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The concept of local accumulation time (LAT) was introduced by Berezhkovskii and co-workers to give a
finite measure of the time required for the transient solution of a reaction-diffusion equation to approach the
steady-state solution [A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Biophys. J. 99, L59 (2010); Phys.
Rev. E 83, 051906 (2011)]. Such a measure is referred to as a critical time. Here, we show that LAT is, in
fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb [A. McNabb
and G. C. Wake, IMA J. Appl. Math. 47, 193 (1991)]. Although McNabb’s initial argument was motivated by
considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion.
We extend the work of these authors by deriving expressions for the MAT for a general one-dimensional linear
advection-diffusion-reaction problem. Using a combination of continuum and discrete approaches, we show
that MAT and MPLT are equivalent for certain uniform-to-uniform transitions; these results provide a practical
interpretation for MAT by directly linking the stochastic microscopic processes to a meaningful macroscopic
time scale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold.
Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the
underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical
situations. Finally, our work explores the accuracy of certain approximations derived using MAT, showing that
useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde

directly.

DOI: 10.1103/PhysRevE.85.041135

I. INTRODUCTION

Estimating a finite measure of the time taken for a particular
advection-diffusion-reaction process to reach equilibrium is
fundamental to many applications in the physical sciences.
Such a time scale is called the critical time.

Here we briefly outline two practical examples for which
the concept of critical time is very useful. First we consider the
motion of fluid within a porous medium, which is governed
by advection-diffusion partial differential equations (pdes)
[1]. An important question currently faced by coastal water
resource managers is to estimate the time required for the
distribution of fresh and saline fluids in a coastal aquifer
to respond to sea-level rise [2,3]. Second, we consider the
formation of tissues and organs in a developing organism.
These processes depend on the spatiotemporal regulation
of cell behavior that is, in turn, thought to be regulated
by gradients of chemical signaling molecules called mor-
phogens [4]. These morphogen gradients are controlled by
reaction-diffusion mechanisms [4,5], and one of the key
questions is to determine whether the spatial distribution
of morphogens reach steady state on time scales that are
relevant for developmental patterning [6]. As these seemingly
disparate examples indicate, estimating critical time scales for
advection-diffusion-reaction equations has broad significance
to any physical process that is governed by an advection-
diffusion-reaction mechanism. Instead of focusing on any
one particular example, here we investigate critical times for
a range of linear and nonlinear advection-diffusion-reaction
processes, presenting our analysis in a general framework to
emphasize the broad applications of our results.
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The concept of local accumulation time (LAT) was
introduced by Berezhkovskii and co-workers [7-10].
Berezhkovskii considered a one—-dimensional reaction-
diffusion pde that was motivated by studying morphogen
gradient formation [7-10]. Berezhkovskii solved the pde to
give the time-dependent solution, C(x,t), and the steady-state
solution, Cyo(x) = tlirglo C(x,t). A mathematical expression

for the LAT, t(x), was obtained, and Berezhkovskii argued
that the LAT gives a measurement of time after which the
transient solution becomes sufficiently close to the steady-state
solution [8,9]. Therefore, the LAT is an estimate of the critical
time for this problem.

Other definitions of critical time have been considered
recently by Hickson and co-workers, who presented a thorough
analysis of a one-dimensional linear reaction-diffusion pde on
a finite domain [11-14]. Similar to the problem considered
by Berezhkovskii, Hickson was able to solve the pde for
both C(x,7) and C(x). With these solutions, Hickson sought
to investigate a variety of measures of the time taken for
the transient solution to approach the steady-state solution.
Hickson used the term critical time, f., and considered
three definitions for 7.: (1) the time taken for the averaged
time-dependent profile to reach a particular proportion of the
averaged steady-state solution; (2) the time taken for the total
mass in the system to reach some predefined constant; and
(3) the time taken for the density at a fixed position to reach a
certain threshold.

Although Hickson’s three criteria are based on physically
reasonable principles, each criterion suffers from the limita-
tion that there is always some subjectivity associated with
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implementing it. For example, definition (3) involves identify-
ing the time at which the transient density at a fixed position
reaches a certain threshold value. To use this definition, two
choices have to be made: first, we must choose which particular
position we are going to examine, and second, we must choose
the value of the threshold density. If we know Cy(x) in
advance, then we might select 7. to be the time taken for
C(x1,t) to reach within 1% of Cy(x;). The difficulty with this
definition is that the choice of a 1% threshold is arbitrary; we
could easily change the threshold to 0.1%, or 0.01%, and the
value of ¢, might be very sensitive to this choice [15,16].
These subjectivity issues are completely circumvented by
using Berezhkovskii’s definition of LAT since the concept
of LAT does not require any choice of threshold criteria. We
also note that to calculate critical time Hickson requires the
exact solution for C(x,t), which limits the practical value of
these particular definitions of #.. It would be more practical
to calculate the critical time without the need to solve the
underlying pde.

In this work we demonstrate that Berezhkovskii’s definition
of LAT, t(x), is identical to the previously established concept
of mean action time (MAT), T (x), that was first introduced
by McNabb in 1991 [15,16]. McNabb’s original work was
motivated by considering a diffusion equation in the context
of a heat-transfer problem from the food refrigeration industry.
In particular, McNabb considered the problem of constructing
a finite measure of the time taken for the temperature of an
isotropic heat conductor, initially at a uniform temperature 77,
to reach a new uniform temperature 7, after the conductor
has been immersed in an ambient temperature 7 [15,16]. It
is well known that for such diffusion problems it takes an
infinitely long time for the temperature to reach 75 uniformly
throughout the conductor. McNabb introduced the concept
of MAT to estimate the critical time for this problem. The
major attraction of MAT is that it is possible to solve for
the MAT without solving the underlying pde for the transient
solution [15,16].

After McNabb’s initial work, Landman and McGuinness
[17] applied the definition of MAT to nonlinear diffusion pro-
cesses in 2000. Landman and McGuinness used the Kirchhoff
transformation to derive an expression for 7'(x) [17]. Although
Landman and McGuinness did not evaluate 7'(x) in the case
of nonlinear diffusion, they used their definition to motivate
a new mathematical justification for the approximation of
an intractable nonlinear diffusion equation with a related,
but tractable, linear diffusion equation [17]. Based on this
argument, Landman and McGuinness developed approximate
analytical insight into a range of physical problems, including
the filtration of flocculated suspensions and water transport in
human eye lenses [17,18].

Unfortunately, after the concept of MAT was first intro-
duced in 1991, and then extended in 2000, we are unaware of
any further developments regarding MAT until very recently.
Motivated by observations from cell biology experiments
[19-21], our research group has been deriving approximate
mean-field pde models associated with the collective motion
of populations of different sized cells [22]. Our most recent
work identified a family of nonlinear diffusion equations, each
of which aims to approximate the same physical system [23].
By using the results of Landman and McGuinness [17], we
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were able to show that our family of seemingly unrelated
nonlinear diffusion equations were, in fact, mathematically
related through the concept of MAT.

Motivated by integrating and extending the work of
Berezhkovskii [7-9] and McNabb [15,16], the present work
meets five aims: (1) we show that Berezhkovskii’s definition
of LAT [7] is equivalent to McNabb’s definition of MAT [15];
(2) we extend the work of McNabb by deriving expressions
for the MAT for a general one-dimensional linear advection-
diffusion-reaction problem; (3) we show that, for a general
problem, it is possible to solve for an exact expression for
the MAT without solving the underlying pde model; (4) in an
attempt to provide a more comprehensive understanding of the
physical meaning of MAT, we use a combination of continuum
and discrete approaches to relate MAT to the mean particle
lifetime (MPLT), and (5) based on observations associated
with the linear advection-diffusion-reaction model, we give
approximate equations governing the MAT for a nonlinear
advection-diffusion-reaction model with a nonlinear decay
term.

A. Mean action time for linear diffusion processes and
relationship to local accumulation time

To motivate our work we recall how MAT is defined
for a linear diffusion process. For simplicity we work with
a one-dimensional pde and note that all arguments can
be extended to higher dimensions with isotropic transport
coefficients [17]. We first consider a linear diffusion process
governing the evolution of some density profile, C(x,t). The
diffusion equation can be written as

aC 92C

EZ m, O<X<L, (1)

where D is the diffusivity. When we apply Eq. (1) to a situation
with a particular initial condition, C(x,0) = Cy(x), and bound-
ary conditions such that the solution evolves toward some
steady-state profile, Coo(x) = tlirglo C(x,t), we are interested to

construct a finite measure of how long it takes for the difference
between the transient solution and the steady-state solution to
decay to zero [15,16]. We use the mean value theorem to relate
the first moment of 9(C(x,#) — Cxo(x))/0¢ with a mean value
T (x). In this context we write

T(x)/m 3[C(x,t)a— Coo(x)] dr
0 t

_ /‘X’ta[C(x,t)—Coo(x)] ar,
0 at

(@)

where T (x) is the MAT. To solve for T(x) we use integration
by parts on the right-hand side of Eq. (2) and, assuming that
C(x,t) — Coo(x) = 0(t ") as t — oo, we obtain

T(x)= Coo(x) = C(x,t)dt, (3)

1 / o0
Coo(x) — Co(x) Jo
for Co(x) # Co(x). Equation (3) is a general expression for
the MAT that is independent of the initial condition, the
boundary conditions, and the details of the governing equation.
At this stage it is straightforward to note that Berezhkovskii’s
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definition of LAT,
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is identical to Eq. (3). We note that Berezhkovskii’s work
[8—10] considered a specific application of a reaction-diffusion
equation where the initial condition was always Cy(x) = 0, and
therefore that previous work always dealt with a more specific
expression for t(x).

Although it is possible to use Eq. (3) together with the
solutions C(x,t) and Cs(x) to evaluate T'(x) [8,9], here we will
show that we can solve for 7'(x) directly without solving the
underlying pde model. For example, we consider McNabb’s
original problem of placing an isotropic heat conductor,
initially at uniform temperature 77, in an environment with
a different ambient temperature 7,. In the absence of any
phase change the corresponding pde model for this process
is Eq. (1) with a spatially constant initial condition and a
spatially constant steady-state profile, so that Cy(x) = Cy and
Coo(x) = Co. Under these conditions, we differentiate Eq. (3)
twice with respect to x and combine the resulting expression
with Eq. (1) to obtain

1
T// =——, 5
() D &)
where we have used prime notation to indicate differentiation
with respect to x. The appropriate boundary conditions for
Eq. (§) are T(0) = T (L) = 0, and the solution is

T(x)=———. (6)

This solution for 7'(x), shown in Fig. 1(b), provides us with
a simple, convenient, and finite measure of the time taken
for the initial disturbance to propagate through the system.
We note that the arguments leading to this expression are
very general and apply for all one-dimensional linear diffusion
problems involving a transition from a spatially uniform initial
condition to a spatially uniform steady state. We will call
these kinds of transitions uniform-to-uniform transitions. The
shape of the T'(x) profile is intuitive since we see that 7'(x) is
symmetric about the center of the domain, and 7'(x) increases
with distance away from either boundary. This agrees with our
intuitive notion that a disturbance introduced simultaneously
at x =0 and x = L would have an immediate effect at the
boundaries, giving 7(0) = T (L) = 0. Furthermore, we expect
that the observation point that would take the longest time to be
affected by this disturbance would be the center of the domain,
where x = L/2. Finally, we see that 7' (x) decreases with D,
which is also intuitive since the rate at which information
propagates through the system is proportional to D.

We will now extend these results for the linear diffusion
model. In Sec. I we derive expressions for the MAT for a
more general linear advection-diffusion-reaction pde model. In
Sec. III we introduce a discrete stochastic random walk model
that is related to the advection-diffusion-reaction equation
analyzed in Sec. II, and we use this discrete model to
investigate a relationship between the MAT and MPLT. In
Sec. IV we investigate a practical application using the MAT by
exploring an approximation introduced by Berezhkovskii [7]
allowing us to approximate the long-term behavior of a pde
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solution with a simple exponential decay function related to
T (x). Based on the results in Sec. IV, we show that it is possible
to formulate an approximate boundary value problem for the
MAT associated with a nonlinear advection-diffusion-reaction
problem in Sec. V. We compare a numerical approximation
for T'(x) with the exact solution of our approximate model
for the nonlinear advection-diffusion-reaction problem which
indicates that the approximation gives a useful estimate of the
MAT.

II. MEAN ACTION TIME FOR LINEAR
ADVECTION-DIFFUSION-REACTION PROCESSES

The original work by McNabb [15,16] and then Landman
and McGuinness [17] considered the MAT for diffusion
problems only; they did not consider MAT for more general
problems involving transport by advection-diffusion or source
terms in the pde model. Here we extend these previous
investigations by considering a more general linear advection-
diffusion-reaction problem given by

oC 32C oC

—=D——-V— —kC,

ot ax2 ox
where D > 0 is the diffusivity, V is the advection velocity,
and k£ > 0 is the reaction (death) rate. The general expression
for the MAT, Eq. (3), still holds for the advection-diffusion-
reaction problem. If we introduce f(x) = Coo(x) — Cp(x),
differentiate Eq. (3) twice with respect to x, and combine
the resulting expression with Eq. (7), we obtain

O0<x<L, @)

Vi Zf/(X) v !/
T (x)+( = —5>T(x>
(f//(x) v E)T(x) _ _l, (8)
f@)  f@D D b

To solve Eq. (8) we introduce the transformation S(x) =
f ()T (x), converting Eq. (8) into

Jfx)
D )

which has constant coefficients and can be solved using
standard techniques. We note that Eq. (9) describes the MAT
for any one-dimensional linear advection-diffusion-reaction
equation for a general transition from Cy(x) to Coo(x). Since
many physical processes are governed by the linear advection-
diffusion-reaction equation, the solution of Eq. (9) will be
relevant to any discipline in the physical sciences where the
linear advection-diffusion-reaction equation plays a role.

For a uniform-to-uniform transition we have constant
Coo(x) = Cs, Co(x) = Cy, and f'(x) = f"(x) = 0. Under
these conditions the appropriate boundary conditions for
Eq. (8) are T(0) = T(L) = 0, and the solution is

1 V ! k
S (x) — BS x)— BS(x) = —

1
T(x)= Ae™ * + Be" * + . (10)
for k > 0, where
1% V> k em L
+
= —+ /(= ZoAa=—"_""
DY) <2D> D k(e L —em Ly

(1)

1 —em'L

k(e’”“ _ em*L) :
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FIG. 1. (Color online) MAT for linear transport associated with a uniform-to-uniform transition on the finite domain 0 < x < 50. Results
in (a, b) correspond to the diffusion-only process (D = 0.5,V = 0,k = 0), results in (c, d) correspond to the diffusion-death process (D =
0.5,V =0,k = 0.005), and results in (e, f) correspond to the diffusion-advection process (D = 0.5,V = 0.1,k = 0). For all problems we
consider an initial condition Cy(x) = 1, and we apply homogeneous Dirichlet boundary conditions C(0,7) = 0 and C(50,7) = 0, giving
Cso(x) = 0. Numerical solutions of Eq. (7), denoted C(x,?), are given in red (dashed) in (a), (c), and (e) at r = 100 and ¢ = 500, as indicated.
Discrete density profiles from the stochastic random walk model, n(x,t), are superimposed in (a), (c), and (e) at t = 100 and t = 500 are
shown in blue (solid). Results in (b), (d), and (f) show the exact solution for 7'(x) in red (dashed), a numerical approximation of Eq. (2)
in green (dotted), and the MPLT calculated using the stochastic random walk algorithm is shown in blue (solid). All numerical results
are obtained using the same technique outlined in the main text with §x = 0.05 and §z = 0.1. The stochastic random walk algorithm was
implemented on a one-dimensional lattice with A = 1, and the discrete results in (a, b) correspond to diffusion-only processes (¢ = 0,d = 0),
results in (c, d) correspond to diffusion-reaction processes (¢ = 0,d = 0.005), and results in (e, ) correspond to diffusion-advection processes

(e = 0.05,d = 0). All discrete simulations were initiated with 1000 particles located at each lattice site.

For the uniform-to-uniform transition with k = 0 and 7(0) =
T(L) = 0, the solution of Eq. (8) can be written as

T(x)= A+ Be'’ +%, (12)
where
L L
A=——— B=— " (13)
Vier —1) Vier —1)

For the uniform-to-uniform transition with k = 0, V = 0 and
T(0) = T(L) = 0, the solution of Eq. (8) is given by Eq. (6).

Equations (10) and (12) explicitly show how the pro-
cesses of advection, diffusion, and reaction interact to give
a more complex spatial distribution of 7'(x) compared to
the simple form we obtained previously for diffusion only
[Eq. (6)].

To visualize the MAT for advection-diffusion-reaction
problems, we plot various numerical solutions of Eq. (7) in
Figs. 1(a), 1(c), and 1(e). These three solutions correspond
to diffusion-only, advection-diffusion, and diffusion-reaction
processes, respectively. In each case we consider a spatially
uniform initial condition, C(x,0) = 1, on a finite domain,
0 < x < 50. Homogeneous Dirichlet boundary conditions

are applied so that we have C(0,t) =0, C(50,7) =0, and
Coo(x) = 0. Numerical solutions of Eq. (7) are obtained using
a finite difference approximation, with central differences,
on a uniformly discretized domain with grid size §x [24].
A backward Euler method is used to march the numerical
solution forward in time with time increment §¢. The solutions
of Eq. (7), shown in Figs. 1(a), 1(c), and 1(e), clearly reflect
the differences in the processes in each case. In Fig. 1(a), with
diffusion only, we see that the transient solution is symmetric
about the center of the domain. In Fig. 1(c) with diffusion
and death, we see that the solution is also symmetric about
the center of the domain, except now the solution evolves
toward the steady state faster than the diffusion-only results
in Fig. 1(a); this difference is caused by the death term in
Eq. (7). The profiles in Fig. 1(e) clearly demonstrate the effect
of advective transport, since the profiles are asymmetric about
the center of the domain. This asymmetry is caused by the
advection flux, which acts to transport the density profile in
the positive x direction.

In addition to the numerical solutions of Eq. (7), we plot
the corresponding 7' (x) profile in Figs. 1(b), 1(d), and 1(f).
Figure 1(b) shows the T'(x) profile given by Eq. (6) which
we have discussed previously in Sec. [ A. Figure 1(d) shows
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the corresponding 7' (x) profile for the diffusion-death results
given by Eq. (10). We see that 7'(x) is symmetric about
the center of the domain and that for each fixed value of x
the MAT is smaller for the diffusion-death case compared
to the diffusion-only case in Fig. 1(b). This is intuitively
reasonable, since we know that the death term in Eq. (7) acts to
increase the rate at which the initial condition evolves toward
the steady-state profile, as we saw in the numerical profiles
given in Figs. 1(a) and 1(c). Figure 1(f) shows the MAT profile
for advection-diffusion transport given by Eq. (12), and here
we see that the MAT profile is asymmetric about the center
of the domain. This solution implies that regions near the
left-hand boundary take a longer time to evolve toward the
steady-state solution profile than regions near the right-hand
boundary.

III. INTERPRETATION OF MEAN ACTION TIME

In his original work, McNabb [15,16] motivated the idea
of MAT by first considering an ordinary differential equation
(ode) model of a linear death process,

dc
— = —kC, 14
” (14)

where k > 0 is the death rate. McNabb introduced the idea of
MAT by noting that the solution of Eq. (14), C(¢) = C (0)e ™,
takes an infinite amount of time to reach the theoretical steady-
state value and he showed that, according to Eq. (2), the MAT
for Eq. (14) is simply T = 1/k. McNabb commented that 1/
corresponds to the MPLT for this linear death process. Here
we aim to explore the relationship between MPLT and MAT
for spatially variable processes governed by a pde model rather
than a spatially invariant ode model.

A. Discrete random walk approach to evaluate the
mean particle lifetime

To explore the relationship between MAT and MPLT, we
introduce a stochastic random walk that is related to Eq. (7) and
aim to reproduce the continuum pde results in Fig. 1 using the
stochastic approach. To do this we consider a one-dimensional
lattice with lattice spacing A. Each lattice site is indexed i,
where i € Z™, so that the position of each lattice site is x =
i A. Agents can die, and do so with probability per unit time
d € [0,1]. Agents hop in the positive or negative x directions
with probability per unit time (1/2 + €).

To simulate the process we use a Gillespie algorithm [25].
We simulate the uniform-to-uniform transition problem in
Fig. 1 by setting A =1 so that we have a lattice with 51
sites. Each site is initially occupied with ny.x particles. As
the Gillespie algorithm proceeds, we remove any agent that
resides in the first (i = 1) and final (i = 51) lattice sites so that
the discrete algorithm mimics the effects of the homogeneous
Dirichlet boundary conditions imposed in Fig. 1. To extract
the approximate density profiles from the discrete algorithm,
we record the number of particles at the ith lattice site and
normalize with 7« to give

ne.y = 10D (15)
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where 7i(x,t) is the number of particles at the lattice site at
position x at time ¢.

Using standard arguments to relate the random walk model
to a pde description of the process [26-28], we expect that the
distribution of agents in the system will, on average, be related
to Eq. (7), where

2

D=1m —, V = lim 2Ae,

A—0 2 A—0 k= il{)l’})d (16)

To obtain a well-defined continuum limit, we must have the
motility bias and death rate decrease to zero as € = O(A)
and d = O(A?) [27-29]. On our lattice with A = 1, we have
D =1/2, V =2¢, and k = d, and our results in Figs. 1(a),
1(c), and 1(e) show that the solution of Eq. (7) matches the
discrete profiles of n(x,t) very well.

In addition to estimating the agent density profiles, we also
calculate the MPLT with the discrete random walk algorithm
by recording, for each lattice site i, the time taken for every
particle that originated at that particular site to leave the system,
either by moving out of one of the Dirichlet boundaries or
through a death event. To characterize the MPLT we consider
initiating a simulation with np, particles in each lattice site;
we then record the particle lifetime for all n,,x particles for
each lattice site. Averaging the particle lifetimes gives an
estimate of the MPLT:

l n max

> o), (17)

j=1

Ax) =

Nmax

where 7;(x) is the time taken for the jth particle that was
originally placed at position x to leave the system. Results
in Figs. 1(b), 1(d), and 1(f) compare the MAT and MPLT
for diffusion-only, diffusion-death, and advection-diffusion
processes, respectively. In all cases we see that there is a very
good correspondence between the continuum MAT profile and
the discrete MPLT profile, and this indicates that the MAT and
MPLT for these processes are identical. This observation is
consistent with McNabb’s conjecture about the equivalence of
MAT and MPLT for the linear death ode model [Eq. (14)].
Motivated by the comparison of MAT and MPLT in Fig. 1, we
will derive a mathematical expression for MPLT in Sec. III B.

B. Analytical estimate of the mean particle lifetime

Following [29,30], we now outline an argument that leads
to a boundary value problem describing the MPLT for a one-
dimensional biased random walk with death. We consider a
one-dimensional biased random walk on {0,A,2A, ... ,NA},
and suppose that we have absorbing boundaries at x = 0 and
x = NA. For this process, agents move left with probability
per unit time P;, agents move right with probability per unit
time P,, agents die with probability per unit time P,, such
that P, + P, + P; = 1. To estimate the MPLT, we develop an
expression describing the mean number of steps taken before
the particle leaves the domain.

Let E(7) be the average number of steps taken before being
absorbed at either boundary or dying, given that the random
walker starts at site ;. We derive an expression for E(i) by
conditioning on the first event being a jump in either direction
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or a death event:

E(@) = E(i|first event is a jump to the left) P,
+ E(i|first event is a jump to the right) P,
+ E(i|first event is death) P
=[1+EG+ DIP+[1+EG—-DIP +[1+E®O)]P,,
(18)
where we have used the boundary conditions E(0) = 0 and
E(N) =0 to give the final term in Eq. (18). We will now
convert this discrete statement into a continuum equation by

identifying the discrete lifetime, E(i), with the continuous
description E(x). Expanding in a truncated Taylor series,

AZ
E(x+A)=E(x)+ AE'(x)+ 7E”(x) +0(A%, (19
we combine Egs. (18) and (19) to obtain

AZ
—l=—-(Bi+ P)E"(0) + AP = PE'(x)

+(P + P — DE(x). (20)
Recalling that P, + P, + P; = 1, we can rewrite Eq. (20) as

E'() - LB () - By = -1, @1)
D D D
where
AZ
D= Jim S (B4 Py, V= Jim AP~ P
22)

k = lim P,.
A—0

For all our discrete simulations in Fig. 1 we had A =1,
P+ P =1,and P, — Pp=2esothat D =1/2and V = 2¢
in Eq. (21). Under these conditions the equation governing
the MPLT [Eq. (21)] is identical to the equation govern-
ing the MAT for a uniform-to-uniform transition [Eq. (8)
with f'(x) = f”(x) = 0]. The correspondence between the
governing equations for MPLT and MAT explains why the
computational estimates of MPLT in Figs. 1(b), 1(d), and
1(f) compared very well with the exact solution for the MAT.
These arguments also lead us to anticipate that the MAT and
MPLT for a nonuniform transition will not be equivalent. For
nonuniform transitions we have f’(x) #0 and f”(x) # 0,
which means that Eq. (8) is different from Eq. (21), and so
we expect that MAT and MPLT will no longer be equivalent
for these more general transitions.

C. Nonuniform transitions

All results presented in Fig. 1, as well as all previous results
considered by McNabb [15,16] and Landman and McGuinness
[17], correspond to a uniform-to-uniform transition. We note
that Berezhkovskii and co-workers were interested in a
uniform-to-nonuniform transition, and here we extend the
application of MAT to more general problems that will provide
further insight into our physical interpretation of MAT.

1. Nonuniform-to-uniform transition

We first consider the same geometry and boundary condi-
tions used for the problems in Fig. 1, except now we impose
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a different initial condition, Cy(x) = x /L, which leads to the
trivial steady-state solution Cyo(x) = 0. To demonstrate the
key effects of the nonuniform-to-uniform transition, we will
consider linear diffusion [V = k = 0 in Eq. (7)] and note that
our analysis can be extended to consider advective transport
or the linear death term if necessary. Under these conditions,
Eq. (8) simplifies to
2T'(x) 1
=5
At x = L, our choice of boundary conditions and initial
conditions in the pde means that we must have T(L) = 0.
Given that we expect 7'(x) to remain finite on the entire
domain, Eq. (23) implies the other condition must be 7'(0) =
0, and thus the solution is

T"(x) + (23)

L2 _ )C2
6D

We note that, unlike the uniform-to-uniform diffusion-only
problem [Eq. (6)], T'(x) for the nonuniform-to-uniform transi-
tion is asymmetric about the center of the domain.

We present a suite of continuum and discrete results for
the nonuniform-to-uniform transition problem in Figs. 2(a)
and 2(b). In Fig. 2(a) we solve the linear diffusion equation
[Eq.(7)withV =k =0]on0 < x < 50with C(x,0) = x/50,
C(0,r) =0, and C(50,¢) = 0. Equivalent results from the
discrete random walk algorithm are superimposed, and we
observe an excellent match between the continuum density
solutions and the discrete random walk results. In Fig. 2(b) we
present the exact solution for the MAT [Eq. (24)] as well as the
MPLT solution from the random walk algorithm. Unlike the
results in Fig. 1, here we see that the MAT is not equivalent to
the MPLT for this problem.

To provide an additional check on Eq. (24), we generate
a numerical approximation of MAT directly from Eq. (2) by
numerically approximating the improper integrals. We use our
finite difference code that generates the numerical solution
of Eq. (7). To do this we approximate Eq. (2) with a similar
expression by using

T(x)/l IC(x,1) — Coo(x)] dr
0

T(x)=

(24)

Jat

_ /’t3[C(x,t)—Coo(X)] ar.
0 ot

where we have replaced the upper integration limit with a large,
but finite, value #;. We then approximate the proper integrals
in Eq. (25) using the trapezoid rule. We computed 7 (x) using
Eq. (25) with a careful choice of #; = 10000. We chose this
particular value of #; by performing a number of numerical
computations where we systematically increased the value of
#; until we observed that the T'(x) profile converged as #; was
chosen to be sufficiently large. A numerical approximation of
T (x) is included in Fig. 2(b), and we see that it is identical to
the profile given by Eq. (24).

We remark that the difference between the MPLT and
MAT in Fig. 2(b) had been anticipated previously, since the
equation governing the MPLT [Eq. (21)] does not depend on
the initial configuration of the agents on the lattice whereas
the equation governing the MAT [Eq. (8)] depends on the
initial condition Cy(x). This difference explains why the

(25)
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FIG. 2. (Color online) MAT for linear diffusion associated with a nonuniform-to-uniform transition in (a, b) and a uniform-to-nonuniform
transition in (c, d). All results are on the finite domain 0 < x < 50. Results in (a) correspond to diffusion-only (D = 0.5,V = 0,k = 0) with
Co(x) = x/50, C(0,t) =0, C(50,t) = 0, and Coo(x) = 0. Numerical solutions of Eq. (7) are given in red (dashed) and are superimposed on
the corresponding discrete profile, n(x,t), shown in blue (solid). Results in (b) show the exact solution for 7'(x) in red (dashed), a numerical
approximation of Eq. (2) in green (dotted), and the MPLT in blue (solid) that was calculated using the stochastic random walk algorithm.
Results in (c) correspond to diffusion-only (D = 0.5,V = 0,k = 0) with Co(x) = 1, C(0,¢) = 0, C(50,¢) = 1, and Coo(x) = x/50. Numerical
solutions of Eq. (7) are given in red (dashed) and are superimposed on the corresponding discrete profile, n(x,z), shown in blue (solid). Results
in (d) show the exact solution for 7 (x) in red (dashed) and a numerical approximation of Eq. (2) in green (dotted). All numerical results
are obtained using the same technique outlined in the main text with éx = 0.025 and variable &z, with 1 x 1075 < &t < 1. The stochastic
random walk algorithm was implemented on a one-dimensional lattice with A = 1. All discrete results correspond to (¢ = 0,d = 0), discrete
simulations in (a, b) were initiated by placing 200i particles at the ith lattice site, whereas the discrete results in (c, d) were initiated by placing

1000 particles at each lattice site.

exact solution for the MAT does not compare well with
the computational estimate of MPLT in Fig. 2. In fact,
we see that the computational estimates of the MPLT for
the nonuniform-to-uniform transition in Fig. 2(b) appears
to be equivalent to the computational estimates of the MPLT
for the uniform-to-uniform transition in Fig. 1(b). This is
consistent with Eq. (21), which shows that the MPLT is
independent of the initial distribution of agents on the lattice.
We note that our continuum-discrete comparisons in Figs. 1
and 2 were motivated by McNabb’s conjecture that MAT and
MPLT were identical for a linear decay ode model. A very
recent study presented a similar discrete approach to interpret
LAT in terms of first passage times [10,31] but did not consider
the relationship between MPLT and MAT.

In summary, the results in Fig. 2(b) indicate that MAT
and MPLT for the nonuniform-to-uniform problem are not
equivalent. This observation is of interest, since McNabb’s
original work was motivated by noting that the MAT for the
linear death ode [Eq. (14)] was equivalent to the MPLT. Our
results in Fig. 1 for the uniform-to-uniform transition problem
corroborate McNabb’s observations; however, our results for
the nonuniform-to-uniform problem in Fig. 2(b) indicate that
the MAT and MPLT are not always equivalent.

2. Uniform-to-nonuniform transition

To compliment the results in Sect. [II C1, we now consider
the same initial condition used in Fig. 1, except we impose
different boundary conditions, given by C(0,) =0 and
C(L,t) = 1. Considering diffusion [V =k =0 in Eq. (7)],
we obtain a nonuniform steady state, C(x) = x /L. For these

conditions, Eq. (8) simplifies to

2T (x) 1
T” — = ——. 26
W+ o0 =D (26)
At x =0, our choice of boundary conditions and initial
conditions in the pde means that we must have 7(0) = 0,
while the condition that T'(x) remains finite gives 7'(L) = 0.
Thus, the solution of Eq. (26) is

T(x)= — 7. 27)

As before, we see that T(x) for the uniform-to-nonuniform
transition is asymmetric about the center of the domain.
We present a suite of continuum and discrete results for
the uniform-to-nonuniform transition problem in Figs. 2(c)
and 2(d). In Fig. 2(c) we solve the linear diffusion equation
[Eq. (7) with V =k =0] with C(x,0)=1 on 0 < x < 50
with C(0,t) = 0 and C(50,¢) = 1. Equivalent results from the
discrete random walk algorithm are superimposed and show
that we have an excellent match between the continuum density
solutions and the discrete random walk results. In Fig. 2(d) we
present the exact solution for the MAT [Eq. (27)] as well as
the numerical approximation of 7' (x) evaluated using Eq. (25).
The two profiles in Fig. 2(d) are indistinguishable, which
confirms that Eq. (27) accurately predicts the MAT for this
problem.

We did not use the random walk algorithm to compute
the MPLT for the uniform-to-nonuniform problem. For all
previous cases considered in this work, we always had the
same trivial steady-state solution, Coo(x) = 0. Under these
conditions, we expect that if we run the corresponding
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discrete algorithm for a sufficiently long period of time, then
eventually all agents will have left the system so that it is
straightforward to compute the particle lifetime using Eq. (17).
For the uniform-to-nonuniform transition problem, we have
Coo(x) = x/L, which means that as the discrete algorithm
proceeds, there is always a finite number of agents remaining in
the system for all time and we cannot evaluate the MPLT with
Eq. (17) like we did in the simpler cases for which C(x) = 0.

3. More general transitions

Results in Figs. 1 and 2 correspond to relatively straightfor-
ward transitions for which Cy(x) and C.(x) are either constant
or linear functions of x. Here we provide further results for

X
T(x) =

PHYSICAL REVIEW E 85, 041135 (2012)

a more detailed problem with a different steady-state profile.
To do this we consider Eq. (7) with V=0on 0 < x < L,
with dC/dx =0 at x =0 and C(L,t) = 1. This particular
problem is frequently encountered in the chemical engineering
literature as a model of a chemical reaction in a porous
catalyst [32-34]. The steady-state solution is given by

Col) = cosh (X«/k/D) 28)

cosh (L«/k/D) '
We now evaluate the MAT for two initial conditions:
(1) Co(x) = 0 and (2) Co(x) = 1. With appropriate boundary
conditions, 7'(0) = 0 and T (L) = 0, the MAT for the transi-
tion from Cy(x) = 0 to Eq. (28) is given by

X L(exp[2L/k/D] — 1)

DJ&/D(1 + exp[2x/k/D]) 2DJk/D +

DJk/D(exp[2x/k/D] + 1)’ 29)

With an appropriate Robin boundary condition, —2./D/k tanh(L+/k/D)T’(L) = T (L), the MAT for the transition from Cy(x) =

1 to Eq. (28) is given by

T(x)=

Results for Co(x) = 0 [Figs. 3(a) and 3(b)] show a transient
evolution, C(x,?), that accumulates toward the steady-state
profile. This behavior is very similar to the examples studied
by Berezhkovskii and co-workers [7-9], which led them to
call their definition t(x) the local accumulation time, since
it gives a measure of the amount of time that it takes the
transient profile to accumulate toward the steady-state solution.
Conversely, results for Co(x) = 1 [Figs. 3(c) and 3(d)] involve
a transient solution, C(x,t), that decays toward the steady-
state profile. This behavior is qualitatively the opposite of the
accumulation-type behavior studied by Berezhkovskii and co-
workers [7-9]. Despite these differences, our results show that
the relevant solutions of Eq. (8) and the numerical evaluation
of T(x), using Eq. (25) with t; = 10 000, are equivalent. These
additional results illustrate the generality of MAT, showing that
it can be applied to more detailed transitions that are associated
with both accumulation-like and decay-like transient behavior.

IV. PRACTICAL APPLICATION OF MEAN ACTION TIME

In addition to proposing the concept of LAT, Berezhkovskii
introduced a relatively straightforward approximation
whereby he used 7' (x) to approximate the solution of the
underlying pde model. Berezhkovskii [7] introduced the
following equality:

T(X)Z/mwdb/we*% dr. (1)
0 Co(x)_coo(x) 0

Motivated by Eq. (31), Berezhkovskii assumed that the
integrands in Eq. (31) are approximately equal. This gives

C(x,t) ~ Coo(x)(1 — e T) + Co(x)e 7. (32)

L sinh(L+/k/D)cosh(xy/k/D) — x sinh(x+/k/D) cosh(L+/k/D) 1
2D /k/D cosh(L\/k/D)[cosh(x\/k/D) — cosh(L+/k/D)] + k’

(30)

We will examine the effectiveness of Berezhkovskii’s approx-
imation by revisiting the problems previously considered in
Fig. 1. To provide additional insight into these problems, we
solve Eq. (7) on 0 < x < L, with C(x,0) =1 and C(0,¢t) =
C(L,t) = 0, using separation of variables and Fourier series
and obtain

c 871D2(1+e%) (x7
(x.1) |:(VL)2+(271D)2:|SIH<T)

ve o _xipe w2 g,
xXewe 12 e e as

t — 00, (33)

We call Eq. (33) the leading eigenvalue approximation [13],
and we note that this approximation corresponds to retaining
the first term in the series solution.

Results in Fig. 4 consider a suite of uniform-to-uniform
transitions that correspond with those results presented in
Fig. 1 for diffusion-only, diffusion-death, and advection-
diffusion, respectively. In Fig. 4 we compare the numerical
solutions for C(x,t) with the two approximations given by
Egs. (32) and (33). Profiles are compared for two fixed values
of x (x = 10 and x = 25), and in each subfigure we show the
corresponding value of T'(x) associated with that particular
problem. In all cases we see that the numerical solution of
the full problem can be approximated very accurately by
the leading eigenvalue approximation for sufficiently large
values of ¢, as expected. Similar to Berezhkovskii [7], we
observe that the accuracy of the approximate exponential
decay solution, given by Eq. (32), is problem dependent and
parameter dependent. For example, with the diffusion-death
results in Figs. 4(c) and 4(d) [Eq. (7) with V = 0], we see that
Berezhkovskii’s approximate exponential solution provides
an excellent approximation to the full numerical solutions
for all values of ¢ considered, whereas the diffusion-only
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FIG. 3. (Color online) MAT for linear diffusion reaction (D = 0.5,V = 0,k = 0.005) on 0 < x < 50, with dC/dx =0 at x =0 and
C(50,t) = 1. The solution evolves to Coo(x) = cosh(x+/k/D)/ cosh(504/k/D). Results in (a, b) correspond to Cy(x) = 0 (accumulation), and
results in (c, d) correspond to Cy(x) = 1 (decay). Numerical solutions of Eq. (7), C(x,t), are given in red (dashed) in (a) and (c) at t = 150
and r = 500, as indicated. Discrete density profiles from the stochastic random walk model, n(x,t), are shown in blue (solid) in (a) and (c)
at t = 150 and ¢ = 500. Results in (b) and (d) show the exact solution for 7'(x) in red (dashed) and a numerical approximation of Eq. (2) in
green (dotted). All numerical results are obtained using the same technique outlined in the main text with éx = 0.025 and variable ¢, with
1 x 107° < 8¢ < 1. The stochastic random walk algorithm was implemented with € = 0 and d = 0.005 on a one-dimensional lattice with
A = 1. Discrete simulations in (a) were initiated with zero particles located at each lattice site, while discrete simulations in (c) were initiated

with 1000 particles located at each lattice site.

results in Figs. 4(a) and 4(b) [Eq. (7) with V =k =0]
indicate that Berezhkovskii’s exponential solution is a poor
approximation to the true solution. It is difficult to draw
specific conclusions about the usefulness of Berezhkovskii’s
approximation, since we know that the assumptions leading to
Eq. (32) are approximate only.

We note in passing that, given the leading eigenvalue term
in Eq. (33), we can approximate the MAT using Eq. (3) to give

-1 8 (1+ e%)
) |:(VL/D)2 +(27T)2}
X sin (%)ezvl;. (34)

In a similar fashion to the argument just given, Eq. (34)
can provide a reasonable approximation for certain parameter
values. Further, by defining the Péclet numberasPe = VL/D,
the simplified expression for MAT [Eq. (34)] neatly shows how
MAT can be related to the three important time scales in the
problem: namely, the diffusive time scale t;, = (D/L?)""; the
advective time scale 4 = (V2/D)™!Pe; and the reaction time
scale rg = k~!. This highlights that 7, dominates (is smaller)
when t4 and ty are large. However, it is important to emphasize
that the derivation of Eq. (34), and derivations of similar
approximations for other critical times [11-13], requires prior
knowledge of the full solution of the underlying pde model.
On the other hand, the use of MAT has the significant benefit
that we are able to compute the MAT without solving the
underlying pde model.

V. NONLINEAR DECAY

To extend the practical application of the concept of MAT,
it is instructive to consider a more general problem with a

nonlinear source term:

ac 9*C _aC
= —V— —kC",

Z_p_= 0 L, 35
ot dx2 ox =r= (35)

where n > (is the order of the reaction. This kind of nonlinear
advection-diffusion-reaction model is frequently encountered
in many areas of physical sciences, including modeling chemi-
cal reaction processes in a catalyst [32-35], gas-solid reactions
[36,37], and combustion [38]. This nonlinear decay term is also
associated with surface reactions, such as adsorption [39,40]
that are important in modeling bioremediation processes and
contaminant transport in aquifers [41]. Studying Eq. (35) will
allow us to show how the traditional definitions of MAT
(and LAT) cannot, in general, be applied directly to nonlinear
transport equations. Nonetheless, the insight we developed by
considering linear problems will allow us to develop useful
approximations of 7T'(x) for Eq. (35).

For a uniform-to-uniform transition, the boundary value
problem for T'(x) can be written as

T +VT’ —k/OOC” tdt——1 36
(X)B(X)BO (x,)—B- (36)

As it stands, we cannot solve Eq. (36) since the governing
equation for 7' (x) depends explicitly on fooo C(x,t)" dt. How-
ever, we know that Eq. (31) is exact, and thus proceed by
making the assumption

o0 o0 nt T
/ C'(x,t)dr ~ / e 7Tdt = ﬂ (37)
0 0 n

which allows us to approximate Eq. (36) by

T" VT/ k Tx)= ! 38
W+ TW = TW =5 ()
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FIG. 4. (Color online) Profiles in (a, b), (c, d), and (e, f) compare a numerical solution of Eq. (7) shown in blue (solid), an approximate
MAT solution given by Eq. (32) shown in red (dashed), and the leading eigenvalue solution given by Eq. (33) shown in green (dotted) for
a suite of uniform-to-uniform transitions involving diffusion-only, diffusion-death, and advection-diffusion processes, respectively. For all
problems we consider an initial condition Cyp(x) = 1 on 0 < x < 50, with C(0,7) = 0 and C(50,7) = 0 giving C.(x) = 0. The diffusion-only
results in (a, b) correspond to (D = 0.5,V = 0,k = 0), the diffusion-death results in (c, d) correspond to (D = 0.5,V = 0,k = 0.005), and the
advection-diffusion results in (e, f) correspond to (D = 0.5,V = 0.1,k = 0). Profiles in (a), (c), and (e) compare the three solutions at position
x = 10, while profiles in (b), (d), and (f) compare the three solutions at position x = 25. The corresponding value of 7T'(x) is shown with a
vertical line in all subfigures. Numerical results are obtained using the same technique outlined in the main text with 6x = 0.05 and 6¢ = 0.1.

With the appropriate boundary conditions for Eq. (36), T(0) =
T (L) = 0, the solution can be written as

T(x) = A" + Be" ¥ + % (39)
where
1% Vv\* &k nem L —1)
+
=+ (55) +—= A=——r.
Y) (20) Y k(en' L —em L)
(40)

n(l —em'l)y
= k(em+L _ errrL)'

We examine the effectiveness of our approximate solution for
T (x) for Eq. (35) in Fig. 5 on 0 < x < 50 with C(0,¢) =0,
C(50,t) =0, Co(x) = 1, and Cxo(x) = 0. Numerical solutions
of Eq. (35) are obtained with the same finite difference
algorithm used for the linear problem, except that Picard
linearization, with an absolute convergence tolerance of
1 x 107, is used to solve the resulting systems of nonlinear
equations [24]. Numerical solutions of Eq. (35) are shown
in Figs. 5(a), 5(c), 5(e), and 5(g), where we see that the
profiles evolve toward Cy(x) = O faster as n decreases, as
expected. Results in Figs. 5(b), 5(d), 5(f), and 5(h) compare the
solution of the approximate equation for 7' (x) [Eq. (39)] with a
numerical approximation of the exact expression [Eq. (2)]. In
accordance with our observations about the transient solution,
we see that the MAT increases with n. Furthermore, we see

that our approximate expression for the MAT gives an exact
result when n = 1, as expected. More importantly, we obtain a
good approximation when the governing equation is nonlinear
and n # 1. We see that our approximation is an underestimate
of the true MAT and that the accuracy of the approximation
depends on n, since the profile for n = 2 is more accurate than
the profile with n = 3.

VI. DISCUSSION AND CONCLUSION

Estimating the critical time of a particular advection-
diffusion-reaction process is fundamental for many applica-
tions in the physical sciences. In 2010-2011 Berezhkovskii
introduced the concept of LAT to provide an estimate of the
time required for a morphogen gradient to develop by studying
the solution of a reaction-diffusion equation in the context of
the development of the drosophila wing disk [7-9]. In our
work, we have reexamined Berezhkovskii’s recent definition of
LAT and shown that it is identical to McNabb’s 1991 definition
of MAT. Previous analyses of MAT have been limited to
diffusive systems, and we have extended these previous studies
by considering the MAT for a general one-dimensional linear
advection-diffusion-reaction equation. Therefore, our work
can be used to estimate the critical time for a general linear
advection-diffusion-reaction process.

Our work was motivated, in part, by seeking to provide
physical insight into the meaning of MAT. We note that

041135-10



CRITICAL TIME SCALES FOR ADVECTION-DIFFUSION- ...

n=1/2 |
e | 1=150
PPt =250 = -
(@0mezilomem=g-=m=o7= 5 =rn vl
0 X 50
1 ‘
n=1
cxh [ =150
e T T ~——
st e T t=250 ~ T T~ ~. s
(C)OO A | | | ~~.50
X
1 ‘
n=2
t=150
et emmmmmmmeel
LT t=250 Tt~ .
0Le®7T N hhe
©°% X 50
1 ‘
n=3
=150
cx.h et T LIIITI -
At =250 Tl
i T
9% X 50

PHYSICAL REVIEW E 85, 041135 (2012)

n=1/2 |

e e
-

n=1

- ~ -

n=3

FIG. 5. (Color online) MAT for nonlinear diffusion reaction [Eq. (35) with D = 0.5,V = 0,k = 0.005] for a uniform-to-uniform transition
on 0 < x < 50 with C(0,7) =0, C(50,¢) =0, Co(x) = 1, and C(x) = 0. Results in (a, b), (c, d), (e, f), and (g, h) are for n = 1/2,1,2,3,
respectively. Profiles in the left column show the solution of Eq. (35) at t = 150 and ¢ = 250, as indicated. Results in the right column show
the exact solution of the approximate model for the nonlinear MAT in red (dashed) and a numerical approximation of Eq. (2) in green (dotted).
All numerical results are obtained using the same technique outlined in the main text with x = 0.05 and variable 8¢ with 1 x 107> < 8¢ < 1.
The numerical solution of Eq. (35) is obtained with Picard linearization with absolute convergence tolerance 1 x 1075,

McNabb introduced the concept of MAT by considering a
simple linear ode model [Eq. (14)] and he stated that the MAT
for this model corresponds to the MPLT for the underlying
stochastic death process. To build on this initial work, we
further explored the connection between MAT and MPLT
by examining the relationship between MAT and MPLT for
a range of spatial linear transport problems governed by
a linear advection-diffusion-reaction equation. We used a
combination of continuum and discrete approaches to study
the MAT and MPLT for both uniform-to-uniform transitions
and nonuniform transitions. In all cases, including diffusive
transport, combined diffusion-death processes, and combined
diffusion-advection transport, our results indicate that the
MAT and MPLT are identical only for uniform-to-uniform
transitions. Our work shows that MAT and MPLT are not
equivalent for more general nonuniform transitions.

We sought to examine an approximation introduced by
Berezhkovskii [7] where the exact solution of a pde model
was approximated by an exponential solution based on the
MAT. Comparing Berezhkovskii’s exponential solution, a
leading eigenvalue approximate solution and the full numerical
solution for several uniform-to-uniform transition problems
shows that the accuracy of Berezhkovskii’s exponential so-
lution is problem dependent. This observation means that
it is difficult to distinguish between situations where the
exponential solution provides a useful approximation from
other situations where the exponential solution is a poor
approximation.

Most of the analysis presented in our work is relevant for
the linear advection-diffusion-reaction equation. Evaluating

the MAT for a linear process is greatly simplified because
the boundary value problem for the MAT does not explicitly
depend on the solution of the underlying linear equation.
Of course, estimating critical times for nonlinear advection-
diffusion-reaction processes is also of great interest across
many disciplines in the physical sciences. Calculating the
MAT for a nonlinear equation is more challenging, since
the boundary value problem for the MAT depends explicitly
on the solution of the underlying nonlinear equation. While
this complication does not impede a numerical approximation
of the MAT, to provide analytical insight some approxi-
mation must be introduced. We address this by proposing
an approximate boundary value problem for 7'(x) when the
decay term is nonlinear. Exact solutions of the approximate
boundary value problem are presented, and we show that
these solutions provide a simple and useful approximation to
the numerical MAT profile that was generated using the exact
governing equations without any assumptions. Our future work
aims to develop additional approximations and to apply them
to physical processes that are governed by other nonlinear
advection-diffusion-reaction equations.
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