
3

√
3πs12erf

(√
A
3 s12

)
9
√

π
.

(15)

The value of A can be chosen so that
∫ ∞

0 s12P (s12)ds12 = 1. A
numerical histogram is compared with (15) in Fig. 2. One could
think of spacing between the second and third eigenvalue of
H , but due to their special form as |E2| and −|E2|, it is simply
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FIG. 1. (Color online) Normalized density of nontrivial eigenval-
ues for an ensemble of 20 000 reverse-cyclic matrices of size 15 × 15
is compared with the analytical form. The density is normalized such
that the averaged density for positive eigenvalues is 1/2.

given by s23 = 2|E2|, so the spacing distribution as expected
is very similar to the density of |E2| and is given by (16):

P (s23) = As23e
− A

2 s2
23 . (16)

Again, the value of A is chosen such that
∫ ∞

0 s23P (s23)ds23 =
1, which turns out to be π/2. A comparison with the numerical
data is shown in Fig. 3.

In the case of 5 × 5, a similar procedure will give the JPDF
as in Eq. (17) with Ei ∈ (−∞,∞) and θi ∈ [0,2π ):

P (E1,E2,E3,θ1,θ2) = |E2||E3|
25

√
5

(
5A

π

)5/2

× exp
[−A

(
E2

1 + 2E2
2 + 2E2

3

)]
.

(17)

The density of Ei’s and the spacing distribution for the cases
appearing in 3 × 3 reverse-cyclic matrices remain the same.
There is an additional spacing possible, namely between two
positive |E2| and |E3|. Let us denote this by spp. Its distribution
is

P (spp) =
∫ ∞

−∞

∫ ∞

0

∫ ∞

0
4P (E1,E2,E3)δ(spp − |E2 − E3|)

= Asppe−2As2
pp − 1

2

√
πAe−As2

pp

× (−1 + 2As2
pp

)
erfc(

√
Aspp). (18)

The area under this distribution is 1/2. Taking care of the
domains of |E2| and |E3|, and accounting for the spacing
between these and between −|E2| and −|E3|, we obtain the
correctly normalized distribution. This can be seen to be in
agreement with the numerical data (see Fig. 4). This same
distribution [Eq. (18)] has been compared with the distribution
of spacings among all positive eigenvalues except the Gaussian
distributed one of an ensemble of higher-dimensional reverse-
cyclic matrices (e.g., 15 × 15). The agreement is good. For
the (2n + 1)-dimensional reverse-cyclic matrix, the JPDF is a
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FIG. 2. (Color online) Spacing distribution s12 for an ensemble
of 20 000 reverse-cyclic matrices of size 3 × 3, 5 × 5, and 15 × 15
is compared with the analytical form [Eq. (15)].

straightforward generalization of (17) and is given by (19).

P (E1,E2, . . . ,E2n+1,θ1, . . . ,θ2n)

=
(

A

π

)(2n+1)/2

|E2| · · · |En+1|

× exp

[
−A

(
E2

1 + 2
n+1∑
i=2

E2
i

)]
. (19)

This JPDF can be understood as follows. Clearly, the nature
of the first (trivial) eigenvalue is very different from the others
(nontrivial), and its distribution will be Gaussian. We focus
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FIG. 3. (Color online) Spacing distribution s23 for an ensemble
of 20 000 reverse-cyclic matrices of size 3 × 3, 5 × 5, and 15 × 15
is compared with the analytical form [Eq. (16)].

on the rest of the eigenvalues. The diagonalizing equation,
H = O�OT , where O = F †R is an orthogonal matrix [26],
has the correct number of independent parameters. For a (2n +
1)-dimensional matrix H , the left-hand side has only (2n + 1)
independent variables while the right-hand side has (n + 1) in-
dependent eigenvalues with n angle variables in O. As dH will
contain (2n + 1) independent differentials, so a multiplication
of H with a scalar a will satisfy d(aH ) = a2n+1dH . Now,
(n + 1) of them will be absorbed in the scaling of measure
d� [as independent eigenvalues are (n + 1)]. Hence, from
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FIG. 4. (Color online) Spacing distribution spp for an ensemble
of 5000 and 20 000 reverse-cyclic matrices of size 5 × 5 and 15 × 15
is compared with the analytical form [Eq. (18)].

the scaling property of d(aH ), dH will be a homogeneous
polynomial of degree n [28]. Our prototype examples for n = 3
and 5 have shown that they vanish linearly as eigenvalues
approach the origin, hence the polynomial in the eigenvalues
is necessarily proportional to |E2| · · · |En+1|. The even case is
not very different from the odd one, except that En/2+1 appears
along with E1, the rest being the same as that in (19).

III. EXACTLY SOLVABLE MODEL

Now we show the exactly solvable n-body problem,
the ground-state wave function of which is such that the
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probability density has the same mathematical form as (19). It
can be verified that (19) corresponds to |	(x1,x2, . . . ,xn)|2,
where 	(x1,x2, . . . ,xn) is the ground-state wave function
with eigenvalue (4n − 3)A of the n-body problem with the
Hamiltonian

H(x1,x2, . . . ,xn) = −∇2 +
[
A2x2

1 +
n∑

i=2

(
4A2x2

i − 1

4x2
i

)]
.

(20)

To illustrate that this is so, let us verify for n = 2. This will
also be sufficient for general n due to the identical form of
separable H. As we need to take double derivatives of the

wave function, it will be prudent to replace |Ei |’s by
√

E2
i .

Hence, 	(x1,x2) = c

√√
x2

2 exp[−A/2(x2
1 + 2x2

2 )], the JPDF

for a corresponding three-dimensional reverse-cyclic matrix,

∂2

∂x2
1

	(x1,x2) = A
(−1 + Ax2

1

)
	(x1,x2),

∂2

∂x2
2

	(x1,x2) =
[−1 + 16Ax2

2

( − 1 + Ax2
2

)]
4

	(x1,x2),

(
− ∂2

∂x2
1

− ∂2

∂x2
2

+ A2x2
1 + 4A2x2

2 − 1/
(
4x2

2

))
	(x1,x2)

= 5A	(x1,x2).

This proves our assertion.
This system has been the subject of a lot of work, initiated

by Perelomov [29]. The only potential that can be added to
a harmonic interaction is 2a/x2 if we want to successfully
construct the creation and annihilation operators for the above
model [30]. This work relates this well-known model to
a random matrix theory for reverse-cyclic matrices, which
constitutes a remarkable addition to the known connections
along similar lines.

The linear level repulsion obtained here has its origin in
the product of the absolute value of the eigenvalues in the
JPDF. This is reflected in the interaction among eigenvalues
if we write the JPDF as a partition function for an n-particle
system. This interaction, in the context of random matrices,
is the Coulomb interaction in two dimensions. In contrast, the
case of random-cyclic matrices [16] has a JPDF which is just
the exponential containing a sum of the square of the modulus
of the complex eigenvalues. The eigenvalues are in a plane, and
the level repulsion comes out as a Rayleigh distribution for the
Poisson process on a plane, which has the same functional form
as Wigner’s spacing distribution for the orthogonal ensemble.
Thus, we have a very interesting situation for the random
reverse-cyclic and random cyclic matrices in that we obtain
the same formula for the spacing distribution but the origin is
different.

IV. SUMMARY

In summary, we have shown that reverse-cyclic matrices
though a subset of symmetric matrices have an unusual density
and spacing distribution. In contrast to semicircle density,
this ensemble admits a density with a hole at the origin.
Again, the spacing distribution has a variety ranging from
Gaussian-looking distributions to Wigner distribution. We also
observed that the JPDF is just the square of the modulus
of the ground-state eigenfunction of an exactly solvable
many-body Hamiltonian in one dimension of a screened
harmonic oscillator potential. Hence the correlations between
the different particles in the potential will be the same as that
derived from the joint probability distribution function for the
random matrix theory.
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