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Jamming and pattern formation in models of segregation
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We investigate the Schelling model of social segregation, formulated as an intrinsically nonequilibrium system,
in which the agents occupy districts (or patches) rather than sites on a grid. We show that this allows the equations
governing the dynamical behavior of the model to be derived. Analysis of these equations reveals a jamming
transition in the regime of low-vacancy density, and inclusion of a spatial dimension in the model leads to a pattern
forming instability. Both of these phenomena exhibit unusual characteristics which may be studied through our
approach.
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I. INTRODUCTION

Forty years ago Schelling proposed a simple model of
social segregation in which agents of two different types
are placed at random on a grid, before being allowed to
move according to a desire to be close to other agents of
the same type [1]. This seminal work played an important
part in the development of the new scientific field of social
simulation, in which sociological problems are studied through
computational models.

To the physics community, there is an immediate similarity
between the rules of the Schelling model and some of the
simple dynamical models of statistical physics, and the tools
of this field have been used to provide quantitative insight into
the behavior of the model [2]. There have also been several
attempts to make direct links to equilibrium spin models [3–6],
though care must be taken as agents in the Schelling model are
subject to kinetic constraints which mean that the dynamics
cannot be viewed as a simple energy minimization process
[2]. In what follows we will show that certain analytically
tractable Schelling-like models of segregation exhibit a range
of interesting physical phenomena.

In Schelling’s original work [1], and most subsequent
studies,1 the city in which the agents reside is modeled as a
two-dimensional grid. We propose instead to study a model in
which the basic object of interest is a district (patch) containing
multiple residences. This modification improves the social
realism of the model—a city is much better described as
a collection of districts and suburbs with their own ethnic
character than as a simple grid. Moreover, patch models are
naturally amenable to analytical approaches, for example, in
ecology [8]. Indeed, a patch variation of a Schelling-like model
has been considered before [4], though that work has a very
different flavor to our own, being primarily concerned with
applying the techniques of equilibrium statistical mechanics.
We choose the dynamical rules of our model to be close to those
of the lattice-based model of Gauvin et al. [5], simulations of
which display interesting physical behavior that we intend to
study theoretically.

1There are a wealth of variations of the Schelling model, many of
which fit into the unified framework outlined in Ref. [7]; we refer to
that paper for a broader review of the literature.

Our analysis is divided into two parts, investigating different
implementations of the patch-based Schelling model. In both
cases we consider a large city, divided into N patches each
containing K residences. For the first model we investigate,
model A, the patches are relatively small, but there are very
many of them. Through enumerating the possible interactions
between patches, we obtain a description of the model in terms
of a deterministic dynamical system. This framework is used
to investigate a jamming transition present in the model, in
which large numbers of agents remain stuck in unfavorable
states. We then go on to analyze a model with a spatial
structure, model B, and consider the alternative limit of very
large patches. The behavior in this case is rather different, with
the model exhibiting pattern formation driven by antidiffusion.

II. MODEL A

We begin by considering the situation where K is relatively
small; each patch represents a local neighborhood containing
only a few residences. Initially, the city is randomly populated
with equal numbers of agents of two different types, which we
call A and B, with a fraction ρ of the residences left vacant.
At each time step two residences are chosen at random from
the whole city. If the first contains an agent and the second is
vacant, then that agent is given the opportunity to move to the
vacant residence. They take up this offer only if the number of
agents of the opposite type in the destination patch is less than
a threshold T .

The contents of patch i at time t is encoded in the numbers
ai(t), bi(t), and vi(t) of A agents, B agents, and vacancies,
respectively, it contains. The state of the system as a whole is
then specified (up to trivial reordering of the residences) by
the quantities

Fa,b,v(t) = 1

N

N∑
i=1

δa,ai (t)δb,bi (t)δv,vi (t) , (1)

giving the fraction of patches in state (a,b,v) at time t . Our
theoretical work is based on an analysis of the time evolution
of these quantities when the number of patches is very large.

The first step is to consider the possible changes to a given
Fa,b,v which can occur in one time step. Suppose, for example,
that at time t an A agent in a patch with state (a,b,v) is selected
to move to a vacancy in a patch with state (a′,b′,v′). This event

041136-11539-3755/2012/85(4)/041136(5) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.85.041136


TIM ROGERS AND ALAN J. MCKANE PHYSICAL REVIEW E 85, 041136 (2012)

occurs with probability

Fa,b,v(t)
a

K
Fa′,b′,v′ (t)

v′

K
�(T − b′) .

The factors in this expression are explained as (i) the proba-
bility of choosing a patch in state (a,b,v), (ii) the probability
of selecting an A agent from that patch, (iii) the probability of
choosing a patch in state (a′,b′,v′) for the destination, (iv) the
probability of selecting a vacant residence in the destination
patch, and lastly (v) a Heaviside � function imposing the
requirement that the destination patch contains fewer than T

agents of type B. As a result of this interaction, the values
of Fa,b,v(t) and Fa′,b′,v′ (t) would decrease by 1/N , whilst
Fa−1,b,v+1(t) and Fa′+1,b,v′−1(t) would increase by 1/N . The
effects of moving a B agent are computed in the same way.

In the present model, the patches are well mixed in the
sense that each patch is equally likely to interact with every
other; it follows that when the number of patches is very
large, it is sufficient to consider only the average over all
possible interactions. Rescaling time by a factor of 1/N , we
take the thermodynamic limit N → ∞, in which the random
quantities Fa,b,v(t) may be well approximated by continuous
deterministic functions of rescaled time. In this formalism the
possible changes that can occur in one time step discussed
above are translated into a deterministic differential equation
which exactly describes the behavior of the system in the limit
N → ∞. Summing over the possible interactions gives

d

dt
Fa,b,v(t) =

∑
a′,b′,v′

Fa′,b′,v′ (t) (R+
A + R+

B + R−
A + R−

B ), (2)

where the contributions from each type of interaction are

R+
A = a′

K
(E−

a E+
v − 1)

[
Fa,b,v(t)

v

K
�(T − b)

]
,

R+
B = b′

K
(E−

b E+
v − 1)

[
Fa,b,v(t)

v

K
�(T − a)

]
,

R−
A = v′

K
�(T − b′)(E+

a E−
v − 1)

[
Fa,b,v(t)

a

K

]
,

R−
B = v′

K
�(T − a′)(E+

b E−
v − 1)

[
Fa,b,v(t)

b

K

]
.

The E± used here are step operators which alter the functions
they act on through the addition or subtraction of 1 to their
argument; for example, E−

a E+
v [Fa,b,v(t)] = Fa−1,b,v+1(t).

To monitor the emergence of segregation in the model,
we measure the fraction of pairs of neighboring agents of
different types, a statistic commonly referred to as the interface
density [2,6,7]. A patch in state (a,b,v) has (a + b)(a + b −
1)/2 distinct pairs of agents, of which ab are (a,b) pairs. The
interface density x is found by summing over all patches, or
alternatively by the formula

x(t) =
∑
a,b,v

Fa,b,v(t)
2ab

(a + b)(a + b − 1)
.

In simulations of lattice-based versions of the model (without
patches), behavior suggesting a phase transition in the interface
density has been observed as the vacancy density ρ is lowered;
below a critical value, there are not enough vacancies to
facilitate the movement of agents to a segregated state and the
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FIG. 1. Equilibrium interface density x∞ as a function of vacancy
density ρ, for patches of size K = 9 and tolerance parameter T = 3.
Theoretical prediction (solid line) from Eq. (2) is compared to results
from stochastic simulations on N = 103 patches (black circles) and
on the lattice (gray squares), averaged over 100 samples. Error bars
are one standard deviation.

system appears “jammed” [5,9]. We can confirm the existence
of this transition in the patch model under investigation here by
numerically integrating (2) to find the final state of the system.

Starting from a well-mixed initial condition for the Fa,b,v

(chosen to be equivalent to the large N limit of a random
initial configuration of agents in the microscopic model), we
numerically integrate (2) using the forward-Euler scheme.
Figure 1 shows the equilibrium value x∞ of interface density
as a function of ρ for patches of size K = 9 and a tolerance
parameter T = 3.

For low values of vacancy density the segregated steady
state becomes inaccessible to the dynamics started from a
well-mixed initial condition, and the system finds a different
(well-mixed) equilibrium; we estimate the critical point for
the transition to be ρc ≈ 0.079 615. Further information
about the system can be gained through a linear stability
analysis of the steady states reached from both well-mixed
and segregated initial conditions. In the jammed regime we
find two stable equilibria, one well mixed and one segregated;
moreover, the stability of both states increases with ρ. Past the
transition point only a single, segregated, steady state can be
found.

In Fig. 1, the analytical result is compared with results
from simulations of the patch model with N = 103 patches,
averaged over 100 samples. Also shown are the results from
simulations of a lattice-based version of the model [5], where
the jamming transition occurs at a different point. We should
point out that the transition is not unique to the values of K

and T we have chosen; further numerical results suggest that
the conditions K � 3 and T < K/2 are sufficient.

Beyond confirming the existence of the transition, we
are also able to probe the behavior of the system near the
critical point. Figure 2 shows the deterministic dynamics for
a value of vacancy density just above critical, ρ = 0.08. Also
shown in that figure are several sample results from stochastic
simulations of a system of size N = 103. The data from
simulations show very little noise, although both the final
outcome (either jammed or unjammed) and the moment in time
that unjamming takes place appear random. Ordinarily, one
might expect that the persistence of a metastable state followed
by sudden relaxation to equilibrium is a stochastic effect which
would not be captured by a naive deterministic theory. In the
present case, however, we see that the deterministic theory
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FIG. 2. Comparison between the deterministic theory (black line)
and the results of ten simulation runs (gray lines) for vacancy density
ρ = 0.08, just above the point of the jamming transition. Patches of
size K = 9 and a tolerance parameter of T = 3 were used for both
data sets. The stochastic simulations were performed on a system of
N = 103 patches.

does indeed display the same behavior, with the effect of
stochasticity and finite size mainly limited to fluctuations in
timing. These effects are reduced in larger system sizes.

There is an analogy [5,6] between the lattice-based version
of the segregation model and kinetically constrained models
which are used as simplified proxies in the study of glasses
and granular media [10]. Kinetically constrained models have
been intensively studied over the last decade, and they exhibit
a rich phenomenology, including a jamming transition [11–13]
which is both discontinuous in its order parameter and features
exponentially diverging relaxation time.

In the present model it is also the case that, as vacancy
density is further lowered toward the critical value, the waiting
time until the system is freed from the metastable jammed state
increases. In analogy with critical slowing of magnetization in
the Ising model [14], we introduce the following relaxation
time for interface density:

R =
∫ ∞

0
[x(t) − x∞] dt , (3)

viewed as a function of ρ − ρc. As shown in Fig. 3, this
quantity does not grow exponentially as in some kinetically
constrained models, but rather exhibits power-law behavior
with exponent −1/2.

III. MODEL B

We now introduce a simple modification to the above
model which will allow us to develop a theoretical description
of the emergence of spatial patterns of agents. We take
the N patches considered earlier and arrange them in a
one-dimensional lattice; from now on, agents are restricted
to move only to patches which neighbor them in the lattice.
The other rules of the model remain the same, though to
aid the analysis we smooth the step function, introducing
�κ (x) = [1 + tanh(2x/κ)]/2, for a small parameter κ .

For this spatial version of the model we employ a different
analysis in which we keep the number of patches finite and take
the limit of large patch size K → ∞. In a sociological context
this model represents a city divided into several districts,
each still containing a large number of residences. A similar
model featuring agents with no preferences was considered in
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FIG. 3. log-log plot of the duration of the metastable state,
measured by R given in Eq. (3), against ρ − ρc. Circles show the
results of the numerical integration of Eq. (2); the dashed line is a
power law with exponent −1/2.

Ref. [15], and the same techniques apply here with the simple
addition of the �κ threshold term.

The state of the system at a given time is specified by
the vectors a = (a1, . . . ,aN ) and b = (b1, . . . ,bN ) giving the
numbers of A and B agents in each patch. Note that there is
no need to keep track of vacancies as ai + bi + vi = K for all
i. The dynamics of the model are determined by the transition
probabilities P (a,b|a′,b′), giving the likelihood of moving
from state (a′,b′) to state (a,b) in one time step. Changes
to the system result from the movement of agents between
neighboring patches; the transition probabilities for A and B

agents have the forms

P (ai − 1,aj + 1|ai,aj ) = δ|i−j |,1
ai

NK

vj

2K
�κ (bi − T ),

(4)

P (bi − 1,bj + 1|bi,bj ) = δ|i−j |,1
bi

NK

vj

2K
�κ (ai − T ),

where i and j are neighbors in the lattice, and we have listed as
arguments only those entries of a and b which change. Writing
πt (a,b) for the probability of finding the system in state (a,b)
at time t , we have the equation

πt+1(a,b) − πt (a,b) =
∑
a′,b′

(P (a,b|a′,b′)πt (a′,b′)

−P (a′,b′|a,b)πt (a,b)).

Multiplying by ai and summing over all states, we obtain a
difference equation for the average number of A agents in
patch i:

〈ai〉t+1 − 〈ai〉t =
∑
j∈i

〈P (ai + 1,aj − 1|ai,aj )

−P (ai − 1,aj + 1|ai,aj )〉t ,
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where the notation j ∈ i indicates that the sum is over all
patches j which are nearest neighbors of patch i. A similar
expression exists for B agents. We now rescale time by a factor
of 1/K and introduce

αi = 〈ai〉
K

, βi = 〈bi〉
K

, γi = 〈vi〉
K

, and τ = T

K
.

Taking the limit K → ∞ transforms the difference equations
for 〈ai〉t and 〈bi〉t into a pair of coupled reaction-diffusion
equations:

α̇i = γi�κ (τ − βi)�αi − αi�[γi�κ (τ − βi)],
(5)

β̇i = γi�κ (τ − αi)�βi − βi�[γi�κ (τ − αi)],

where � is the discrete Laplacian.
By taking the limit of a large number of agents per patch,

the emergence of segregation in this model is reduced to the
question of the stability of the homogeneous state αi = βi =
(1 − ρ)/2 for all i. Diagonalizing the Jacobian of Eq. (5) at this
point, we find that there is once again a jamming transition:
for fixed τ < 1/2 and κ 	 1, the homogeneous state is stable
for small ρ, becoming unstable as ρ approaches 1 − 2τ .

In numerical simulations starting with a uniform distri-
bution of agents in the unjammed phase, the model rapidly
forms a distinct pattern of alternate patches filled by agents
of different types. The emergence of these patterns can be
studied theoretically by setting ρ = 1 − 2τ and analyzing the
stability of a homogeneous distribution of agents [that is,
αi = βi = (1 − ρ)/2 for all i].

In the analysis of typical pattern forming systems, it is nor-
mal to study the continuum version of the reaction-diffusion
equations [16]. The homogeneous state may be found to be un-
stable with respect to perturbations which are periodic in space;
the eventual shape of the pattern which forms is then given by
the most unstable wavelength. In the present model we find a
different behavior, with instability on the scale of the lattice
spacing making it inappropriate to take the continuum limit.

The linearized form of Eq. (5) can be decoupled by
considering vacancy densities γi and a conjugate variable
ζi = αi − βi . Near the homogeneous fixed point we find

γ̇i = 1

2

(
1 + ρ(1 − ρ)

κ

)
�γi, ζ̇i = 1

2

(
ρ − ρ(1 − ρ)

κ

)
�ζi.

(6)

From the first equation above we infer that, near the
homogeneous state, the vacancies will exhibit diffusion,
independent of the behavior of the agents. For the conjugate
variables ζi the behavior is opposite: note that the coefficient in
the second equation is typically large and negative, indicating
rapid antidiffusion. By taking an initial condition in the form
of an alternating perturbation αi = (1 − ρ)/2 + ε(−1)i and
βi = (1 − ρ)/2 + ε(−1)i+1 for a small positive ε, we find that
the lattice dependence drops out, giving

γi(t) = ρ , and ζi(t) = 2ε(−1)ie−(ρ− ρ(1−ρ)
κ

) t .

Together these facts give a description of the emergence
of an alternating pattern of patches dominated by agents of
different types, which develop without altering the distribution
of vacancies. Initially the pattern will grow exponentially
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FIG. 4. (Color online) (Upper) Two snapshots taken from a
simulation of the spatial patch model on a one-dimensional toroidal
lattice of N = 10 patches, with patch size K = 106, vacancy density
ρ = 0.1, and step parameter κ = 0.1. The fraction of agents of
types A and B in each patch are shown by darker (red) and lighter
(blue) areas, respectively, with the vacancy density in white. (Lower)
Time evolution of the average absolute difference in agent densities
〈|ζi |〉 = 1

N

∑
i |αi − βi | (solid line), alongside the linearized result

(dashed line) from the theory.

quickly before being limited by the effect of patches becoming
saturated with one type of agent, at which time the stochastic
model will deviate from the results of the antidiffusive
linearized system. This picture is confirmed by comparison
to numerical simulations, as shown in Fig. 4.

IV. DISCUSSION

The models introduced and analyzed above are sim-
ple coarse-grained modifications of the well-known lattice-
based segregation models introduced by Schelling. We have
demonstrated that the well-mixed patch model reproduces
the jamming transition observed in simulations of lattice
models, and moreover that it is described by deterministic
equations which are exact in the thermodynamic limit. One
might expect that the unusual character of the jamming
transition is intrinsically linked to the effects of stochasticity
or spatial dimension. Our analysis shows that this is not the
case; the behavior is captured by the deterministic dynamical
system (2).

It should be noted that, despite the similarities in the nature
of the models and of the characteristics of the transition, the
jamming found here is possibly a different phenomenon to
that occurring in kinetically constrained models. Specifically,
in those models jamming often refers to the (probabilistic)
existence of an extensive fraction of frozen spins [11–13]. The
analysis we have presented links the occurrence of jamming
in a stochastic model to a dynamical transition in a particular
deterministic system. As such, we cannot draw conclusions
about the behavior of individual agents in the thermodynamic
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limit. Another possible analogy is with quasistationary states
in models with long-range interactions [17,18]. Whatever its
precise nature though, the jamming transitions in models of
segregation are certainly interesting phenomena which are
worthy of further investigation.

Introducing a spatial dimension to the model and studying
the limit of large patch size, we observe pattern formation
driven by antidiffusion. Once again, the model is simple
enough that the theoretical analysis provides a very complete
picture of the mechanisms behind the emergence of segrega-
tion.

These results exemplify the possibilities for theoretical
physics analyses of social models. Whilst our emphasis has
mainly been on the physics encountered in such systems, the
predictive power of the theoretical approach we use should
also be of interest to simulators.
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