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Nonequilibrium thermodynamics. III. Generalization of Maxwell, Clausius-Clapeyron, and
response-function relations, and the Prigogine-Defay ratio for systems in internal equilibrium
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We follow the consequences of internal equilibrium in nonequilibrium systems that has been introduced
recently [Gujrati, Phys. Rev. E 81, 051130 (2010) and 85, 041128 (2012)] to obtain the generalization of the
Maxwell relation and the Clausius-Clapeyron relation that are normally given for equilibrium systems. The use of
Jacobians allows for a more compact way to address the generalized Maxwell relations in the presence of internal
variables. The Clausius-Clapeyron relation in the subspace of observables shows not only the nonequilibrium
modification but also the modification due to internal variables that play a dominant role in glasses to which we
apply the above relations. Real systems do not directly turn into glasses (GL) that are frozen structures from
the supercooled liquid state L; there is an intermediate state (gL) where the internal variables are not frozen.
A system possesses several kinds of glass transitions, some conventional (L→gL; gL→GL) in which the state
changes continuously and the transition mimics a continuous or second-order transition, and some apparent
(L→gL; L→GL) in which the free energies are discontinuous so that the transition appears as a zeroth-order
transition, as discussed in the text. We evaluate the Prigogine-Defay ratio � in the subspace of the observables
at these transitions. We find that it is normally different from 1, except at the conventional transition L→gL,
where � = 1.
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I. INTRODUCTION

In recent papers [1–5], we have developed a nonequilibrium
thermodynamics based on the concept of internal equilibrium
within a macroscopic system � surrounded by an extremely
large medium �̃; the two form an isolated system �0 as shown
in Fig. 1. We restrict our attention to a system with energy E,
volume V , and number of particles N as the observables and,
for simplicity, do not allow any relative motion between the
system and the medium. While it is not necessary, we will also
include an extensive internal variable ξ for generality. The ob-
servables and internal variables collectively represent the state
variables [3] of the system. In general, the fields such as the
temperature T (t), the pressure P (t), etc., of the system are dif-
ferent from the corresponding temperature T0, the pressure P0,
etc., of the medium as the system approaches equilibrium;
see also Bouchbinder and Langer [6]. The differences in the
fields give rise to thermodynamic forces driving the system
toward equilibrium with the medium. Unfortunately, one such
difference, the difference between T (t) and T0, is normally not
accounted for in the literature in many cases, especially when
dealing with glasses, where the thermal force T (t) − T0 plays
an important role during relaxation and entropy generation in
isobaric processes [1,5]. We will overcome this shortcoming
and carefully account for the consequences of this thermo-
dynamic force in addition to following the consequences of
internal equilibrium in this work as discussed below. As an
application, we study glass transition, which is historically
treated as a transition between a liquid and an amorphous solid.
Unfortunately, it is common in the literature to overlook the
important fact that the liquid and solid states are not contiguous
(see below). Therefore, their free energies have a discontinuity
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at the transition temperature, which makes the transition a
zeroth-order transition and not a continuous transition as is
commonly believed. This, to the best of our knowledge, has
not been pointed out in the glass field. Thus, our work provides
a paradigm shift in the field of glass transition.

The formal similarity between the internal equilibrium and
equilibrium as discussed in Ref. [3] strongly suggests that there
may exist analogs of the Maxwell relations or other important
relations [7] for a system that, although not in equilibrium with
the medium, is in internal equilibrium; see [8–10] for other
approaches. The situation is somewhat complicated as there
are two distinct sets of fields and affinity related to the system
and the medium, respectively, and it is not clear which set
will appear in the nonequilibrium Maxwell relations if the
latter exist at all.

Our aim, accordingly, is to seek the generalization of the
Maxwell relations, the Clausius-Clapeyron relation, and the
relations between response functions for nonequilibrium states
in the presence of thermodynamic forces. These extensions
will play an important role in the study of nonequilibrium
systems that are nonetheless in internal equilibrium. We find
Jacobians [11–14] to be quite useful. Therefore, we introduce
Jacobians and their important properties in Appendices A–C.
This discussion is somewhat technical, but we provide most
of the required details so that the clarity of presentation is not
compromised. An important part of this discussion is to show
that the Jacobians can be manipulated in a straightforward
manner even in a subspace of the variables associated with
observables as discussed in Appendix C because observations
require manipulating the observables and not the internal
variables. Thermodynamic potentials and other useful func-
tions for nonequilibrium states are introduced in Sec. II. We
develop the generalization of the Maxwell relations in Sec. III.
We discuss the generalization of the Clausius-Clapeyron
relation in Sec. IV, where we also discuss the conditions
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System Σ :T t( ),P t( ),..
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FIG. 1. (Color online) Schematic representation of a system �

and the medium �̃ surrounding it to form an isolated system �0. The
medium is described by its fields T0,P0, etc., while the system, if in
internal equilibrium (see text), is characterized by T (t),P (t), etc.

for phase transitions in nonequilibrium states. The response
functions such as the heat capacities, compressibilities, and
expansion coefficients and the various relations among them
are developed in Sec. V. As an application, we study the
evaluation of the Prigogine-Defay ratio in glasses in this work.
Therefore, we briefly discuss what is customarily called a
glass and the associated glass transition in Sec. VI. A careful
discussion shows that the term does not refer to one single
transition; rather, it can refer to different kinds of transitions,
some of which appear similar to the conventional transitions in
equilibrium, but others refer to apparent transitions where the
Gibbs free energy cannot be continuous. The Prigogine-Defay
ratio are evaluated at various possible glass transitions in
Sec. VII. We also compare our approach with some of the
existing approaches for the ratio. The last section contains a
brief summary of our results.

II. INTERNAL EQUILIBRIUM THERMODYNAMICS

We will no longer exhibit the time dependence in the
variables for the sake of notational simplicity. We rewrite
the Gibbs fundamental relation for the system in internal
equilibrium

dE = T dS − PdV + μdN − Adξ, (1)

with its fields and affinity, to be collectively called fields in the
following for simplicity, given by

β ≡ 1/T = ∂S/∂E, βP = ∂S/∂V,
(2)

βμ = −∂S/∂N, βA = ∂S/∂ξ,

to show the thermodynamic forces and the resulting irre-
versible contributions explicitly

dE = T0dS − P0dV + (T − T0)dS − (P − P0)dV − Adξ,

(3)

that are described by the last three terms. Recall that the
affinity of the medium is A0 = 0 [3]. In equilibrium, the
thermodynamic forces vanish and we have

T0dSeq = dEeq + P0dVeq − μ0dNeq, (4)

where the extensive quantities are shown by the additional
subscript “eq.” The following equilibrium Maxwell relations,

see for example [7], follow from Eq. (4):

(∂T0/∂Veq)Seq,N = −(∂P0/∂Seq)Veq,N ,

(∂T0/∂P0)Seq,N = (∂Veq/∂Seq)P0,N ,
(5)

(∂P0/∂T0)Veq,N = (∂Seq/∂Veq)T0,N ,

(∂Seq/∂P0)T0,N = −(∂Veq/∂T0)P0,N ,

and represent the equality of two partial derivatives. In the
following, we will not explicitly show the additional subscript
“eq” for equilibrium quantities unless clarity is needed. In
equilibrium, ξ becomes a function of the observables and is
not needed.

It is now easy to see that

dH =T0dS + V dP0 + (T − T0)dS − (P − P0)dV − Adξ,

dF =−SdT0 − P0dV + (T − T0)dS − (P − P0)dV − Adξ,

dG=−SdT0 + V dP0 + (T − T0)dS − (P − P0)dV − Adξ,

(6)

where H = E + P0V, F = E − T0S, and G = E − T0S +
P0V . These potentials correspond to ξ as an independent
variable of the potential and have the property that they
continuously decrease as the system approaches equilibrium
[1]. The functions Ĥ = E + PV, F̂ = E − T S, and Ĝ =
E − T S + PV , instead, use the fields of the system but lack
the latter property and cannot be identified as thermodynamic
potentials. One can make a transformation of these functions
to functions in which the conjugate field A0 or A is the
independent variable:

QA0 = Q + A0ξ, Q̂A = Q + Aξ,

where Q = E,H,F , or G. However, as is well known, A0 = 0;
see for example [3]. Thus, there is no difference in the values
of the two potentials Q and QA0 . The functions Q̂A change
with A, but also do not represent potentials. In this regard, our
approach is different from other nonequilibrium approaches
[8–10].

III. MAXWELL RELATIONS FOR SYSTEMS
IN INTERNAL EQUILIBRIUM

A. Equilibrium compact Maxwell relation

Before proceeding with our general discussion, we consider
equilibrium Maxwell relations and point out a very important
consequence of the use of the Jacobians. Using the Jacobians,
the four Maxwell relations in Eq. (5) can be simply written as

∂(T0,S,N )/∂(α,β,N ) = ∂(P0,V ,N )/∂(α,β,N ), (7)

where the pair (α,β) stands for the following nonconjugate
pairs: (V,S),(P0,S),(T0,V ), or (P0,T0). All four Maxwell
relations use the same numerators ∂(T0,S,N ) and ∂(P0,V ,N )
containing conjugate pairs (T0,S) and (P0,V ). Thus, they can
all be combined into a single compact Maxwell relation con-
taining conjugate pairs obtained by suppressing the common
denominator on the two sides:

∂(T0,S,N ) ≡ ∂(P0,V ,N ). (8)

Here, the compact relation only has a meaning if each
side is divided by some common denominator such as
∂(V,S,N ),∂(P0,S,N ),∂(T0,V ,N ), and ∂(P0,T0,N ) on both
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sides. In the following we will call a compact Maxwell relation
simply as a Maxwell relation if there is no possibility of any
confusion. This relation is equivalent to the following identity:

∂(T0,S,N )/∂(P0,V ,N ) ≡ 1. (9)

From now on, we will always consider the case of a constant
N , which will no longer be exhibited below for simplicity of
notation.

B. Internal equilibrium Maxwell relations

The field parameters that appear in the equilibrium Maxwell
relation are the fields T0,P0 of the medium, which because of
equilibrium also represent the fields of the system. For a system
in internal equilibrium, there are analogs of the Maxwell
relations for systems in terms of system variables by replacing
all the variables in Eq. (5) by corresponding system variables
∂(T ,S) ≡ ∂(P,V ). In the presence of the internal variable
ξ , this Maxwell relation is written as ∂(T ,S,ξ ) ≡ ∂(P,V,ξ ).
However, as we establish below, there are six different compact
Maxwell relations formed by the conjugate pairs (T ,S),(P,V ),
and (A,ξ ). The first three are

∂(T ,S,ξ ) ≡ ∂(P,V,ξ ), ∂(T ,S,V ) ≡ ∂(A,ξ,V ),
(10)

∂(P,V,S) ≡ −∂(A,ξ,S);

the variable common on both sides is held fixed. The remaining
three relations are obtained by replacing the constant extensive
variable by its conjugate system field or affinity:

∂(T ,S,A) ≡ ∂(P,V,A), ∂(T ,S,P ) ≡ ∂(A,ξ,P ),
(11)

∂(P,V,T ) ≡ −∂(A,ξ,T ).

We can obtain all possible Maxwell relations similar to those
in Eq. (7) but involving system variables by dividing each one
in Eq. (10) by appropriate denominators such as ∂(S,V,ξ ),
∂(T ,V,ξ ),∂(S,P,ξ ), and ∂(T ,P,ξ ). This will become clear
below. As the fields in the last three denominators correspond
to the system, the resulting Maxwell relations are not very
useful or interesting as the fields under our control in an
experiment are those of the medium. We will show below
that Maxwell relations are also found when we use fields of
the medium in the denominators. Indeed, the denominators can
be formed by picking any two of the nonconjugate variables
in the set

D : S,V,ξ,T ,P,A,T0,P0;

the third variable is the one kept fixed in Eqs. (10) and (11).
Note the absence of A0.

It follows immediately from Eq. (1) and (∂2E/∂S∂V )ξ =
(∂2E/∂V ∂S)ξ that

∂(T ,S,ξ )/∂(S,V,ξ ) = ∂(P,V,ξ )/∂(S,V,ξ ).

The corresponding compact Maxwell relation is ∂(T ,S,ξ ) =
∂(P,V,ξ ). The variables S,V,ξ in the denominator belong to
D and are also the independent variables of E. It follows
from the property of Jacobians that one can now divide
each side by the same denominator formed from D. One
can divide by ∂(T ,V,ξ ),∂(S,P,ξ ), and ∂(T ,P,ξ )T , which
use the natural variables of F̂ ,Ĥ , and Ĝ to obtain the
four Maxwell relations at fixed ξ . We can also divide by

∂(T0,V ,ξ ),∂(S,P0,ξ ), and ∂(T0,P0,ξ ) using the independent
variables of the thermodynamic potentials F,H , and G.
We will demonstrate the validity of only one of these by
considering the differential dG in Eq. (6) and evaluating
the cross derivative (∂2G/∂P0∂T0)ξ ≡ (∂2G/∂T0∂P0)ξ to
find ∂(T ,S,ξ )/∂(T0,P0,ξ ) = ∂(P,V,ξ )/∂(T0,P0,ξ ). We sim-
ilarly find ∂(T ,S,ξ )/∂(P0,S,ξ ) = ∂(P,V,ξ )/∂(P0,S,ξ ) and
∂(T ,S,ξ )/∂(T0,V ,ξ ) = ∂(P,V,ξ )/∂(T0,V ,ξ ) using H and F ,
respectively. The identity

∂(P,V,ξ )/∂(T ,S,ξ ) = 1

can be converted to

(∂V/∂P )S,ξ = (∂V/∂P )T ,ξ + T (∂V/∂T )2
P,ξ

/
CP,ξ ,

where CP,ξ is defined in Sec. V. It is a relation between
isothermal and adiabatic compressibilities and is not treated as
a standard Maxwell relation; the latter is a relation between two
partial derivatives. However, we will treat the above relation
as a Maxwell relation.

By evaluating the cross derivatives (∂2E/∂S∂ξ )V and
(∂2E/∂V ∂ξ )S , we obtain

∂(T ,S,V )

∂(ξ,S,V )
= ∂(A,ξ,V )

∂(ξ,S,V )
,

∂(P,V,S)

∂(ξ,V ,S)
= −∂(A,ξ,S)

∂(ξ,V ,S)
,

from which we are able to establish the existence of the
Maxwell relations ∂(T ,S,V ) = ∂(A,ξ,V ) and ∂(P,V,S) =
−∂(A,ξ,S). By evaluating (∂2ÊA/∂V ∂S)A, we find the iden-
tity ∂(T ,S,A)/∂(S,V,A) = ∂(P,V,A)/∂(S,V,A) with V,S

belonging to D and V,S,A the natural variables of ÊA.
This establishes the Maxwell relation ∂(T ,S,A) ≡ ∂(P,V,A)
listed in Eq. (11). Other Maxwell relations can be similarly
established.

In the compact Maxwell relations above, the fields are
the instantaneous fields of the system. Using instead the
fields of the medium does not give a Maxwell relation. We
demonstrate this explicitly by evaluating (∂2F/∂ξ∂V )T0 and
(∂2G/∂ξ∂T0)P0 . A simple calculation yields in terms of the
Jacobians

∂(A,ξ,T0) = −∂(P,V,T0) + ∂(T ,S,T0),

∂(A,ξ,P0) = −∂(P,V,P0) + ∂(T ,S,P0).

These relations are not of the Maxwell relation type in Eq. (11).
In conclusion, the compact Maxwell relations contain only

the conjugate pairs of the system fromT ,P,S,V,A,orξ ; the
third system variable is kept fixed.

IV. CLAUSIUS-CLAPEYRON RELATION

It is possible for the system to exist in two distinct phases
that have the same Gibbs free energy at some instant. Such a
nonequilibrium phase transition will arise, for example, when
an isotropic supercooled liquid can turn into a liquid crystal
phase. This is not a novel idea as there are several attempts
in the literature [15–18], and references therein] where such
nonequilibrium phase transitions have been investigated. We
now consider the possibility of the system being in two
different phases at some time. As experiments are carried out
by varying the fields of the medium, it is important to consider
thermodynamic quantities as a function of E, V or T0,P0 only.
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In particular, the Clausius-Clapeyron relation is obtained in
the T0-P0 plane, a subspace.

We denote the two phases involved in the transition by 1
and 2, and use subscripts 1 and 2 to refer to the quantities in
the two phases. The instantaneous entropy S is a function of
instantaneous averages E, V,ξ along with the fixed number of
particles N . It is important to include N in our consideration
as the two phases will contain number of particles N1 and
N2 that are not constant. Obviously, E = E1 + E2, V = V1 +
V2, ξ = ξ1 + ξ2, N = N1 + N2. The entropy of the system is
a sum over the two phases:

S(E,V,ξ,N ) = S1(E1,V1,ξ1,N1) + S2(E2,V2,ξ2,N2),

which takes its maximum possible value in internal equilib-
rium. This can only happen if

T1 = T2 = T , P1 =P2 = P, μ1 = μ2 = μ,

A1 = A2 = A

at that instant in the two phases. We will only consider the
two pure phases below, and not a mixture of the two. The
Gibbs free energies of the two pure phases (N1 = N and
N2 = N ) must be equal at the coexistence. As the numbers of
particles in the two pure phases are constant, we will no longer
consider them in the discussion. Since the Gibbs free energy
is continuous along the transition line in the T0-P0 plane, its
difference

�G(T0,P0(T0)) = 0

along the coexistence; here P0(T0) is the pressure along the
transition line. It follows that

dT0/dP0|coex�(∂G/∂T0)P0 + �(∂G/∂P0)T0 = 0 (12)

along the coexistence. Using dG from Eq. (6) to evaluate
�(∂G/∂T0)P0 and �(∂G/∂P0)T0 finally gives us the following
Clausius-Clapeyron equation along the coexistence

dT0

dP0

∣∣∣∣
coex

= �V + (T − T0)�(∂S/∂P0)T0 − (P − P0)�(∂V/∂P0)T0 − A�(∂ξ/∂P0)T0

�S − (T − T0)�(∂S/∂T0)P0 + (P − P0)�(∂V/∂T0)P0 + A�(∂ξ/∂T0)P0

; (13)

compare with Ref. [10]. We express (∂S/∂P0)T0 in terms of
(∂V/∂T0)P0 by using the Maxwell relation ∂(P,V ) = ∂(T ,S)
and Eq. (C1) (F → S, K → V, x → P0, and y → T0) as
follows: (

∂S

∂P0

)
T0

= − (∂P/∂P0)V
(∂T /∂T0)S

(
∂V

∂T0

)
P0

, (14)

which can be used in the Clausius-Clapeyron equation. In
equilibrium, T = T0, P = P0, and A = 0, so that the above
equation reduces to the well-known version

dT0/dP0|eq
coex = �V/�S. (15)

V. RESPONSE FUNCTIONS IN INTERNAL EQUILIBRIUM

We consider some quantity Q as a function of T ,V , and ξ

or of T0,P0, and ξ so that

dQ = ∂Q

∂T
dT + ∂Q

∂V
dV + ∂Q

∂ξ
dξ, (16)

dQ = ∂Q

∂T0
dT0 + ∂Q

∂P0
dP0 + ∂Q

∂ξ
dξ. (17)

A. C̄P and C̄V

The heat capacities with respect to the system temperature
at fixed P or V are

C̄P,ξ = T (∂S/∂T )P,ξ , C̄V,ξ = T (∂S/∂T )V,ξ ,

C̄P = T (∂S/∂T )P , C̄V = T (∂S/∂T )V .

Using Eq. (16) to evaluate the derivative (∂S/∂T )P,ξ we obtain

CP,ξ = CV,ξ + T (∂S/∂V )T ,ξ (∂V/∂T )P,ξ . (18)

The identity is not useful from a practical point of view. We
need to transform various derivatives to the derivatives with
respect to T0 at fixed P0 or V . However, the identities still
contain C̄P,ξ and C̄V,ξ , which are defined with respect to T ,
and not with respect to T0.

B. CP and CV

We now introduce the heat capacities

CP ≡ T (∂S/∂T0)P0 , CV ≡ T (∂S/∂T0)V , (19)

CP,ξ ≡ T (∂S/∂T0)P0, ξ , CV,ξ ≡ T (∂S/∂T0)V,ξ , (20)

and the expansion coefficient

αP ≡ (∂V/∂T0)P0/V, αP,ξ ≡ (∂V/∂T0)P0,ξ /V (21)

obtained as a derivative with respect to T0. We easily find that

CP /αP = T V (∂S/∂V )P0 , CP,ξ /αP,ξ = T V (∂S/∂V )P0,ξ .

Let us now consider the relation between CP,ξ and CV,ξ

and between CP and CV . It follows from Eq. (16)

(∂S/∂T0)P0,ξ = (∂S/∂T )V,ξ (∂T /∂T0)P0,ξ

+ (∂S/∂V )T ,ξ (∂V/∂T0)P0,ξ ,

which gives the desired relation between CP,ξ and CV,ξ

CP,ξ (∂T /∂T0)V,ξ = CV,ξ (∂T /∂T0)P0,ξ

+ T (∂P/∂T0)V,ξ (∂V/∂T0)P0,ξ . (22)

This relation generalizes the following standard equilibrium
relation:

C
eq
P = C

eq
V + T0(∂P0/∂T0)V (∂V/∂T0)P0 .
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A standard form of Eq. (22) is given by

CP,ξ = CV,ξ + T (∂S/∂V )T0,ξ (∂V/∂T0)P0,ξ , (23)

which is an extension of Eq. (18). Although tedious, it is
straightforward to show that the two relations are identical.
One needs to use the permutation property given in Eq. (B1).
In a similar fashion, we find that

CP = CV + T (∂S/∂V )T0 (∂V/∂T0)P0 . (24)

We now relate CP with CP,ξ and CV with CV,ξ . For this,
it is convenient to consider the differential dS using Eq. (17).
We finally find that

CP = CP,ξ + T (∂S/∂ξ )T0,P0 (∂ξ/∂T0)P0 ,
(25)

CV = CV,ξ + T (∂S/∂ξ )P0,V (∂ξ/∂T0)V .

C. KT and KS

The isothermal and adiabatic compressibilities are given by

KT ≡ −(∂V/∂P0)T0/V, KT,ξ ≡ −(∂V/∂P0)T0,ξ /V ,

KS ≡ −(∂V/∂P0)S/V, KS,ξ ≡ −(∂V/∂P0)S,ξ /V .

The isothermal compressibility and the expansion coef-
ficient are related by KT /αP = (∂T0/∂P0)V ,KT,ξ /αP,ξ =
(∂T0/∂P0)V,ξ .

By treating V as a function of T0,P0, and ξ and of S,P0,
and ξ , respectively, we find

KT = KT,ξ − (∂V/∂ξ )T0,P0 (∂ξ/∂P0)T0/V,
(26)

KS = KS,ξ − (∂V/∂ξ )S,P0 (∂ξ/∂P0)S/V .

We similarly find that

αP = αP,ξ − (∂V/∂ξ )T0,P0 (∂ξ/∂T0)P0/V . (27)

Using

(∂V/∂P0)T0,ξ = (∂V/∂P0)S,ξCP,ξ /CV,ξ ,

(∂V/∂P0)T0 = (∂V/∂P0)SCP /CV ,

we find

CP,ξ

CV,ξ

≡ KT,ξ

KS,ξ

,
CP

CV

≡ KT

KS

. (28)

The adiabatic and isothermal compressibilities are related by

KT,ξ ≡ KS,ξ − (∂S/∂P0)T0,ξ (∂V/∂S)P0,ξ /V ,
(29)

KT = KS − (∂V/∂P0)T0 (∂V/∂S)P0/V .

VI. CONVENTIONAL AND APPARENT GLASS
TRANSITIONS

A. Vitrification and continuity of states

We will apply the above nonequilibrium results to an
isobaric glass [8–10,19–24] at the cooling rate r; see Figs. 2
and 3. The supercooled liquid L shown by ABF is a

)( 0
)A(

g0 PT

A

B

CD

E

V

T0

L: Supercooled liquid

GL: Glass

Glass Transition Region

)( 0g0 PTF

G

FIG. 2. (Color online) Schematic form of isobaric (constant P0)
volume V (T0) for a given cooling rate r .

time-independent metastable state [21], which we treat as
an equilibrium state (by not allowing the crystalline state
into consideration); at T0g(P0), it turns into a time-dependent
metastable liquid gL along BD, the transition region. At
T0G(P0), BD turns into a glass GL shown by DE [9,20].
The L-gL transition at B is a precursory glass transition. The
actual glass transition or simply the glass transition at D is
not a L→GL transition as envisioned normally [20,22–24],
but a gL→GL transition. The state changes continuously at
B and D, which is highly reproducible for a given r or
the observation time τobs. Both B and D can be taken as
well-defined and unique nonequilibrium glass transitions at
temperatures T0g(P0) and T0G(P0), respectively, for a given
history. Here, not only the Gibbs free energy, see Fig. 3,
but also its derivatives are continuous. We will collectively
call them conventional transitions but caution the reader that
neither represents the glass transition L→GL [20,22–24]. The
dynamical aspect of the glass transition is more complex than
the above discussion [19]. Here, we will be content with the
above simple picture for our application.

F
G

T0

G

)( 0g0 PT

C

E

)( 0
)A(

g0 PT

Transition Region

L

GL

A

B
C0

D

L

FIG. 3. (Color online) Schematic form of the isobaric Gibbs free
energy G(T0).
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B. Traditional glass transitions and thermodynamic
discontinuities

It is common to assume that over the glassy region DE,
ξ is frozen at its value ξG at D, even though it continues to
change over BD. Over AB, ξ is not an independent variable.
A common practice in the field is to take a point somewhere
between BD as a transition point obtained by electing some
well-defined rules for some chosen thermodynamic quantity
such as the volume of the system, see for example [20], and
introduce an apparent glass transition temperature T

(A)
0g (P0)

by the crossing C in Fig. 2 of the equilibrium continuation
BCF of AB and the extrapolation (based on the specific rules)
DCG of DE; see for example [24] for a good discussion of
various ways of identifying the glass transition temperature.
The state of the glass following Tool and Narayanaswamy
[25,26] is then traditionally identified with C. However, there is
no theoretical justification for C to represent any real glass [27].
In particular, ξ will have a discontinuity at C, contrary to the
normal expectation. Moreover, the extrapolation does not even
have to satisfy nonequilibrium thermodynamics; the latter is
valid only along the physical path DB. The “glass” at T

(A)
0g (P0)

must be described by the point on DB at T
(A)

0g (P0), if we insist
on employing nonequilibrium thermodynamics. But this state
is most certainly not a glass as it is not frozen. To be sure,
one can find a slower enough cooling rate than the one used
to obtain gL at B so that the point B actually coincides with
the point C on ABF. However, the gL that will emerge at C for
the slower cooling rate has nothing to do with the extrapolated
state C on DCG. Because of the continuity of the state, the
gL at the slower rate at C will have its A = 0 and ξ = ξeq and
will have its Gibbs free energy continuous. Moreover, the new
gL will follow a curve that will be strictly below BDE. These
aspects make the new gL different from the extrapolated GL at
C. Taking the point C on CD to represent the glass will be an
approximation, which we will avoid in this work, as our interest
is to apply thermodynamics in the study of glasses. Therefore,
we will use the extrapolation to only determine T

(A)
0g (P0), but

the unfrozen “glass” and the liquid are determined by BD and
BCF, respectively. The discussion above shows how our glass
transition concept differs from the traditional glass transition;
see [24] for more details.

The value of T
(A)

0g (P0) depends on the property being
extrapolated such as the entropy or the enthalpy. To call one of
these temperatures as a transition temperature is a misnomer
for another reason. None of the apparent glass transition
temperatures represent a “nonequilibrium” thermodynamic
transition for the simple reason that the two branches DCG and
BC0F do not have a common Gibbs free energy at T

(A)
0g (P0)

as is clearly seen in Fig. 3. The extrapolation DCG in Fig. 2
corresponds to the extrapolated segment DCG in Fig. 3. The
extrapolated Gibbs free energy of the glass is given by the
point C, while that of L by the point C0. The same discontinuity
will also appear in other thermodynamic extensive quantities
except the one used to locate C. The discontinuity also occurs
between the glass at D and the corresponding L at T0G(P0). This
represents yet another apparent glass transition that has also
been traditionally investigated [24]. Due to the discontinuity
in G at T0G(P0) and T

(A)
0g (P0), the apparent glass transitions

represent a zeroth-order transition.

TABLE I. Various states.

Apparent T0G Apparent T
(A)

0g Conventional T0g Conventional T0G

I GL gL gL GL
II L L L gL

VII. PRIGOGINE-DEFAY RATIO IN INTERNAL
EQUILIBRIUM

A. Prigogine-Defay ratio and rapid quench

The magnitude of the Prigogine-Defay ratio [10,22,28–34]
is considered a reflection of nonequilibrium effects. Therefore,
we can apply our nonequilibrium results to determine its
values at various glass transitions shown in Figs. 2 and 3; see
Table I. In this ratio, two states are compared at the same
T0,P0. The original ratio was first introduced for glasses [22]
using Simon’s model [23,24]. In the classic approach adopted
by Simon, the range (T0gG(P0),T0g(P0)) is shrunk to a point,
either by considering the apparent glass transition at T

(A)
0g (P0)

or by comparing the GL at D with L at B. The latter amounts to
neglecting the segment BD altogether from consideration. This
is easily done in the laboratory by a rapid quench from B to D
so that the segment BD disappears from consideration. It is this
rapid quench that is discussed by Prigogine and Defay in their
celebrated book [22] connecting A0 = 0 L with frozen ξ = ξeq

GL; here ξeq denotes the equilibrium value in L that has been
quenched in GL at time t = 0 when the quench occurs. The
equality of ξ in the two states then allows Prigogine and Defay
to identify, for example, the second term in their Eq. (19.24)
with the difference in the isothermal compressibility �KT

in the two states. They are very careful in their discussion
by pointing out just below this equation that “... the pressure
must be applied so rapidly that the composition of the system
does not have time to change....” Thus, their identification
works only at the instant t = 0 of a rapid quench. With time,
there would be structural relaxation so that ξ will no longer
equal ξeq at later times. Then the second term above will no
longer represent the difference �KT in the two states at time t

unless relaxation is completely neglected. Unfortunately, this
point seems to have been overlooked by several workers in the
field.

We will not consider the rapid quench studied by Prigogine
and Defay in this work since GL at D and L at B have different
T0’s. This will lead to an ambiguity in the definition of the
Prigogine-Defay ratio in Eq. (31). The only possible scenario
where Simon’s approach is meaningful is that of the ideal
glass transition [21], and references therein], in the limit the
cooling rate r → 0. In this limiting case, the crossover region
BD disappears and the ideal glass IGL emerges directly out of
the L at the ideal glass transition temperature T0IG. This is a
conventional continuous transition between the two stationary
states IGL and L, both of which remain in equilibrium with
the medium at T0,P0. There is no need to invoke any internal
variable ξ to describe the ideal glass.

From the discussion in Sec. VI, we know that the Gibbs
free energies, volumes, and entropies exhibit discontinuities at
the apparent transitions, but not at the conventional transitions.
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Let us introduce the difference

�Q ≡ QI − QII (30)

for any quantity Q at a given T0,P0 in the two possible
states I and II. These states are summarized in Table I.

In terms of the discontinuities �CP ,�KT , and �αP , the
Prigogine-Defay ratio [22] is traditionally defined as [9,10,22,
27–32,34]

�trad ≡ �CP �KT /V T0(�αP )2,

where it is assumed that the volume is the same in both
states at T0,P0. Since the volume may not be continuous
at apparent glass transitions, used in most experimental and
theoretical analyses of the glass transition, we need to allow
for this possibility. We will consider the following equivalent
definition of the Prigogine-Defay ratio in this work:

� ≡ �CP �KT /T0(�V αP )(�αP ), (31)

where we have absorbed V in one of the �αP factors. It is
clear that � is not different from �trad when the volume is the
same as happens for conventional transitions.

We will evaluate � in the T0-P0 plane. We will consider a
single internal variable; however, the general case of several
internal variables ξk,k = 1,2, . . . ,n, causes no complications.
All we need to do is to make the change Adξ → A·dξ .

B. Conventional transitions at T0g and T0G

Let us first consider the transition at B, where gL and L
are in equilibrium with the medium (T = T0,P = P0, and
A = A0 = 0 for both states). There is no need to consider ξ . As
V = (∂G/∂P0)T0 and S = −(∂G/∂T0)P0 , G and its derivatives
are continuous at B but the second derivatives need not be. The
glass transition occurs along a curve T0g(P0) in the T0-P0 plane.

For the transition at D, GL and gL are out of equilibrium
but have the same temperature T and pressure P , different
from T0,P0, respectively, at the transition. Similarly, A �= 0 is
the same in both states. We now follow the consequences of
the continuity of states.

1. Continuity of volume

From the continuity of the volume, we have

d�g ln V = �g(∂ ln V/∂T0)P0dT0

+�g(∂ ln V/∂P0)T0dP0 = 0 (32)

at the transition points T0g or T0G, where the derivatives are
evaluated. At the transition

dT0/dP0|tr = �gKT /�gαP , (33)

KT and αP are given in Eqs. (19) and (21), respectively, and
can be expressed in terms of the derivatives of the internal
variable ξ , such as given in Eqs. (26) and (27) by replacing ξ

by ξ .

2. Continuity of entropy

From the continuity of the entropy at T0g, we similarly have

d�gS = �g(∂S/∂T0)P0dT0 + �g(∂S/∂P0)T0gdP0 = 0, (34)

from which we obtain at the precursory glass transition at B

dT0g/dP0|tr = VgT0�gαP /�gCP , (35)

where we have used the equilibrium Maxwell relation
(∂S/∂P0)T0 = −(∂V/∂T0)P0 = V αP ; see Eq. (5) or (14) ap-
plied to this case. Here Vg is the common volume of gL and L
at B and has been taken out of �g(V αP ). Accordingly, �g ≡
�gCP �gKT /VgT0(�gαP )2 = 1, as expected for equilibrium
states. It is a consequence of the glass transition being a
continuous transition between equilibrium states at B. As we
will see below, it is not merely a consequence of the continuity
of volume and entropy simultaneously.

Let us now consider the glass transition at T0G. It follows
from Eq. (19) that �g(∂S/∂T0)P0 = �gCP /T . In conjunction
with Eq. (14), we find that

dT0G/dP0|tr = (VGT �gαP /�gCP )(∂P/∂P0)V /(∂T /∂T0)S,

where VG is the common volume of gL and GL at D. We finally
obtain

�G = T (∂P/∂P0)V /T0(∂T /∂T0)S �= 1 (36)

for the conventional glass transition at D. The deviation of �G

from unity is independent of the number of internal variables.
It will be different from unity even if we have no internal
variables, a conclusion also found in Ref. [1].

C. Apparent glass transitions at T (A)
0g and T0G

Unfortunately, it is not a common practice to determine
the Prigogine-Defay ratio at the conventional transitions.
In experiments, one determines the ratio at apparent glass
transitions at C and D. As the extrapolated GL at C cannot
be described by nonequilibrium thermodynamics, we only
consider the apparent transition at T

(A)
0g (P0) and at T0G. It is

known that the volume and entropy in gL and GL are higher
than their respective values in L and relax toward the latter.

The discontinuity of volume �(A)
g V ( �=0) causes a modifi-

cation of Eq. (32) at T
(A)

0g or T0G:

dT0/dP0|tr = (
δ ln V

(A)
P + �(A)

g KT

)/
�(A)

g αP

= �(A)
g KT

(
1 + δ(A)

g VP

)/
�(A)

g αP , (37)

where δ ln V
(A)
P ≡ d�(A)

g ln V/dP0|tr is the variation of
�(A)

g ln V = ln VI(T0,P0) − ln VII(T0,P0) with P0 along the

transition curve T
(A)

0g (P0) or T0G(P0), and can be found
experimentally by recognizing that

δ ln V
(A)
P = (1/VI)dVI(P0)/dP0|tr − (1/VII)dVII(P0)/dP0|tr.

(38)

The three �(A)
g ’s represent the difference � in Eq. (30)

evaluated at T
(A)

0g or T0G, and the new quantity δ(A)
g VP

has an obvious definition δ(A)
g VP = δ ln V

(A)
P /�(A)

g KT at the
appropriate temperature. This contribution vanishes under the
approximation �(A)

g ln V � 0, or δ ln V
(A)
P � 0. We can use

Eqs. (26) and (27) to express the slope in terms of �gKT,ξ and
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�gαP,ξ :

dT0/dP0|tr = (
δ ln V

(A)
P + �(A)

g KT,ξ − Vξ,I∂ξ/∂P0|tr/VI
)

/(
�(A)

g αP,ξ − Vξ,I∂ξ/∂T0|tr/VI
)
, (39)

where Vξ,G represents the derivative (∂VI/∂ξ )T0,P0 , and VI is the
GL volume at T0G or the gL volume at T (A)

0g . The ξ contribution
from the L state is absent due to the vanishing of the affinity
A0 in the L.

A similar calculation for the entropy difference yields

dT0/dP0|tr = [
δS

(A)
P − �(A)

g (∂S/∂P0)T0

]/
�(A)

g (∂S/∂T0)P0 ,

(40)

with δS
(A)
P ≡ d�(A)

g S/dP0|tr = dSI(P0)/dP0|tr − dSII(P0)/
dP0|tr representing the rate of variation of the entropy
discontinuity �(A)

g S = SI(T0,P0) − SII(T0,P0) along apparent
glass transition curves. The derivative (∂SI/∂P0)T0 in Eq. (40)
can be manipulated as in Eq. (14) to give

(∂SI/∂P0)T0 = −(∂VI/∂T0)P0

(
1 + δSI

V S

)
= −VI

(
1 + δSI

V S

)
αI

P .

For the supercooled liquid, we evidently have (SII ≡ SL)

(∂SL/∂P0)T0 = −(∂VL/∂T0)P0 = −VLαL
P ,

so that

�(A)
g (∂S/∂P0)T0 = −�(A)

g (V αP ) − VIα
I
P δSI

V S.

We now turn to the denominator in Eq. (40). For L, we have
(∂SL/∂T0)P0 = CL

P /T0. For the glass at T , we have

(∂SI/∂T0)P0 = CI
P

/
T ≡ (1 + δT I)CI

P

/
T0,

where we have introduced a correction parameter δT I ≡
T

(A)
0g,G/T − 1, with T

(A)
0g,G denoting T

(A)
0g or T0G as the case may

be. Again, this modification term vanishes when T = T0. We
thus find that

T0�
(A)
g (∂S/∂T0)P0 = �(A)

g CP + CI
P δT I.

Equating the two different versions of the slope in Eqs. (37)
and (40), we finally find that the Prigogine-Defay ratio is given
by

�gA = 1 + (
VIα

I
P δSI

V S + δS
(A)
P

)/
�(A)

g (V αP )(
1 + CI

P δT I
/
�

(A)
g CP

)(
1 + δ

(A)
g VP

) . (41)

It should be obvious that the Prigogine-Defay ratio is itself a
function of time as it depends on time-dependent quantities
such as �(A)

g S, δT I, etc.

1. Approximation A

Let us assume that the discontinuities in the volume and
entropy are negligible or that the contributions δ ln V

(A)
P and

δS
(A)
P are negligible. In that case, the Prigogine-Defay ratio

reduces to

�gA � 1 + VIα
I
P δS1

V S

/
�(A)

g (V αP )

1 + CI
P δT I

/
�

(A)
g CP

,

and will have a value different than 1. Thus, the continuity of
volume and entropy alone is not sufficient to yield �gA = 1, as

noted above. If we further approximate T � T0 and P � P0,
then δSI

V S � 0 and δT I � 0, and we obtain �gA � 1. This
is expected as the approximations change the apparent glass
transition into a continuous transition. If, however, we only
assume P � P0, but allow T to be different from T0, then

δSI
V S � 1

(∂T /∂T0)SI

− 1,

and we still have �gA �= 1.

2. Approximation B

We make no assumption about δ ln V
(A)
P and δS

(A)
P , but

approximate T � T0 and P � P0. In this case, δSI
V S � 0 and

δT I � 0, and we obtain

�gA � 1 + δS
(A)
P

/
�(A)

g (V αP )

1 + δ
(A)
g VP

.

If, however, the approximation T � T0 is not valid, we have

�gA � 1 + δS
(A)
P

/
�(A)

g (V αP )(
1 + CI

P δT G
/
�

(A)
g CP

)(
1 + δ

(A)
g VP

) .

In both cases, �gA �= 1.

D. Comparison with other attempts for �

As far as we know, almost all previous attempts [8–10,
22,27–32] for the evaluation of � are based on some sort
of approximation. The following three versions of the glass
transition have been investigated in which the glass structure
is taken to be frozen so that ξGL remains constant:

(1) The glass transition is treated as a hypothetical transition
from L to the extrapolated GL at C; see Figs. 2 and 3. There will
be a discontinuity between the values of the internal variable
ξ at C: the equilibrium value ξ

eq
C in L and a nonequilibrium

value ξ extra
C �= ξ

eq
C obtained along DC. Similarly, AL = A0 =

0 in L, while Aextra
GL = AC �= 0 in the extrapolated GL at C.

If C is obtained by matching the volumes (entropies, etc.),
the volume (entropy, etc.) remains continuous, but there is
no reason to believe that the entropy, etc. (volume), or the
energy will remain continuous in this transition. The Gibbs
free energy obviously remains discontinuous in this transition.
This makes this version of the glass transition a zeroth-order
glass transition. It is not a continuous transition as is commonly
believed to be.

(2) Instead of extrapolating the volume, one can extrapolate
GL by keeping the internal variable frozen at ξGL until the
extrapolation meets L. This kind of approach is used in
the Simon model [24,32]. The glass transition is similar to
the above, except that the volumes, energies, etc., do not have
to be the same in the two states. This creates the problem of
which volume is going to be used in �trad.

(3) The glass transition is treated as a transition between L
and GL at D. Again, there is a discontinuity in the state similar
to the one discussed above and the transition is a zeroth-order
glass transition.

Despite the discontinuities between the states, one normally
overlooks the discontinuity in ξ so that the evaluation of �

in several calculations is based on identifying the second
term in Eq. (19.24) of Prigogine and Defay [22] with the
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configurational contribution to the isothermal compressibility,
and similarly for the expansivity and the heat capacity; see
their Eq. (19.27). It is obvious from the above that this
is an approximation. In other calculations, one takes the
volume and/or the entropy (or energy) to be continuous at the
transition. This is also an approximation. All these calculations
do not distinguish the instantaneous temperature and pressure
of the system from those of the medium. An exception is the
work in Ref. [10] where an effective temperature is introduced
but not an effective pressure. As discussed earlier by us [1],
this effective temperature is very different from our T (t). The
work, however, is based on the continuity of volume and energy
at the transition.

We have been careful in treating this transition as an
apparent transition for the simple reason that there is no
guarantee that the branch DC can be described by vitrification
thermodynamics at the constant cooling rate r . To treat
this transition as a conventional transition requires some
approximations, which we have avoided. Indeed, we have not
made any approximation in the general part of our work.

VIII. CONCLUSIONS

We have followed the consequences of internal equilibrium
and the existence of thermodynamic forces to derive gen-
eralizations of equilibrium thermodynamic relations such as
the Maxwell relations, Clausius-Clapeyron relation, relations
between response functions (heat capacities, compressibilities,
etc.) to nonequilibrium systems. Nonequilibrium states are
described not only by instantaneous thermodynamic forces
due to fields (temperature, pressure, etc.) that are different
from those of the medium, but also described by internal
variables or corresponding affinities that cannot be controlled
by the observer. The generalization of Maxwell relations are
no longer relations between two partial derivatives; rather they
become relations between two Jacobians; the numerators in
these relations give rise to compact Maxwell relations. The
compact Maxwell relations (the numerators) only contain the
variables of the system and not the fields of the medium;
however, when divided, the denominators can contain the
fields of the medium. We discuss various response functions
and obtain the relationship between them in nonequilibriums
states. Surprisingly, many of these relations look similar in
form to those found in equilibrium thermodynamics, even
when expressed in terms of the fields of the medium. As the
observer can only control the observables, we have discussed
the nonequilibrium thermodynamics in the subspace of the
observables or their associated fields only.

As glasses are a prime example of nonequilibrium states, we
have applied these relations to glasses. We find that there is no
one unique nonequilibrium transition. We introduce four of the
most conceptually useful transitions. At the two conventional
glass transitions, the Gibbs free energies and the states are
continuous. Thus, they are the nonequilibrium analogs of the
conventional continuous or second-order transition between
equilibrium states. At the two apparent glass transitions, not
only the states but also the Gibbs free energies are discon-
tinuous. Because of this, these transitions are examples of a
zeroth-order transition where the free energy is discontinuous.
These transitions merely relate two distinct states at the same

T0,P0. We evaluate the Prigogine-Defay ratio at the four
possible glass transitions. We consider the general case of any
number of internal variables including no internal variable.
We find that the ratio is normally different than 1, except at
the conventional glass transition at the highest temperature,
where it is always equal to 1, regardless of the number of
internal variables. We also find that the continuity of volume
and entropy is not a guarantee for � = 1.
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APPENDIX A: PROPERTIES OF JACOBIANS

Jacobians [11] will be found extremely useful in this work
just as they are found useful in equilibrium thermodynamics
[7]; see also [12–14]. The Jacobian of u1,u2, · · · un with
respect to x1,x2, · · · xn is the determinant of the matrix formed
by ∂uk/∂xl . It is clear from the properties of the determinant
that

(1) The Jacobian vanishes if any two u’s are identical

∂(u1,u2, · · · ui,ui · · · un)

∂(x1,x2, · · · xi,xi+1 · · · xn)
= 0.

(2) If ui and ui+1 interchange their order, the Jacobian
changes its sign

∂(u1,u2, · · · ui+1,ui · · · un)

∂(x1,x2, · · · xi,xi+1 · · · xn)
= −∂(u1,u2, · · · ui,ui+1 · · · un)

∂(x1,x2, · · · xi,xi+1 · · · xn)
.

(3) If any ui is equal to xi , the nth-order Jacobian reduces
to a (n − 1)th-order Jacobian formed by derivatives at fixed
xi . For example, for n = 2, we have

∂(u1,x2)/∂(x1,x2) = (∂u1/∂x1)x2 .

(4) When we consider compound transformations
(x1,x2, · · · xn)→(u1,u2, · · · un)→(v1,v2, · · · vn), the resulting
Jacobian is the product of the two Jacobians:

∂(v1,v2, · · · vn)

∂(u1,u2, · · · un)

∂(u1,u2, · · · un)

∂(x1,x2, · · · xn)
= ∂(v1,v2, · · · vn)

∂(x1,x2, · · · xn)
.

APPENDIX B: PERMUTATION PROPERTY OF JACOBIANS

We introduce by following examples the permutation
propertyof Jacobians that would be extremely useful in the
work. Consider a second-order Jacobian ∂(u1,u2)/∂(x1,x2),
which can be rearranged as

∂(u1,u2)∂(x1,x2) + ∂(u2,x1)∂(u1,x2) + ∂(x1,u1)∂(u2,x2) = 0.

(B1)

The result expresses the cyclic permutation of u1,u2,x1

in the three terms with the remaining variable x2 in the
same place in all terms. As a second example, consider
some quantity u as a function of three variables x,y, and
z and consider the following relation between the partial
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derivatives:

(∂u/∂x)y = (∂u/∂x)y,z + (∂u/∂z)x,y(∂z/∂x)y. (B2)

In terms of Jacobians, it can be written as

∂(x,y,z)∂(u,y) = ∂(y,z,u)∂(x,y) + ∂(z,u,x)∂(y,y)

+ ∂(u,x,y)∂(z,y), (B3)

where we have added a vanishing second term on the
right [∂(y,y) = 0] for convenience. This relation is eas-
ily constructed by considering the cyclic permutation of
x,y,z,u by taking three consecutive terms at a time to form
the 3-Jacobians, with the remaining variable yielding the
2-Jacobians in which the second entry is the variable y,
the variable that is held fixed in all derivatives in Eq. (B2).
By writing all the 3-Jacobians in the nonvanishing terms in
Eq. (B3) so that y is the second entry, and then suppressing
the second entry, we obtain the following relation, which is
identical to Eq. (B1):

∂(x,z)∂(u,y) + ∂(z,u)∂(x,y) + ∂(u,x)∂(z,y) = 0.

APPENDIX C: RELATION BETWEEN 2- AND 3-JACOBIANS

It is very common to consider a function F (x,y,z) in a sub-
space consisting of x,y, where x,y,z may stand for T0,P0,ξ ,
respectively. This requires manipulating a 3-Jacobians to
construct a 2-Jacobians of its argument. Thus, we may consider
the 2-Jacobian

∂(F,y)/∂(x,y),

even though F also depends on z. We can manipulate such
Jacobians in the normal way. For example, we can express it
as (

∂F

∂x

)
y

= ∂(F,y)

∂(x,y)
= − ∂(F,y)

∂(K,x)

∂(x,K)

∂(x,y)

= −
(

∂K

∂y

)
x

∂(F,y)

∂(K,x)
, (C1)

where K(x,y,z) is another function. The derivation is tedious
and has been given below. The situation can be generalized
to many variables z1,z2, . . . without much complications. We
will not do this here.

From

dF = Fx,yzdx + Fy,zxdy + Fz,xydz,

where we have used the compact notation Fx,yz ≡ (∂F/∂x)yz,

etc.,

(∂F/∂x)y = Fx,yz + Fz,xy(∂z/∂x)y.

Similarly,

(∂K/∂y)x = Ky,zx + Kz,xy(∂z/∂y)x.

We express Fx,yz as a 3-Jacobian and manipulate it as follows:

∂(F,y,z)

∂(x,y,z)

= ∂(F,y,z)

∂(K,x,z)

∂(K,x,z)

∂(x,y,z)

= ∂(F,y,z)

∂(K,x,z)

[
−

(
∂K

∂y

)
x

+ Kz,xy

(
∂z

∂y

)
x

]

= −
(

∂K

∂y

)
x

[
∂(F,y,z)

∂(K,x,z)
− Kz,xy

(
∂z

∂K

)
x

∂(F,y,z)

∂(K,x,z)

]
.

Using this, we find that(
∂F

∂x

)
y

= −
(

∂K

∂y

)
x

[
∂(F,y,z)

∂(K,x,z)
− Kz,xy

(
∂z

∂K

)
x

∂(F,y,z)

∂(K,x,z)

+Fz,xy

∂(z,y)

∂(K,x)

]
.

The quantity in the square brackets D can be rewritten as

D ≡ ∂(F,y)

∂(K,x)
D′,

where

D′ = ∂(F,y,z)

∂(K,x,z)

∂(K,x)

∂(F,y)
− Kz,xy

∂(z,x)

∂(F,y)

∂(F,y,z)

∂(K,x,z)

+Fz,xy

∂(z,y)

∂(F,y)
.

Using Eq. (B3), it can now be shown in a straightforward
manner that D′ = 1, which proves Eq. (C1), the desired result.

While we considered F and K as a function of 3 variables,
we can generalize the result to any number of variables. We
will not pause here to do that.
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