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Order-disorder transition in a model with two symmetric absorbing states
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We study a model of two-dimensional interacting monomers which has two symmetric absorbing states
and exhibits two kinds of phase transition; one is an order-disorder transition and the other is an absorbing
phase transition. Our focus is around the order-disorder transition, and we investigate whether this transition is
described by the critical exponents of the two-dimensional Ising model. By analyzing the relaxation dynamics
of “staggered magnetization,” the finite-size scaling, and the behavior of the magnetization in the presence of a
symmetry-breaking field, we show that this model should belong to the Ising universality class. Our results along
with the universality hypothesis support the idea that the order-disorder transition in two-dimensional models
with two symmetric absorbing states is of the Ising universality class, contrary to the recent claim [K. Nam et al.,
J. Stat. Mech.: Theory Exp. (2011) L06001]. Furthermore, we illustrate that the Binder cumulant could be a
misleading guide to the critical point in these systems.
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I. INTRODUCTION

During recent decades, intense theoretical efforts have been
devoted to classifying absorbing phase transitions (APTs) and,
as a result, several universality classes have been found (for a
review, see, e.g., Refs. [1–4]). Although a firmly established
classification principle is still desired, symmetry is unequiv-
ocally expected to play an important role in determining
universality classes. On the one hand, if a model which
has a single absorbing state and which does not have extra
symmetry or conservation laws exhibits an APT, it is argued
that this model should belong to the directed percolation (DP)
universality class [5,6]. On the other, many systems with two
symmetric (sets of) absorbing states are known to form another
universality class. Such examples with Z2 symmetry are
the probabilistic cellular automata model [7], the interacting
monomer-dimer (IMD) model [8], the nonequilibrium kinetic
Ising model [9], and the interacting monomer-monomer model
with infinitely many absorbing states [10], to cite only a few.

Although symmetry seems important, there are also some
systems with Z2 symmetry which do not share criticality with
the above-mentioned models. Such exceptions can be found in
Ref. [11]. Hence, symmetry alone is not sufficient to determine
the universality class and further studies are necessary to
determine a guiding principle in terms of symmetry.

The starting point to develop a principle would be construc-
tion of a (coarse-grained) field theory for each universality
class, followed by a renormalization group analysis. The
connection between DP and the reggeon field theory has been
clarified long time ago [12] (see also [5,6]). Endeavors have
also been made to formulate a field theory for systems with
Z2-symmetric absorbing states. Cardy and Täuber [13,14]
developed the field theory for branching annihilating random
walks with even numbers of offspring (BAWE) [15], which has
mod-2 conservation of particle number. Since Z2 symmetry
entails the mod-2 conservation of domain walls in one dimen-
sion, the BAWE model in one dimension belongs to the same
universality class as systems with two symmetric absorbing
states. The mod-2 conservation, however, has nothing to do
with the Z2 symmetry in higher dimensions. In particular, the
BAWE model in higher dimensions shows trivial transitions

[13,14], which is not the case for two-dimensional models
with Z2 symmetry [16–19]. In this regard, the field theory for
BAWE cannot be a coarse-grained description for models with
Z2 symmetry in d dimensions. Thus, there was a theoretical
request to develop a field theory with Z2 symmetry in higher
dimensions and, as a response, a phenomenological Langevin
equation was introduced [17] (see also Ref. [20] for an analysis
of the corresponding field theory by the nonperturbative
renormalization group method).

Recently, however, this phenomenological Langevin equa-
tion description has been challenged [19]. The Langevin
equation predicts that there are in general two transitions in two
dimensions; an order-disorder transition which is concomitant
with the Z2 symmetry breaking (SB) and an APT (see Ref. [16]
for the first observation of two transitions in a microscopic
model). Numerical analysis of the Langevin equation revealed
[17] that the Z2 SB transition is of the Ising class and the APT
is of the DP class. Although a Monte Carlo simulation of the
two-dimensional IMD model also found a Z2 SB transition
followed by an APT, it was claimed that the critical behavior
for the Z2 SB transition is not of the Ising class [19]. In
fact, no Monte Carlo simulation studies up to now, to our
knowledge, have clearly shown that the Z2 SB occurring in
a system with two symmetric absorbing states is described
by the Ising critical exponents, which was the motivation of
Ref. [19]. If the claim in Ref. [19] turns out to be true, a
different coarse-grained description from that suggested is
called for. Even more seriously, the conclusion in Ref. [19]
questions the validity of the theory that any continuous Z2

SB transition between ordered and disordered phases should
be described by the scalar φ4 theory [21], which was the
motivation to introduce the model-A type (according to the
Hohenberg-Halperin classification scheme [22]) interaction to
the Langevin equation [17].

Hence, it is necessary to study the Z2 SB transition exhibited
by a two-dimensional model with two symmetric absorbing
states more extensively to make a firm conclusion concerning
the universality class. In this paper, we thoroughly investigate
the SB transition. The model studied in this paper will be
called the two-dimensional interacting monomers (2DIM)
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model, which is a two-dimensional version of the model
studied in Ref. [23].

The paper is organized as follows: After introducing a
model and appropriate order parameters in Sec. II, we present
numerical analysis of the SB transition in Sec. III. Section IV
discusses the claim in Ref. [19], studies the absorbing phase
transition to confirm the DP transition, and then summarizes
the paper.

II. MODEL

The 2DIM model is defined on a square lattice with size
L2 (L is assumed to be even). Every site is indexed by a
two-dimensional vector x = (i,j ) with integer components i

and j (i,j = 0,1, . . . ,L − 1). Periodic boundary conditions
are assumed. For later purposes, the lattice is subdivided into
two sublattices E and O. The sublattice E (O) is defined as a
set of sites x = (i,j ) with i + j even (odd). Each site is either
occupied by a monomer or vacant. Two monomers are not
allowed to occupy a single site at the same time. Each site is
given a state variable ax which takes the value 1 (0) if site x
is occupied (vacant). A configuration is characterized by state
variables at all sites.

The dynamic rules are as follows: A monomer attempts to
adsorb on a randomly chosen vacant site (called a target site).
Depending on the number n of occupied nearest neighbors of
the target site, the fate of the monomer will be different. If
n = 0, the monomer adsorbs with rate 1. On the other hand, if
n �= 0, the monomer adsorbs with rate nλn, but the adsorbed
monomer immediately forms a dimer with a randomly chosen
monomer among n monomers on the nearest-neighbor sites,
and the dimer is desorbed in no time. Effectively, an adsorption
event on a vacant site with occupied nearest neighbors removes
one monomer from the lattice. If all nearest neighbors of the
target site are occupied, that is, if n = 4, a monomer is not
allowed to adsorb on the target site, which amounts to setting
λ4 to zero. Since λ4 = 0, any configuration with all vacant
sites surrounded by monomers is an absorbing state.

To write the master equation for the above dynamics in a
succinct way, we introduce a mathematical notation; for any
configuration C with the state variable a y for every site y,
Cx stands for the configuration obtained by changing the state
variable at site x to 1 − ax and by keeping all other state
variables the same as in C. Using this notation, the master
equation can be written as

d

dt
P (C; t) =

∑
x

[WCCx P (Cx ; t) − WCxCP (C; t)], (1)

with the transition rate

WCxC = δax ,0δnx ,0 + δax ,1

∑
y

′
3∑

k=1

λkδay,0δny,k, (2)

where
∑ ′ means the sum over nearest-neighbor vectors y

of site x, ax (a y) is the state variable at site x ( y) in the
configuration C, nx (n y) means the number of occupied nearest
neighbors of site x ( y) in C, and δ is the Kronecker delta
symbol. By observing that (Cx)x = C, one can easily find the
transition rate WCCx .

To simulate the master equation, we have used the following
algorithm. First, we make a list of vacant sites with at least one
vacant nearest neighbor. For convenience, we will refer to such
a vacant site as an active site. Assume that there are Nt active
sites at time t . A target site out of Nt active sites is selected
at random with equal probability. If all nearest neighbors of
the target site are vacant, it becomes occupied with probability
�t , which is defined as

�t = 1

max(1,λ1,2λ2,3λ3)
. (3)

If the target site has n occupied nearest neighbors (n = 1, 2, or
3), a configuration change can occur with probability nλn�t .
If a change is destined, one monomer out of n is selected
with equal probability and it is removed from the system,
which mimics the dimer desorption explained above. After the
above attempt, time increases by �t/Nt and the list of active
sites is updated in an appropriate way. We repeat the above
procedure until t exceeds a preassigned maximum observation
time or no active site exists in the system. For convenience,
we set λ1 = 2λ2 = 3λ3 = λ in what follows and study phase
transitions by tuning λ.

Now we will specify the initial condition studied in this
paper. At t = 0, the sublattice O is empty, but a site in the
sublattice E is occupied with probability m0 (0 � m0 < 1).
With this initial condition, there are only two absorbing states;
the sublattice E is fully occupied and the sublattice O is
empty, or vice versa. In this sense, absorbing states have
perfect “antiferromagnetic” order. The absorbing state with
the sublattice E (O) filled with monomers will be called the
even (odd) absorbing state.

Since we expect two transitions (an APT and a Z2 SB
transition), two quantities that are respectively called the
density of active sites and the “staggered magnetization” will
be measured during simulations.

The density of active sites at time t is defined as

φ(t,L) ≡ 1

L2

∑
x

δax ,0(1 − δnx ,4), (4)

where nx is the number of occupied nearest neighbors of site
x in a configuration at time t . If the system is in one of the two
absorbing states at time t , φ(t,L) is obviously zero. We define
the (averaged) density of active sites in the thermodynamic
limit as

ρ(t) ≡ lim
L→∞

〈φ(t,L)〉, (5)

where 〈· · ·〉 stands for the average over all independent
realizations.

The staggered magnetization (SM) is defined as

M(t,L) ≡ 1

L2

[∑
x∈E

−
∑
x∈O

]
[2ax(t) − 1]. (6)

If the system is in the even (odd) absorbing state, the SM
is M(t,L) = 1 (−1). The (averaged) SM at time t in the
thermodynamic limit is defined as

m(t) ≡ lim
L→∞

〈M(t,L)〉. (7)

041140-2



ORDER-DISORDER TRANSITION IN A MODEL WITH TWO . . . PHYSICAL REVIEW E 85, 041140 (2012)

FIG. 1. Phase diagram of the 2DIM model. λc is the transition
point of the order-disorder transition and λa is that of the absorbing
phase transition.

Since the initial condition gives

〈ax〉 =
{

0 if x ∈ O,

m0 if x ∈ E,
(8)

〈
δax ,0

(
1 − δnx ,4

)〉 =
{

1 − m4
0 if x ∈ O,

1 − m0 if x ∈ E,
(9)

we get

〈M(0,L)〉 = m0, 〈φ(0,L)〉 = 1 − 1
2m0

(
1 + m3

0

)
. (10)

Note that with the above initial condition, m(t), which is
defined in the thermodynamic limit, will remain positive for all
finite t if 0 < m0 < 1, and the order-disorder phase transition
is defined by the infinite-time limit of m(t), which is denoted
by M, such that

M ≡ lim
t→∞ m(t) =

{
nonzero, ordered phase,

0, disordered phase.
(11)

As we will see later, the 2DIM model exhibits two
transitions: an order-disorder transition occurring at λ = λc

and an absorbing phase transition occurring at λ = λa < λc.
The schematic phase diagram is depicted in Fig. 1.

III. NUMERICAL ANALYSIS OF THE ORDER-DISORDER
TRANSITION

In this section, we present the simulation results, focusing
on the order-disorder transition. Rather than studying the
Binder cumulant, we analyze how m(t) approaches the steady
state value. This approach is also known as the nonequilibrium
relaxation method [24].

At criticality, the SM is expected to decay as [25,26]

m(t) ∼ t−β/(νz), (12)

with the critical exponents β, ν, and z defined as

M ∼ (λc − λ)β, ξ ∼ |λc − λ|−ν, τ ∼ |λc − λ|−νz, (13)

where λc is the critical point, ξ is the correlation length, and τ is
the relaxation time. For the two-dimensional Ising model, β =
1
8 and ν = 1 are known exactly (see, for instance, Ref. [27]), but
z � 2.17 [26] is known only numerically; nonetheless it serves
well for our purpose. In simulations, we set m0 = 0.9 (initial
condition) and observed how 〈M(t,L = 211)〉 behaves up to
t = 5 × 105. When we study the finite-size scaling later, the
finite-size effect is argued to be negligible up to the observation
time in this case, so 〈M(t,L = 211)〉 can be regarded as m(t).

In Fig. 2, we depict the behavior of m(t)tβ/(νz) for three
different values of λ as a function of t on a semilogarithmic
scale, using the critical exponents of the two-dimensional
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FIG. 2. (Color online) Plots of m(t)tβ/(νz) vs t with Ising critical
exponents β = 1

8 , ν = 1, and z = 2.17 for λ = 0.379 10, 0.379 15,
and 0.379 20 (from top to bottom) on a semilogarithmic scale.

Ising model. The numbers of independent simulation runs
for λ = 0.3791, 0.379 15, and 0.3792 are 280, 912, and 160,
respectively. In the ordered (disordered) phase, the curve is
expected to veer up (down), and at criticality the curve should
be flat, if the correct exponents are used. Thus, Fig. 2 supports
the idea that the order-disorder transition in the 2DIM model is
of the Ising type with the critical point λc = 0.379 15(5), where
the number in parentheses indicates the error of the last digit.

Note that the power-law behavior of m(t) is observable
only for t > 104, which implies that the 2DIM model has
stronger corrections to scaling than the two-dimensional Ising
model (for example, Fig. 1 in Ref. [26] shows that the
two-dimensional Ising model is already in the scaling regime
from t = 10). As we will see later, the strong corrections to
scaling also plague the behavior of the Binder cumulant, which
will be given as the reason why previous studies could not suc-
cessfully report the universal value of the Binder cumulant (see
Sec. IV B).

To have further support for the Ising critical behavior,
we also studied the finite-size scaling. At criticality, scaling
collapses for the magnetization M and for the absolute value
of the magnetization |M| are expected with the scaling forms

〈M(t,L)〉 = L−β/νf (t/Lz), (14)

〈|M(t,L)|〉 = L−β/νg(t/Lz), (15)

where f and g are (universal) scaling functions. To check the
finite-size scaling at criticality, we simulated the systems with
sizes of L = 27, 28, 29, and 210. The numbers of independent
simulation runs for L = 27, 28, 29, and 210 are 160 000, 40 000,
10 000, and 2504, respectively. The resulting scaling collapse
is presented in Fig. 3, which indeed shows a nice collapse of
〈M(t,L)〉 onto a single curve when the Ising critical exponents
are employed. The scaling collapse is also nice for the average
of the absolute value of M (inset of Fig. 3).

As a by-product of the finite-size scaling, we can estimate
the time after which the finite-size effect becomes significant
to be t ≈ 0.1Lz (about 1.5 × 106 for L = 211) and, in turn,
we affirm that the relaxation dynamics of m(t) is faithfully
presented in Fig. 2.

Furthermore, we also studied how the symmetry-breaking
field h affects the behavior of the magnetization at criticality.
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FIG. 3. (Color online) Plots of 〈M(t,L)〉Lβ/ν vs t/Lz with Ising
critical exponents at criticality on a double logarithmic scale. Inset:
Plots of 〈|M(t,L)|〉Lβ/ν vs t/Lz at λ = λc.

Like the Ising model, the SM at the critical point is supposed
to behave as [26]

m(t) = h1/δH (thνz/(βδ)), (16)

where δ = 15 for the two-dimensional Ising model [27] and H

is a universal scaling function. It is worthwhile to investigate
a scaling collapse of m(t)h−1/δ plotted as a function of
thνz/(βδ), using the Ising critical exponents. Note that for the
two-dimensional Ising model νz/(βδ) ≈ 1.16.

To introduce the symmetry-breaking field, we follow the
idea in Ref. [28]. Now the transition rates take the form

WCxC =
(

1 − 1 − (−1)i+j

2
h

)
δax ,0δnx ,0

+ δax ,1

∑
y

′
3∑

k=1

λ

k
δay,0δny,k, (17)

where i and j are components of the lattice vector x and
0 < h < 1. Recall that we have set kλk = λ for k = 1,2,3. By
Eq. (17), adsorption on the sublattice E is more probable than
on the sublattice O, which eventually breaks the symmetry
between even and odd absorbing states.

With these modified transition rates, we simulated a system
with size L = 29 at λ = λc for different values of h. In
actual simulations, we have only to change the probability of
adsorption on a vacant site in the sublattice O without occupied
nearest neighbors to (1 − h)�t . The resulting scaling plot is
depicted in Fig. 4, which shows a nice scaling collapse. It again
supports the idea that the 2DIM model should belong to the
Ising universality class. To make sure that the finite-size effect
is negligible, we also studied systems with size L = 28 and
obtained almost same figure as Fig. 4 (not shown here).

IV. DISCUSSION AND SUMMARY

Up to now, we have shown that the critical behavior of
the order-disorder transition in the 2DIM model is of the
Ising class. In this section, we will discuss the behavior of
the density of active sites ρ(t) and the Binder cumulant at
the order-disorder transition point λc, which will be compared
with the similar studies in Ref. [19]. Also, to confirm the
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FIG. 4. (Color online) Scaling collapse plot of m(t)h−1/δ as a
function of th1.16 on a double logarithmic scale with the Ising critical
exponent δ = 15.

universality, we discuss the critical behavior of the absorbing
phase transition.

A. Behavior of ρ and its fluctuation at λ = λc

In Ref. [19], diverging fluctuation of the order parameter of
the absorbing phase transition was suspected to be a possible
reason why the two-dimensional IMD model should not belong
to the Ising class. However, this order parameter, in our case
φ defined in Eq. (4), seems related to the energy density of
the Ising model in that φ is measured as a correlation between
nearest neighbors. Since the fluctuation of the (Ising) energy is
the specific heat, which diverges logarithmically at criticality
in two dimensions, it is actually plausible that the fluctuation
of φ (times system size) diverges at criticality even though the
2DIM model belongs to the Ising class.

To confirm that ρ(t) = 〈φ〉 indeed is linked to the (average)
energy density of the Ising model, we analyze how ρ(t)
behaves at the order-disorder transition point. Since the energy
at criticality approaches the steady-state value in a power-law
fashion with exponent (νd − 1)/(νz) [26], ρ(t) is expected, if
it is indeed related to the energy, to approach the steady-state
value ρ∗ in such a way that

ρ∗ − ρ(t) ∼ t−(νd−1)/(zν) ≈ t−1/z, (18)

where we have set ν = 1 (the Ising critical exponent) and
d = 2. Hence if ρ(t) is plotted as a function of t−1/z, the curve
becomes straight for small t−1/z and approaches ρ∗ as t−1/z →
0 (equivalently, t → ∞). As Fig. 5 reveals, ρ approaches the
ordinate as a straight line for t−1/z < 0.02, as anticipated. Note
that the time t−1/z = 0.02 roughly corresponds to t = 5 × 103,
after which m(t) enters the scaling regime (see Fig. 2).

We also analyzed how the fluctuation of the active site
density, defined as

(δρ)2 ≡ lim
L→∞

L2[〈φ(t,L)2〉 − 〈φ(t,L)〉2], (19)

behaves at λ = λc. The inset of Fig. 5 shows logarithmic
behavior of (δρ)2 as in the two-dimensional Ising model.

Thus, we conclude that the active site density φ(t,L) is
indeed associated with the energy of the Ising model. Actually,
the logarithmic behavior of (δρ)2 is compatible with the slow
divergence of the fluctuation observed in Ref. [19].
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dynamic exponent z = 2.17 at criticality. The straight line is the
result of a linear function fitting. Inset: Plots of (δρ)2 vs t at λ = λc

on a semilogarithmic scale.

B. Binder cumulant

Since the Binder cumulant is believed to take a universal
number at criticality, we should study whether the Binder
cumulant at λ = λc approaches the universal value as L → ∞.
Defining the Binder cumulant at time t as

U (t,L) = 1 − 〈M(t,L)4〉
3〈M(t,L)2〉2

, (20)

we numerically study how U (t,L) behaves for different values
of L.

In Fig. 6 we present simulation results for U (t,L) for
λ = λc = 0.379 15 and for λ = 0.3795 > λc (inset). For λ =
0.3795, the numbers of independent samples simulated for
L = 26, 27, 28, and 29 are 200 000, 50 000, 14 000, and
4000, respectively and data for λ = λc were collected while
we studied the finite-size scaling.

Since the system has absorbing states and any finite system
will eventually fall into one of the absorbing states even in
the active phase, there are obviously two characteristic time
scales. One is τq when the system enters the quasistationary
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FIG. 6. (Color online) Plots of U (t,L) vs t at criticality (λ = λc)
on a semilogarithmic scale (L = 27, 28, 29, and 210 from left to right).
As a guide to the eyes, we also plot a straight line indicating the
universal Binder cumulant of the Ising universality class, 0.611. Inset:
Plots of U (t,L) vs t in the disordered phase (at λ = 0.3795 > λc) for
L = 26, 27, 28, and 29 from left to right.
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FIG. 7. (Color online) Plots of ρ(t)t0.45 vs t near the critical point
of the absorbing phase transition on a semilogarithmic scale.

state and the other is τa when the system falls into one of
the absorbing states. At λ = λc, τq diverges with system
size as τq ∼ Lz, but τa should increase exponentially with
L because the SB transition point is in the active phase of
the absorbing phase transition. Hence, to find the universal
value of the Binder cumulant at the SB transition point, the
observation time should be larger than τq but much smaller
than τa . Actually, except for the case of L = 26, no simulation
results in an absorbing state and, even for L = 26, only �0.2%
of simulation runs fall into an absorbing state up to the
observation time. Hence, in our analysis, the Binder cumulant
is not influenced by the existence of absorbing states.

At λ = λc, U (t,L) in the (quasi)stationary state increases
with system size but shows a clear signature of saturating
behavior to the universal number 0.611 [29] as L → ∞. Note
that if the system size is not large enough, the Binder cumulant
could misidentify the critical point. The unexpected behavior
of the Binder cumulant should be attributed to the strong
corrections to scaling already observed in Fig. 2.

The inset of Fig. 6 depicts the behavior of U (t,L) at λ =
0.3795 > λc (disordered phase). If the system size is not larger
than L = 28, one concludes that the critical point is around
0.3795, with the value of the Binder cumulant around 0.59,
which is comparable to the value reported in Ref. [19]. Hence
we conclude that the critical point reported in Ref. [19] is
actually in the disordered phase.

C. Absorbing phase transition

Finally, we discuss the critical behavior of the absorbing
phase transition. Since the symmetry is already broken, it
is expected that the model should belong to the DP class
[16,17]. To confirm this, we study the system with the initial
SM m0 = 0.1. In Fig. 7, we plot ρ(t)t0.45 as a function of t

on a semilogarithmic scale, where 0.45 is the critical exponent
of the DP class. For λ = 0.366 750, the curve becomes flat
from around t = 5 × 104. In the active (absorbing) phase, the
curves veer up (down) as usual. Thus we conclude that the
critical point of the absorbing transition is λa = 0.366 750(5)
and the critical behavior is of the DP class.

Note that exponential decay of ρ in the absorbing phase
is observed in Fig. 7, which might look inconsistent with the
power-law decay in the whole absorbing phase reported in
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Ref. [19]. However, there is a clear distinction. Since the initial
SM is nonzero in our case, coarsening has not played any role.
Indeed, we also observe power-law behavior in the absorbing
phase if m0 is set to zero just as in Ref. [19] (data not shown).

D. Summary

To sum up, we studied a model of two-dimensional
interacting monomers, focusing on the order-disorder phase
transition. Numerical analysis showed that the 2DIM model
should belong to the Ising universality class, contrary to a
recent claim [19]. We observed that analysis of the Binder
cumulant is not an efficient method to find the critical point
in two-dimensional models with two symmetric absorbing
states. We also reconfirmed that the absorbing phase transition
occurring in the 2DIM model after the symmetry is broken is
described by two-dimensional directed percolation.

Although we did not directly study the interacting
monomer-dimer model, we believe that the conclusion in
this paper should be applicable to the IMD model studied

in Ref. [19] because of the universality hypothesis. Since the
two different models, IMD and 2DIM, have strong corrections
to scaling at the symmetry-breaking transition point, unlike
the Ising model, the origin of these strong corrections seems
to be related to the presence of an absorbing state even for
λ > λc (disordered phase). If this is the case, it is an interesting
question as to why and how the absorbing states affect the
corrections to scaling; this is beyond the scope of the present
paper and is deferred to a later presentation.
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