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Simplicity of the spherical spin-glass model
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We revisit an approach to the replica-based analysis of the spherical spin-glass model that makes use of
a mapping of the problem onto a one-dimensional interacting charge system. A saddle point approximation
leads to the conclusion that the interaction between charges is irrelevant in the thermodynamic limit, and as a
consequence, that there is no nontrivial correlation between replicas for this model. This allows us to show that
quenched and annealed disorder averages agree for the spherical spin glass. We demonstrate this result within
two different mathematical frameworks, and we also relate our analysis to the conclusions that follow from the
replica symmetry ansatz.

DOI: 10.1103/PhysRevE.85.041127 PACS number(s): 64.60.−i, 75.10.Nr, 75.50.Lk

I. INTRODUCTION

The spherical spin-glass model was originally introduced
and solved by Kosterlitz, Thouless, and Jones (KTJ) in 1976
[1]. Perhaps the most important feature of the model is that it
can be solved exactly, which facilitates its use as a convenient
test bed for new analytic approaches to the spin glasses and
other disorder-dominated problems. KTJ originally solved the
model via an analysis making use of the asymptotic properties
of a large random matrix [2]. In addition, they solved the model
via a replica symmetry (RS) ansatz, originally introduced
by Edwards and Anderson [3] and utilized by Sherrington
and Kirkpatrick in their attempt to solve the “solvable”
infinite-ranged Ising spin-glass model [4]. It was later shown
by Almeida and Thouless that the replica symmetry ansatz
is unstable [5], which leads to the conclusion that a replica
symmetry breaking (RSB) solution, such as the one introduced
by Bray and Moore [6] or, most notably, by Parisi [7], is
required to obtain physical results for the infinite-ranged Ising
spin glass. Nevertheless, in the case of the spherical model
spin glass, the RS solution was found by KTJ to provide
results equivalent to those given by their exact, random matrix
based analysis. This equivalence served at the time to bolster
confidence in ansatz based replica theory.

Despite the long history and importance of the spherical
spin glass (which remains one of the few known examples of
an exactly solvable spin-glass model), one of its fundamental
features appears to have gone previously unnoticed: Quenched
and annealed disorder averages agree for this model. It is
the purpose of this paper to demonstrate this result. We
employ an approach, previously discussed in Refs. [8,9],
that takes advantage of a mapping of the problem onto the
finite-temperature partition function of a set of logarithmically
interacting charges. In this mapping, there is one charge for
each system replica, and correlations between the charges
carry information regarding the overlap between the different
replicas. Our analysis here differs from that in the previous
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works [8,9], in that we apply a saddle point approximation that
allows us to demonstrate the irrelevance of the interactions in
the thermodynamic limit. This leads to a rigorous, ansatz-free
evaluation of the replicated partition sum that reveals the full
simplicity of the spherical spin-glass thermodynamics.

The paper is organized as follows. The charge mapping
procedure is reviewed in the following section; in Sec. III the
saddle point “Mehta” approximation is applied that allows for
the isolation of the interaction terms; Sec. IV contains a short
discussion of our results. Finally, two appendixes are included.
Appendix A contains an evaluation relating to the interaction
portion of the partition function, and Appendix B relates our
work to the predictions of the RS ansatz.

II. MAPPING TO ONE-DIMENSIONAL INTERACTING
CHARGE SYSTEM

We briefly review the charge mapping approach to the repli-
cated spherical spin-glass partition function in this section.
For background material we refer the reader to [1,8,9] and to
the text by De Dominicis and Giardina [10]. Here, we shall
take as our starting point the replicated Hamiltonian for the
mean-spherical spin-glass model,

H =
∑

α

{
−

∑
ij

Jij s
α
i sα

j + �

( ∑
sα2
i − nN

)}
. (1)

The spins sα
i above are continuous variables to be integrated

over, with i and j currently acting as site indices, and α as
a replica index. The coefficients of interaction Jij for each
pair of spins are random variables independently distributed
according to the probability density function

P (Jij ) ∝ exp

[
− NJ 2

ij

2J̄ 2

]
. (2)

These coefficients are to be integrated over in order to effect a
disorder averaging. Finally, n is the number of replicas, N is
the number of spins, and � is a Lagrange multiplier that is used
to enforce the mean-spherical constraint 〈∑i s

2
i 〉 = N . After
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integrating over the coefficients of interaction, one obtains

〈Zn〉J

=
∫

s

exp

[
β2J̄ 2

2N

∑
α,β

(∑
i

sα
i s

β

i

)2

−β�

(∑
i,α

sα2
i − nN

)]
.

(3)

An auxiliary field is next introduced that decouples the
different lattice sites. This takes the form of a real, symmetric
matrix Qαβ that we refer to in the following as the overlap
matrix:

〈Zn〉J ∝
∫

Q,s

exp

[
−N

2β2J̄ 2
Q2

αβ − Qαβ

∑
i

sα
i s

β

i − β�
∑
i,α

sα2
i

]

=
∫

Q

exp

[
− N

2β2J̄ 2
Q2

αβ − N

2
Trln(β� + Q)

]
. (4)

Notice that the exponent is now a function of the eigenvalues
of Q alone. This key observation was exploited in Refs. [8,9]
by switching from an integration over the elements of Q to an
integration over its eigenvalues and eigenbasis. The Jacobian
appropriate for real, symmetric matrices separates into the
form [2]

J (λ1, . . . ,p1, . . .) = f (λi)g(pj ), (5)

where f = ∏
(ij ) |λi − λj |, with the product over all unordered

pairs of distinct indices, and the measure g(pj ) indicates an
average over all eigenvector orientations. Thus the replicated
partition function reduces to

〈Zn〉J =
∫

λi

exp

[
−

∑
i

V (λi) + nβ�N

] ∏
(ij )

|λi − λj |, (6)

where the potential is given by

V (λ) = N

2

(
ln(β� + λ) + λ2

β2J̄ 2

)
. (7)

The eigenvalues λi may now be reinterpreted as logarith-
mically interacting charges that are confined by the one-
dimensional potential V . The logarithmic interaction was
dropped in Ref. [8], but was taken into account in Ref. [9],
where the evaluation of (6) was carried out through the analytic
continuation of a result previously discussed by Forrester
and Witte [11]. This approach relied upon the assumption
that the logarithmic interaction in Eq. (6) could be replaced
by 2ln|λi − λj |. This assumption was motivated, but not
completely justified in Ref. [9]. We will see below that this
assumption follows from the fact that this interaction does not
affect the free energy whatsoever.

III. MEHTA APPROXIMATION

The important observation required to simplify the partition
function (6) is that the potential V (λ) is proportional to N . Thus
in the thermodynamic limit the potential will be very steep, and
all charges might be expected to sit near a global minimum.
However, due to the logarithmic term in the potential, the
energy is unbounded from below near λ = −β�. If the charges

FIG. 1. Qualitative shape of the potential felt by the charges. The
potential is proportional to N , and the partition function may be
expanded about the local minimum near the origin.

are allowed to access all states, they will be bound to the
region near −β�, and the partition function will diverge—a
consequence of the �s2 term present in Eq. (1), which results
in instability for certain realizations of the Jij when � is
held fixed. In the corresponding analysis for the hard-spherical
model considered in Ref. [1], the charges are required to always
sit far from this divergence, however, and we can conclude
that the physically appropriate analytic continuation of (6) is
that given by an expansion about the local minimum near the
origin, as depicted in Fig. 1. We will see below that this sim-
plification gives free energy results identical to those obtained
previously.

Applying a quadratic saddle point approximation about the
local minimum λ0 = β

2

[−� + √
�2 − 2J̄ 2

]
gives

〈Zn〉J ∼ enβ�N−nV (λ0)
∫

λi

e−α
∑

(λi−λ0)2
∏
(ij )

|λi − λj |

= enβ�N−nV (λ0)α−n/4f (n), (8)

where the quadratic coefficient α is given by

α = N

β2J̄ 2

√
�2 − 2J̄ 2

� + √
�2 − 2J̄ 2

. (9)

All of the physical parameters of the model have been extracted
in the second line of (8) through a rescaling of the integration
variables. What is left is the function f (n), the k = 1/2 Mehta
integral [2]. This retains the logarithmic interactions, but now
carries only an n dependence. As shown in Appendix A,
this function is well behaved as n → 0, and it does not
affect the free energy at large N . Thus, despite the mutual
proximity of the charges at the saddle point, the interactions are
irrelevant in the thermodynamic limit, and f (n) can be dropped
in Eq. (8).

The final step of the replica technique may now be
applied. We differentiate 〈Zn〉J with respect to n to obtain the
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disorder-averaged free energy,

〈lnZ〉J = lim
n→0

∂

∂n
〈Zn〉J

= −
(

V (λ0) + 1

4
ln(α) − β�N

)
. (10)

The mean-spherical constraint, ∂
∂�

〈lnZ〉J = 0, is then

Nβ = 1

2

J̄ 2

(�2 − 2J̄ 2)(� + √
�2 − 2J̄ 2)

+ N

2J̄ 2
{� − [�2 − 2J̄ 2]1/2}. (11)

In the low temperature regime, with T < TC = √
2J̄ [12],

� =
√

2J̄ −
√

2J̄

8N (1 − √
2J̄ β)

+ O(N−3/2), (12)

so that all three terms contribute and the constraint equation is
satisfied to O(N1). In the high temperature regime, with T >

TC , the second term in the constraint equation is subdominant
and we have

1

2J̄ 2
{� − [�2 − 2J̄ 2]1/2} = β. (13)

This has one solution,

� = βJ̄ 2 + 1

2β
. (14)

The final disorder-averaged free energy expression, obtained
by plugging these solutions back into (10), is then given by

f =
{−√

2J̄ + T
4 + T

2 ln J̄√
2T

, for T � TC,

− J̄ 2

2T
− T

2 (1 + ln2), for T � TC.
(15)

The result (15) is equivalent to those of [1,8–10]. The inter-
esting feature of the present solution is that it is characterized
by a diagonal overlap saddle point, implying that there are no
inherent correlations introduced between the different replicas
of the system upon disorder averaging. This is apparent in the
saddle point exponent in Eq. (8), which scales exactly as n for
each positive integer n. Because of this feature, Carleman’s
condition [13]

∑∞
n=1〈Zn〉−1/2n

J = ∞ holds, which guarantees
that there is at most one distribution P (Z) (representing the
probability of obtaining a physical sample with partition sum
Z) that can generate the disorder-averaged, positive integer
moments of Z, which are given in Eq. (8). A δ function
distribution can generate these moments, and we thus conclude
that the partition sum must be δ distributed. That is,

P (Z) = δ(Z − e−βNf ), (16)

with f given by (15). This result can be heuristically
understood to follow from the self-averaging nature of the
eigenvalue distribution of the coupling matrix: Because,
in the thermodynamic limit, the eigenvalue distribution of
Jij approaches the semicircle distribution for nearly every
realization of the disorder [2], the partition sum is expected to
be, in turn, sharply distributed. The above analysis represents
a rigorous demonstration that this is so. The validity of (10)
and the equivalence of quenched and annealed averages for

this model [14] (〈Zn〉J = 〈Z〉nJ ) both follow immediately from
(16), which is our main result. We show in Appendix B that
similar conclusions also hold for the hard-spherical model of
Ref. [1].

IV. DISCUSSION

While we have shown here that the thermodynamics of
the spherical spin-glass model are quite simple (in the sense
that quenched and annealed disorder averages agree), the
model exhibits many of the challenging characteristics that
are associated with glassy systems (random couplings, a
phase transition, and also off-equilibrium dynamical behavior
[10,15]). Thus, although the model is Gaussian, it would be
wrong to consider it trivial, and it may yet provide new insight
into the properties of disordered systems. In particular, we note
that the charge-mapping approach might be applied to other
models, and then compared back to the solution presented
here, perhaps providing a new perspective of the mechanisms
that cause RSB. We feel that this prospect is a promising one,
given the cleanness of the exact, ansatz-free solution that has
resulted here.
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APPENDIX A: EVALUATION OF MEHTA INTEGRAL
IN n → 0 LIMIT

In this section, we evaluate the n → 0 limit of the Mehta
integral that appears in Eq. (8). We use the fact that the Mehta
integral reduces to [2]

1

(2π )n/2

∫
λi

e− ∑
i λ2

i /2
∏
(ij )

|λi − λj |2k

=
n∏

j=1

	(1 + jk)

	(1 + k)
= 1

	(1 + k)
exp

[
n∑

j=1

ln	(1 + jk)

]
.

(A1)

The sum in the exponent may be simplified via the formula [16]

ln	(z) =
∫ ∞

0

{
(z − 1)e−t − e−t − e−zt

1 − e−t

}
dt

t
. (A2)

For k = 1/2, the sum becomes
n∑

j=1

ln	

(
1 + j

2

)

∼ n

∫ ∞

0

{
1

4
e−t − 1

(et − 1)
+ t

2(et − 1)(et/2 − 1)

}
dt

t
.

(A3)

Each of these integrals diverge at small t . To evaluate them,
the lower limit is replaced by a constant ε, which we will later
take to zero at the end of the calculation. After making this
replacement, the first and third integrals are easily evaluated.
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To evaluate the second, the integrand is multiplied by a
damping factor so that one can subtract out the divergence
at small t without then obtaining a divergence at large t . We
write∫ ∞

ε

1

(et − 1)

dt

t
= lim

α→0

∫ ∞

0

(
1

(et − 1)
− 1

t
+ 1

2

)
e−αtdt

t

+
∫ ∞

ε

(
1

t
− 1

2

)
e−αtdt

t

−
∫ ε

0

(
1

(et − 1)
− 1

t
+ 1

2

)
dt

t
. (A4)

The second integral is easily evaluated and then expanded.
The third is evaluated by expanding the integrand in a power
series. The first is evaluated via the first Binet ln	 expression
[17],

ln	(z) = (z − 1/2)lnz − z + 1

2
ln2π

+
∫ ∞

0

(
1

(et − 1)
− 1

t
+ 1

2

)
e−tz

t
dt. (A5)

Putting all this together and taking α → 0 gives∫ ∞

ε

1

(et − 1)

dt

t
∼ γ

2
− 1

2
lnπ + 1

2ε
+ 1

2
lnε. (A6)

Finally, combining with the other terms in Eq. (A3) gives
n∑

j=1

ln	

(
1 + j

2

)
∼ n

(
1

2
lnπ − 3

4
γ

)
. (A7)

Therefore the n → 0, k = 1/2 Mehta integral goes to

1

(2π )n/2

∫
λi

e− ∑
i λ2

i /2
∏
(ij )

|λi − λj |2k

∼ 1

	(3/2)

{
1 + n

(
1

2
lnπ − 3

4
γ

)}
+ O(n2), (A8)

which is well behaved.

APPENDIX B: HARD-SPHERICAL MODEL ANALYSIS

The absence of replica correlations in the mean-spherical
spin glass (as seen above) runs counter to the intuition one
obtains from the hard-spherical model, which is characterized
by a strictly off-diagonal overlap. One might wonder if it is the
presence of variable diagonal elements in the mean-spherical
system that results in its simple thermodynamics, and whether
the hard-spherical model, being further constrained, might
exhibit a more complicated behavior under disorder averaging.
We show here that this is not the case: In contrast to a
naive interpretation of the RS solution, quenched and annealed
averages also agree within the hard-spherical system.

Following [1], the analysis for the hard-spherical spin glass
begins similarly to that above. We write

〈Zn〉J =
∫

s,�

exp

[
β2J̄ 2

2N

∑
α 	=β

(∑
i

sα
i s

β

i

)2

− β�

( ∑
i,α

sα2
i − nN

)
+ nNβ2J̄ 2

2

]
, (B1)

where � is now formally to be integrated over in order to
enforce the hard-spherical constraint. Applying a Hubbard-
Stratonovich transformation once again results in an exponent
that depends only on the eigenvalues of Qαβ , but this is now
constrained to be off-diagonal,

〈Zn〉J =
∫

Q,�

exp

[
nNβ2J̄ 2

2
+ nNβ� −

∑
i

V (λi)

]
.

(B2)

In the thermodynamic limit, the partition sum (B2) will be
dominated by those configurations that minimize the exponent.
To evaluate the sum, we again switch to an integration over
the eigenvalues and eigenvectors of Qαβ . The integration over
eigenvalues is now subject to the traceless constraint, and the
orientation averages are further restricted so as to maintain
an off-diagonal coupling matrix. The orientation averages do
not affect the free energy here [18]. Generalizing slightly, we
consider the partition function subject to the constraint that the
eigenvalues sum to s, writing (with terms independent of the
λi temporarily suppressed)

〈Zn(s)〉 ≡
∫

λi

δ

(∑
i

λi − s

)
exp

[
−

∑
i

V (λi)

]
. (B3)

The inverse Laplace transform of 〈Zn(s)〉 is given by

〈Yn(t)〉 =
∫

λi ,s

〈Zn(s)〉est

=
∫

λi

exp

[
−

∑
i

{V (λi) − tλi}
]

. (B4)

The eigenvalue integrations are now independent, and they are
free to each sit at the same optimal saddle point location where

∂λV |λ0(t) = t. (B5)

This effectively sends the V to its Legendre transform. The
partition sum is obtained by inverting the Laplace transform
with s taken to zero,

〈Zn〉J =
∫

λi ,�,t

〈Yn(t)〉et(s→0)

= min
�,λ

exp

[
n

{
Nβ2J̄ 2

2
+ Nβ�+ V − λ∂λV

} ]
. (B6)

It is important to note that the exponent is actually to be
minimized here, in contrast to most spin-glass problems
where the physical solutions are obtained by maximizing
the free energy in the n → 0 limit. The n dependence is
trivial in this model, and consequently, there can be no
peculiarities in the analysis for any value of n. Carrying out
the minimization procedure is straightforward, and the free
energy expressions (15) are once again obtained. Importantly,
the exponent in Eq. (B6) scales linearly with n: Both the mean
and hard-spherical systems satisfy equivalence of quenched
and annealed disorder averages.

We can now relate the exact solution to that obtained via
the RS ansatz. The RS ansatz sends each off-diagonal element
of Qαβ to Q. The eigenvalues of the resulting matrix are then
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given by

−Q (n − 1)-fold degenerate,

(n − 1)Q 1-fold degenerate.
(B7)

Plugging into (B2) gives∑
i

V (λi) = (n − 1)V (−Q) + V [(n − 1)Q]

= n{V (−Q) + QV ′(−Q)} + O(n3), (B8)

which agrees to O(n) with the exact saddle point upon sending
Q → −Q. However, the corrections at higher orders in n in
Eq. (B8) are not consistent with our exact analysis. These
corrections relate to higher order cumulant averages of the free
energy with respect to the disorder averaging. To resolve this
discrepancy, we have evaluated the second order fluctuations
of the free energy about the replica symmetric saddle point,
and have found that the RS saddle is stable only in the n → 0
limit [19]: The RS ansatz fails at finite n, and it can only be
used to evaluate the first cumulant average of lnZ.
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