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An outstanding idea originally introduced by Greenberg is to investigate whether there is equivalence between
intermediate statistics, which may be different from anyonic statistics, and q-deformed particle algebra. Also,
a model to be studied for addressing such an idea could possibly provide us some new consequences about the
interactions of particles as well as their internal structures. Motivated mainly by this idea, in this work, we consider
a q-deformed Fermi gas model whose statistical properties enable us to effectively study interpolating statistics.
Starting with a generalized Fermi-Dirac distribution function, we derive several thermostatistical functions of a
gas of these deformed fermions in the thermodynamical limit. We study the high-temperature behavior of the
system by analyzing the effects of q deformation on the most important thermostatistical characteristics of the
system such as the entropy, specific heat, and equation of state. It is shown that such a deformed fermion model in
two and three spatial dimensions exhibits the interpolating statistics in a specific interval of the model deformation
parameter 0 < q < 1. In particular, for two and three spatial dimensions, it is found from the behavior of the
third virial coefficient of the model that the deformation parameter q interpolates completely between attractive
and repulsive systems, including the free boson and fermion cases. From the results obtained in this work, we
conclude that such a model could provide much physical insight into some interacting theories of fermions, and
could be useful to further study the particle systems with intermediate statistics.
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I. INTRODUCTION

One of the most important theorems in quantum field theory
is the spin-statistics theorem, which asserts that particles with
spin equal to an even multiple of h̄/2 are bosons and those with
spin equal to an odd multiple of h̄/2 are fermions [1–3]. Due
to the contrasting nature of symmetry requirements between
bosons and fermions, only fermionic particles obey the Pauli
exclusion principle. However, studies on nonlinear behaviors
in complex systems observed in nature indicate sensibly that
there could be nonstandard type (or types) of quantum statistics
outside the standard Bose-Einstein and Fermi-Dirac statistics,
which therefore could explain the observed nonlinearities
[4–11]. Some of the earlier examples of nonstandard statistics
can be mentioned through the works of Gentile [12] and
Green [13].

In the last two decades, the two distinct methods in
the literature became most popular for studying nonlinear
behaviors observed in complex systems, which possibly could
have nonstandard quantum statistical behaviors. Both methods
serve as to formulate possible generalizations of statistical
mechanics. The first method employs the properties of one-
or two-parameter generalized bosonic and fermionic quan-
tum group structures [14–18]. The second method exploits
the properties of Tsallis nonextensive statistical mechanics
[19,20]. Meanwhile, possible connections between quantum
groups and Tsallis nonextensive statistical mechanics have
been extensively investigated [21–24].

In studying complex systems, fermionic quantum algebras
have found many applications in a wide spectrum of research
covering black hole statistics [25], and discussions on some
hadronic properties such as the dynamical mass generated
for quarks and the pure nuclear pairing force version of
the Bardeen-Cooper-Schrieffer (BCS) many-body formalism
[26,27]. They were also used to understand higher-order effects

in the many-body interactions in nuclei [28,29]. By means
of quantum algebras, one could also describe interactions
between bosons and fermions.

Furthermore, statistical and thermodynamical conse-
quences of studying q-deformed physical systems have been
intensively investigated in the literature [30–49]. In the
framework of q bosons and similar operators, the so-called
quons [50], considerable investigations have been carried
out for obtaining possible violation of the Pauli exclusion
principle [51], and also possible relations to anyonic statistics
[52–55]. Also, some recent studies have been used to view q

deformations as a phenomenological means of introducing an
extra parameter, “q”, to account for nonlinearity in the system.
Such an approach was considered in [56,57], where some
values of q are found to fit the properties of a real (nonideal)
laser and of the gap in the specific heat of a dilute gas of ru-
bidium atoms, respectively. Therefore, such interesting results
constitute some motivation to consider quantum algebras for
approximating properties of interpolating statistics. Another
motivation to consider fermionic or bosonic quantum algebras
for approaching properties of interpolating statistics comes
from the recent developments on some quasiparticle states
such as non-Abelian anyons [58], trions [59], and excitons
[60].

On the other hand, it was shown in [61–66] that the
high and low-temperature behaviors of the quantum group
covariant bosonic and fermionic oscillator models depend
radically on the real deformation parameters. In our recent
study [64], we showed that the two-parameter deformed
quantum group boson gas exhibits an interesting behavior for
high temperatures such that its willingness to show fermionlike
behavior increases too much for a wide range of the model
deformation parameters q1 and q2. Also, the two-parameter
deformed quantum group fermion gas model has revealed
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some notable properties for high temperatures [65]. For
instance, such a two-parameter fermion model in two spatial
dimensions exhibits a remarkably anyonic type of behavior
at some critical values of the model deformation parameters.
However, it is impossible to obtain a similar behavior either in
the one-parameter deformed SUq(2)-fermion gas model [63] or
in the undeformed fermion gas. Moreover, thermodynamical
and statistical consequences of the one-parameter deformed
bosonic and fermionic oscillator algebras without quantum
group symmetries have been recently studied by Lavagno and
Narayana Swamy [67–70]. In these works, they have shown
that the thermostatistics of one-dimensional q-deformed
bosonic and fermionic oscillators can be built on the formalism
of q calculus. Although different approximations have been
considered to examine the properties of interpolating statistics
such as in [71–73], the complete theory of intermediate
statistics is currently under active investigation.

Apart from the physical motivations mentioned above, an
outstanding idea originally introduced by Greenberg [50,51]
is mainly what motivated us. His idea was whether there is
equivalence between intermediate statistics and q-deformed
particle algebra with or without quantum group symmetry.
Also, a model to be studied for addressing such an idea
could possibly provide us some new consequences about the
interactions of particles as well as their internal structures.
Therefore, in the present work, we will not only pursue
this idea, but also we will study the statistical mechanical
properties of a fermionic q-algebra model, which has some
exotic properties such as no exclusion principle. Indeed, it will
be shown that the model under consideration enables us to
effectively study interpolating statistics, which may indeed be
different from that of anyons.

With the above notions in mind, we consider a
different generalization of the fermionic system, called
Viswanathan-Parthasarathy-Jagannathan-Chaichian (VPJC)
oscillators. They have a spectrum given by the q-fermionic
basic number, and do not satisfy the Pauli exclusion principle
when q �= 1. Historically, this model was first introduced by
Viswanathan et al. [74] and some of its statistical properties
were also discussed by Chaichian et al. [75]. Therefore, we call
them the VPJC-oscillators model. When compared with the
other fermion models in the literature [30–35,63,68–73,76],
the VPJC-oscillators model has rather different properties
which will be shown below, and it has not been fully examined
in the past.

Thus, the aim of this paper is twofold. First, we wish to
study the high-temperature thermostatistical properties of a
gas of the VPJC oscillators. In this sense, we continue to
further study the work of [76], and investigate the effects of q

deformation on the high-temperature behavior of the system.
Particular emphasis is given to a discussion on the behaviors
of virial coefficients in terms of the deformation parameter q

in the equation of state for such a deformed fermion system.
Second, we want to investigate possible connections between
the thermostatistical properties of such a deformed fermion
model and the properties of interpolating statistics. Hence, it
will be shown below that the model exhibits an interpolation
between bosonlike and fermionlike behaviors by means of
its third virial coefficient. Therefore, the model is important
not only in showing a link between deformed fermions and

interpolating statistics, but also in providing a physically
interpretable model of q-deformed objects.

The paper is organized as follows. In Sec. II, we re-
view the basic algebraic and representative properties of
the VPJC-oscillators model. In Sec. III, we investigate the
high-temperature thermostatistical properties of a gas of such
deformed fermion oscillators in the thermodynamical limit.
For instance, we derive the distribution function and the
equation of state as a virial expansion in the two- and
three-dimensional space in order to determine the role of the
deformation parameter q on the system. In the last section,
we discuss possible connections between our results and
interpolating statistics, and give our conclusions.

II. THE VPJC-OSCILLATORS MODEL

In this section, we briefly introduce the basic properties
of the VPJC-oscillators model which leads to a suitable
framework in order to study the properties of interpolating
statistics. The model generated by the VPJC oscillators c

together with their corresponding creation operators c∗ is
defined by the following relations [74,75]:

cc∗ + qc∗c = 1,

[N̂,c] = −c, [N̂,c∗] = c∗, (1)

where N̂ is the number operator and q is the real positive
deformation parameter. Although this model can be obtained
by making a transformation [74,75] from another generalized
fermion algebra proposed by Parthasarathy and Viswanathan
[34], it notably reveals different quantum algebraic and
statistical properties, as will be discussed below. Also, when
compared with the other q-fermion algebras [76], it constitutes
a less popular model, and it has not been fully examined in the
literature.

Furthermore, the deformed fermion number operator for
the model algebra in Eq. (1) can be obtained as

c∗c = [N̂ ] = 1 − (−1)N̂ qN̂

1 + q
, (2)

whose spectrum is given by

[n] = 1 − (−1)nqn

1 + q
, (3)

which is the q-fermionic basic number for the VPJC-
oscillators model. For q �= 1, one can construct the represen-
tations of the operators c, c∗ in the Fock space spanned on the
states |n〉 of the fermion number operator according to

|n〉 = (c∗)n√
[n]!

|0〉 , (4)

where [n]! = [n][n − 1][n − 2] . . . [1]. The actions of the
operators c and c∗ on the Fock states |n〉 can be obtained
as

c|n〉 =
√

[n]|n − 1〉, c∗|n〉 =
√

[n + 1]|n + 1〉,
c∗c|n〉 = [N̂ ]|n〉 = [n]|n〉. (5)

On the other hand, the Pauli exclusion principle in the
VPJC-oscillators model can be recovered only in the limit
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q = 1, since we have

lim
q→1

[1] = 1, lim
q→1

[2] = 0, (6)

which implies (c∗)n = 0 for n > 1 in Eq. (4). Hence, the
Fock states for this model reduce to the states |0〉 and |1〉.
Therefore, we need not assume the condition c2 = 0 for this
model in contrast with the situation introduced in [75]. Also,
as pointed out in [74], Eqs. (3) and (4) show that the positive
norm condition on the state vectors cannot be satisfied for
even values of n if q > 1. Therefore, we consider the interval
0 < q < 1 for the deformation parameter q in this model for
the rest of calculations in the present work.

All of the properties mentioned above reveal that the VPJC-
oscillators model presents different nontrivial generalized
fermions with a spectrum in Eq. (3) without exclusion principle
in the interval 0 < q < 1. It is not only different from the
properties of other q-fermion models studied by several
researchers [30–35,63,68–73,76] but it also differs from the
bosonic q-oscillator model introduced by Arik and Coon [77]:

bb∗ − qb∗b = 1, 0 < q < 1,
(7)

[b,N̂ ] = b, [b∗,N̂ ] = −b∗,

whose number operator spectrum was defined by the relation

[n] = 1 − qn

1 − q
. (8)

Furthermore, following the procedure proposed in [70,78] on
another generalized fermion algebra, we now establish the
Jackson derivative (JD) [79] appropriate for the model algebra
in Eqs. (1)–(3). We may have the holomorphic representation
as

c ⇔ Dx, c∗ ⇔ x. (9)

Hence, the model algebra in Eqs. (1)–(3) can be rewritten as

Dxx + qxDx = 1. (10)

To derive a solution for this equation, we first observe the
following relation:

x[N̂ + 1] + qx[N̂ ] = x, (11)

which can be expressed by means of Eq. (5). From Eqs. (10)
and (11), and using the property [N̂ ]x = x[N̂ + 1], we deduce
the following solution:

Dx = 1

x
[N̂] = 1

x

(
1 − (−1)N̂ qN̂

1 + q

)
. (12)

If we use the property (−q)N̂ f (x) = f (−qx) [80], this
fermionic JD can also be expressed as

Dxf (x) = 1

x

(
f (x) − f (−qx)

1 + q

)
, (13)

for any function f (x). This fermionic JD does not reduce to
the ordinary derivative in the limit q = 1. Recently, many of
the mathematical properties of this operator were studied by
Schork [42]. But, the above analysis is different from Schork’s
study [42], where the author just employed a replacement
q ≡ −q̃ with q̃ > 0 for the Arik-Coon oscillator algebra in
Eqs. (7) and (8). Note that the deformation parameter q for our

model algebra in Eqs. (1)–(3) is strictly positive. In particular,
if one introduces a function F (x) together with its even part
Fe(x) and odd part Fo(x) by

F (x) = Fe(x) + Fo(x), Fe(x) = 1
2 {F (x) + F (−x)} ,

(14)
Fo(x) = 1

2 {F (x) − F (−x)} ,

then one finds that DxFe(x) vanishes in the limit q = 1, and
in the same limit it also reduces to

DxF (x) = Fo(x)

x
. (15)

A more detailed analysis about the Fock space representations
and the fermionic JD on this model was recently carried out
in [76]. The fermionic JD in Eq. (13) plays a central role in
the framework of mathematical physics such that it is not only
needed to define a consistent formulation of the fermionic q

calculus, but it is also required to study the thermostatistics of
a gas of the VPJC oscillators.

The fact that when 0 < q < 1, the VPJC-oscillators model
in Eqs. (1)–(3) shows different generalized fermions without
exclusion principle, i.e., the Fock states may be occupied by
an arbitrary number of quanta with n = 0,1,2,3, . . . ∞, could
give new interesting results in the framework of statistical
mechanics such as unusual realizations of quantum statistics.
In the next section, we will particularly focus on the high-
temperature thermostatistical properties of a gas of the VPJC
oscillators in order to examine the behaviors of intermediate
statistics particles.

III. HIGH-TEMPERATURE THERMOSTATISTICS
OF THE VPJC OSCILLATORS

Now we are going to investigate the high-temperature (low
density) behavior of the VPJC-oscillators gas described by
model algebra in Eqs. (1)–(3) in a specific interval, 0 < q <

1. The system containing the VPJC oscillators constitutes
essentially a “free” q-deformed fermionic gas system, since
the VPJC oscillators do not interact with each other. The
reason behind this consideration is that we do not have both a
specific deformed anticomutation relation between fermionic
annihilation (or creation) operators and a quantum group
symmetry structure in Eq. (1). In grand canonical ensemble,
the model Hamiltonian of such a deformed fermion gas can be
expected to have the following form:

ĤF =
∑

i

(εi − μ)N̂i, (16)

where εi is the kinetic energy of a particle in the i state,
and μ is the chemical potential. Similar Hamiltonians were
also considered by several other authors [30–41,67–73,75,76].
Since we have the number operator defined in Eq. (2), we
should concisely point out that the form in Eq. (16) shows
a deformed Hamiltonian, which depends implicitly on the
deformation parameter q. The mean value of the q-deformed
occupation number ni is defined by [37]

[ni] = 1

Z
Tr(e−βĤF [N̂i]) ≡ 1

Z
Tr(e−βĤF c∗

i ci), (17)

where β = 1/kT , k is the Boltzmann constant, T is the
temperature of the system, and Z = Tr(e−βĤF ) is the partition
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FIG. 1. The q-deformed Fermi-Dirac distribution n(η,q) as a
function of η = β(ε − μ) for values of the deformation parameter
q smaller than 1 for finite temperatures.

function. After applying the cyclic property of the trace [30],
and using the Fock space properties of the VPJC-oscillators
algebra in Eqs. (1) and (5), we obtain

[ni]

[ni + 1]
= e−β(εi−μ). (18)

Also, from Eqs. (3) and (6), we have

lim
q→1

[n] = n, lim
q→1

[n + 1] = 1 − n, n = 0,1, (19)

where we have dropped the subscript i for the sake of
simplicity. Therefore, the expression in Eq. (18) reduces to
the usual Fermi-Dirac distribution in the limit q = 1. From
the definition of the q-fermion basic number [n] in Eq. (3) and
using Eq. (18), we derive

n = n(η,q) = 1

|ln q|
∣∣∣∣ln

( |eη − 1|
eη + q

)∣∣∣∣ , (20)

where η = β(ε − μ), and the deformation parameter q has
values in the interval 0 < q < 1. This equation provides the
q-fermion distribution of the VPJC-oscillators model, which
may also be expressed as statistical distribution function
for a gas of the particles obeying interpolating statistics.
Moreover, it satisfies the positivity condition to be the correct
fermion distribution function. Also, one should consider the
relations in Eqs. (18) and (19) in order to find the usual
Fermi-Dirac distribution as n(η) = 1/(eη + 1), which has a
similar modified form for the case q = 1 for finite temperatures.
It takes the standard step-functional form in the limit T = 0 for
any values of q. Hence, we conclude that the q deformation
of fermions is just a finite temperature effect in the present
VPJC-oscillators model. It is discontinuous at ε = μ and also,
the peak of this function occurs at η = 0 for any values of
q. In Fig. 1, the q-deformed statistical distribution function
n(η,q) of the VPJC oscillators is shown for finite temperatures
as a function of η = β(ε − μ) for values of the deformation
parameter q smaller than 1. Consequently, the behavior of
the statistical distribution for interpolating statistics particles

exhibited by the present fermion model is rather different from
both the usual fermion distribution and the other q-fermion
models considered in the literature [76].

Using the relations in Eqs. (13) and (20), we deduce the
logarithm of the fermionic grand partition function as

ln ZF = (1 + q)

|ln q|
∑

i

|ln |(1 − ze−βεi )||, (21)

where 0 < q < 1, and the fugacity is assumed to have the
standard form z = eβμ. However, the standard thermodynamic
relations in the usual form are ruled out. For instance, the total
number of particles in the VPJC-oscillators gas model cannot
be obtained by using a standard thermodynamical expression
such as

N �= z

(
∂

∂z

)
ln ZF . (22)

Here, an important point is to use the fermionic JD in Eq. (13)
instead of the usual thermodynamics derivative with respect to
z as follows:

∂

∂z
→ D(q)

z , (23)

where the fermionic JD D
(q)
z has the same form as in Eq. (13)

with the variable z. Therefore, the total number of particles in
the VPJC-oscillators gas can be derived from the relation

N = zD(q)
z ln ZF ≡

∑
i

ni, (24)

where ni is expressed by Eq. (20). In order to obtain the high-
temperature thermostatistical characteristics of the system, we
can replace the sums over states by integrals for a large volume
and a large number of particles [81–84]. Accordingly, the
equation of state (PV /kT ) = ln ZF can be written as

P

kT
= (1 + q)

|ln q|
4π

h3

∫ ∞

0
dp p2|ln |(1 − ze−βp2/2m)||, (25)

where 0 < q < 1. Similarly, the particle density for the VPJC
oscillators is

1

υ
= N

V
= 1

|ln q|
4π

h3

∫ ∞

0
p2 dp

∣∣∣∣∣ln
(

|(1 − ze−βp2/2m)|
1 + qze−βp2/2m

)∣∣∣∣∣.
(26)

Using the fermionic JD in Eq. (13) and after straightforward
manipulation, Eqs. (25) and (26) can be rewritten as

P

kT
= 1

λ3
f5/2(z,q), (27)

1

υ
= 1

λ3
f3/2(z,q), (28)

where λ =
√

2πh̄2/mkT is the thermal wavelength, and the
one-parameter generalized Fermi-Dirac function fn(z,q) is
defined as

fn(z,q) = 1

	(n)

∫ ∞

0
xn−1 dx

1

|ln q|
∣∣∣∣ln

( |(1 − ze−x)|
1 + qze−x

)∣∣∣∣
= 1

|ln q|

( ∞∑
l=1

(−1)l−1 (zq)l

ln+1
−

∞∑
l=1

zl

ln+1

)
, (29)
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FIG. 2. (Color online) The q-deformed Fermi-Dirac function
fn(z,q) (red dotted line, n = 5/2; black dashed line, n = 3/2) as
a function of z for the case q < 1.

where x = βε and ε = p2/2m. This one-parameter general-
ized function reduces to the standard Fermi-Dirac functions
fn(z) in the limit q = 1, when we consider the discussions
made after Eq. (20). Moreover, these functions are different
from the functions h(n,z,q) of [68–70]. In order to compare
the behaviors of the q-deformed functions fn(z,q) and the
standard functions fn(z), in Figs. 2 and 3, the plots of these
functions are shown as a function of z for several values of
the deformation parameter q for the case q < 1, respectively.
When we compare with the q = 1 case in Fig. 3, the values of
the q-deformed Fermi-Dirac functions f3/2(z,q) and f5/2(z,q)
for the case q < 1 increase with the value of the deformation
parameter q, as shown in Fig. 2. Also, the values of these
deformed functions for q < 1 are larger than the standard

FIG. 3. The standard Fermi-Dirac function fn(z) (solid line, n =
5/2; dashed line, n = 3/2) as a function of z.

FIG. 4. The q-deformed entropy function Sq/Nk as a function of
z for the case q < 1.

fn(z) functions at the same fugacity. According to Figs. 2
and 3, the values of the function f3/2(z,q) are larger than those
of the function f5/2(z,q) for the case q < 1 in contrast to the
behaviors of the standard functions f3/2(z) and f5/2(z).

The method proposed in [68] can be applied to find the
internal energy of the VPJC-oscillators gas in the present
model. In this calculation, we consider the prescription for
the fermionic JD in Eq. (13) and the ordinary chain rule as
follows:

U =
(

−∂ ln ZF

∂β

)
= − (1 + q)

|ln q|
∑

i

∂yi

∂β
D(q)

yi
|ln |(1 − zyi)||,

(30)

where yi = exp(−βεi). This equation leads to

U =
∑

i

εini, (31)

where ni is expressed by Eq. (20). We can also obtain the
internal energy as

U

V
= 3

2

kT

λ3
f5/2(z,q). (32)

From Eqs. (13), (21), (28), and (32), the entropy for the VPJC-
oscillators gas can be found as

Sq

Nk
= 5

2

f5/2(z,q)

f3/2(z,q)
− ln z. (33)

For comparison, in Figs. 4 and 5, we present the plots of the
q-deformed entropy function Sq/Nk and the entropy function
S/Nk of a free fermion gas as a function of z for values of
the deformation parameter q for the cases q < 1 and q =
1, respectively. For q < 1, the entropy values of the VPJC-
oscillator gas decrease with the values of the deformation
parameter q. Also, the entropy values of the VPJC-oscillators
gas for the interval 0 < q < 1 are lower than the results of
a free fermion gas at the same fugacity as shown in Figs. 4
and 5.
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FIG. 5. The entropy function S/Nk for a free fermion gas as a
function of z.

With the above results in mind, the specific heat of the
VPJC-oscillators gas can be obtained from the thermodynamic
definition CV = (∂U/∂T )V,N . For high temperatures and
making use of the fermionic JD in Eq. (13), the specific heat
of our model is

C
q

V λ3

kV
= 15

4
zDzf7/2(z,q) − 9

4
z

(Dzf5/2(z,q))2

Dzf3/2(z,q)
, (34)

which has a rather different form than that of a free fermion
gas [82].

On the other hand, for high temperatures, i.e., the limit
λ3/υ 
 1, using Eqs. (28) and (29), we find the fugacity z in
terms of the deformation parameter q up to the fourth order in
(λ3/υ) as

z = |ln q|
(q − 1)

(
λ3

υ

)
+ 1

25/2

|ln q|2
(q − 1)3

(q2 + 1)

(
λ3

υ

)2

+
[

1

24

|ln q|3
(q − 1)5

(q2 + 1)2 − 1

35/2

|ln q|3
(q − 1)4

(q3 − 1)

]

×
(

λ3

υ

)3

+
[

5

215/2

|ln q|4
(q − 1)7

(q2 + 1)3 − 5

65/2

|ln q|4
(q − 1)6

× (q2 + 1)(q3 − 1) + 1

25

|ln q|4
(q − 1)5

(q4 + 1)

] (
λ3

υ

)4

,

(35)

where 0 < q < 1. The equation of state for the VPJC-
oscillators system can also be derived from Eqs. (27) and (28)
as a virial expansion in the three-dimensional space:

PV

NkT
=

∞∑
l=1

al(q)

(
λ3N

V

)l−1

, (36)

FIG. 6. (Color online) The virial coefficients al(q) (blue dotted
line, n = 4; black solid line, n = 3; and red dashed line, n = 2) as
a function of the deformation parameter q for a three-dimensional
system. The line at q = 0.2019 separates the region between a3(q) <

0 and a3(q) > 0, which corresponds to bosonlike and fermionic
behavior, respectively.

where the first few virial coefficients al(q) are given by

a1(q) = 1, (37)

a2(q) = 1

27/2

|ln q|
(q − 1)2

(q2 + 1), (38)

a3(q) = 1

25

|ln q|2
(q − 1)4

(q2 + 1)2 − 2

37/2

|ln q|2
(q − 1)3

(q3 − 1),

(39)

a4(q) = 5

217/2

|ln q|3
(q − 1)6

(q2 + 1)3

− 3

65/2

|ln q|3
(q − 1)5

(q3 − 1)(q2 + 1)

+ 3

27

|ln q|3
(q − 1)4

(q4 + 1), (40)

where 0 < q < 1. We should note that the first coefficient is
exact, since it does not contain any term with deformation pa-
rameter q. The other virial coefficients contain the higher-order
terms depending on the several powers of the deformation
parameter q, which may be considered as the deviations from
the corresponding standard values of these coefficients for
a free fermion gas system [82]. Since we are dealing with
the high-temperature limit, we are particularly focusing our
attention to the virial coefficients a2(q), a3(q), and a4(q), and
omitting the other terms. Obviously, the signs of these virial
coefficients depend on the values of the deformation parameter
q. Therefore, this parameter is responsible for the behavior of
the present fermion gas model. Figure 6 shows a graph of these
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virial coefficients as a function of the deformation parameter
q for the interval 0 < q < 1.

On the other hand, it is interesting to investigate whether
a similar behavior could be found for the two-dimensional
system by performing the same calculations. If one follows
the same procedure as above, then the equation of state can be
derived as

PA

NkT
=

∞∑
l=1

ãl(q)

(
λ2N

A

)l−1

, (41)

where A is the surface confining the fermionic system, and the
first few virial coefficients ãl(q) in the two-dimensional space
are as follows:

ã1(q) = 1, (42)

ã2(q) = 1

23

|ln q|
(q − 1)2

(q2 + 1), (43)

ã3(q) = 1

24

|ln q|2
(q − 1)4

(q2 + 1)2 − 2

33

|ln q|2
(q − 1)3

(q3 − 1), (44)

ã4(q) = 5

27

|ln q|3
(q − 1)6

(q2 + 1)3 − 1

223

|ln q|3
(q − 1)5

× (q3 − 1)(q2 + 1) + 3

26

|ln q|3
(q − 1)4

(q4 + 1), (45)

where 0 < q < 1, and the first coefficient is again exact since
it does not contain any term with the deformation parameter
q. The other virial coefficients contain the higher-order terms
depending on the several powers of the deformation parameter
q, which may also be considered as the deviations from
the corresponding standard values of these coefficients for
a free fermion gas system in two dimensions [7]. As in the
above three-dimensional case, we focus on the behaviors of
the virial coefficients in Eqs. (43)–(45) in order to find the
effects of q deformation for high temperatures, and we omit
the other virial coefficients in Eq. (41). In this way, we wish to
find out how the q deformation affects the high-temperature
quantum statistical behavior of the present fermion model.
Figure 7 shows a graph of these three virial coefficients as
a function of the deformation parameter q for the interval
0 < q < 1. Obviously, the signs of the virial coefficients
in Eqs. (43)–(45) depend on the values of the deformation
parameter q.

We wish to close this section by particularly discussing the
third virial coefficients a3(q) and ã3(q) for both the three-
and two-dimensional systems in Eqs. (39) and (44). It is
seen from Figs. 6 and 7, the values of the coefficients are
always positive for the interval 0 < q < 1 except for the
virial coefficients a3(q) and ã3(q). The signs of the third
virial coefficients in Eqs. (39) and (44) change depending on
the values of the deformation parameter q. For instance, in
the three-dimensional space, the third virial coefficient a3(q)
has just negative values for high temperatures for the case
q � 0.2019, as shown in Fig. 6. On the other hand, in the
two-dimensional case, the third virial coefficient ã3(q) has
just negative values for the case q � 0.1270, as shown in

FIG. 7. (Color online) The virial coefficients ãl(q) (blue dotted
line, n = 4; black solid line, n = 3; and red dashed line, n = 2) as
a function of the deformation parameter q for a two-dimensional
system. The line at q = 0.1270 divides the region between ã3(q) <

0 and ã3(q) > 0, which corresponds to bosonlike and fermionic
behavior, respectively.

Fig. 7. Therefore, these third virial coefficients are responsible
for the behavior of the present fermion model. The free
fermion gas results a3(q) = 0.0033 [83] and ã3(q) = 0.0278
[7] are reached at q = 0.2091 and q = 0.1632, respectively.
However, the free boson gas results a3(q) = −0.0033 [83]
and ã3(q) = −0.0278 [7] are reached at q = 0.1947 and
q = 0.0948, respectively. Indeed, this remarkable point is the
essential difference between the present femionic gas model
and the earlier one- and two-parameter deformed fermionic
gas models [61–66,76], although it seems to be of minor
importance in the high-temperature limit, when compared to
the other virial coefficients in Eqs. (38), (40), and (43), (45);
according to our point of view it brings about a separation
between attractive (q � 0.2019 or q � 0.1270) and repulsive
(q > 0.2019 or q > 0.1270) behaviors of the system in two
and three spatial dimensions.

Therefore, as far as we concern the third virial coefficients
a3(q) and ã3(q) in the high-temperature limit, the original
fermionic character of the VPJC-oscillators gas model would
change to a bosonlike behavior for those values of the
deformation parameter q in the cases q � 0.2019 and q �
0.1270, respectively. The VPJC-oscillators gas model exhibits
bosonlike behaviors in the critical values of the deformation
parameter q. Such type of behavior can typically be seen in
the case of anyonic gas systems. Since the VPJC-oscillators
model interpolates between bosonlike and fermionic behaviors
up to the third virial coefficients in two dimensions, we can
find a relation between the deformation parameter q of our
model and the statistics determining parameter α for an anyon
gas [85] in two spatial dimensions. Accordingly, we obtain the
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following relation:

α = α(q) =
[

1

2
+ 1

4
√

3

|ln q|
(q − 1)2

×
√

27(q2 + 1)2 − 32(q3 − 1)(q − 1)
]1/2

, (46)

where q < 1.
By considering the above results, we should emphasize

that the results in Eqs. (20)–(46) are not only different from
the results for the one- and two-parameter fermion models
studied in [61–66,76], but also they could serve to present
willingness of bosonlike behavior of the VPJC-oscillators
model through some critical values of the deformation param-
eter q. Therefore, the deformation parameter q serves as an
interpolating object between repulsive and attractive behaviors
of the system as are shown in Figs. 6 and 7. We conclude
that all the above considerations give the main reasons for
considering the VPJC oscillators as interpolating statistics
objects.

However, it must be pointed out for all equations above
that the free fermion gas results can only be recovered
upon recognizing the discussions after Eq. (20) and applying
the limit q = 1. In the next section, the other effects
of the deformation parameter q on the high-temperature
thermostatistical behavior of the VPJC-oscillators gas will be
discussed.

IV. DISCUSSION AND CONCLUSION

In this paper, we studied the high-temperature behavior of
a deformed fermion gas model. Starting with a q-deformed
Fermi-Dirac distribution function and with the use of the
fermionic JD, we calculated various thermostatistical func-
tions of the VPJC-oscillators gas model, and consequently the
equation of state is obtained as a virial expansion in the two-
and three-dimensional space. In this context, the first four virial
coefficients are examined for the interval 0 < q < 1. We found
particularly that the signs of the third virial coefficients a3(q)
and ã3(q) depend on the deformation parameter q in both two
and three spatial dimensions. According to Figs. 6 and 7, the
deformation parameter q interpolates between bosonlike and
fermionic behaviors. Also, in both two and three dimensions,
we may remark that the VPJC-oscillators gas model exhibits
an interpolation between attractive and repulsive systems
for some critical values of the deformation parameter q

as indicated above. Therefore, the present fermion model
presents a different system containing interpolating statistics
particles such that the deformation parameter q may also be
interpreted as an interpolating object between fermionic and
bosonic characters of the system. When compared with the
high-temperature thermostatistical properties of both other
q-fermion gases [76], and the quantum group symmetric
fermion gases [61–66], different properties of the VPJC
oscillators given in Eqs. (20)–(46) enable us to say that the
model obeys the interpolating statistics, which was not shown
before by other q-fermion models in this field of research. As
far as we know from the literature, this is the first attempt to
introduce the interpolating statistics from a deformed fermion
gas model having the properties in Eqs. (1)–(6) and (9)–(15).

This model in two and three spatial dimensions has a crucial
behavior through the deformation parameter q. For instance, as
concerns the third virial coefficient ã3(q) in two dimensions, it
exhibits an interpolation between attractive (q � 0.1270) and
repulsive (q > 0.1270) systems including the free boson and
free fermion cases as shown in Fig. 7. Hence, we have shown
that this simple VPJC-fermionic system describes such kinds
of different systems spanning from bosonlike to fermionic
regions. Such a result indicates a similar physical behavior
as seen in anyonic systems [52–55], whereas apart from the
recent study of Lavagno and Narayana Swamy [86], such a
behavior in the case of other deformed fermion gases in two
spatial dimensions was not yet fully examined. It should be
noted that the q-fermion algebra studied in [86] is different
from the present VPJC-oscillators model. As a result, this
study also shows us that a deformed fermion model can lead
to interpolating statistics behavior without the use of any
quantum group covariance. In this sense, we may remark that
the properties of interpolating statistics could really differ from
the properties of anyonic systems with fractional statistics.
However, our results are in contrast to the consequences of the
work of Narayana Swamy [70], where he exploited a different
definition of the one-dimensional q-fermionic algebra.

On the other hand, the other effects of q deformation on the
high-temperature thermostatistical properties of the system
can be summarized as follows: (i) According to Fig. 1, the
values of the q-deformed Fermi-Dirac distribution function
n(η,q) of the VPJC-oscillators model for the case q < 1
increase when the deformation parameter q is increased at the
same η values. Also, the q-deformed Fermi-Dirac distribution
function in Eq. (20) takes the standard step-functional form in
the limit T = 0. However, the VPJC oscillators do not satisfy
the Pauli exclusion principle for the interval 0 < q < 1. In this
sense, we can say, for instance, that it is possible to occupy
more than two q fermions in a given quantum state. Such
a consideration implies that the present fermion oscillators
behave like bosons for those values of q, and hence they could
lead to supersymmetrization in a way that we can collect
them together in the same Fock states of SUSY generators.
(ii) According to Fig. 2, the values of the deformed functions
fn(z,q) for q < 1 increase when the deformation parameter
q is increased. However, such a result is in contrast to the
behavior of corresponding deformed h(n,z,q) functions of
another q-fermion model studied in [70]. (iii) According to
Figs. 4 and 5, the entropy of the VPJC-oscillators gas decreases
for q < 1 such that its minimum value occurring at q = 0.99
is lower than the values of corresponding entropy functions of
both a free fermion gas and another q-fermion model [70] at
the same fugacity. (iv) We should emphasize that the values of
all deformed thermostatistical functions have more sensitive
variations to those q values, which are in a specific interval
0.8 � q < 1. For this range, except for the entropy of the
present model, all deformed functions considered increase
radically.

Furthermore, from Eqs. (38)–(40) and (43)–(45), we may
alternatively interpret the effect of q deformation on the ther-
mostatistics of the model for both two- and three-dimensional
space for high temperatures as follows. In particular, when we
focus on the behavior of the third virial coefficients shown
in Figs. 6 and 7, they change their signs according to some
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specific values of the deformation parameter q, which may
be regarded as a control parameter to interpolate between
fermionic and bosonlike systems. It seems that the interactions
among deformed fermions are such that they lead to a behavior
similar to bosonic character for the interpolating statistics
particles of the present model. Therefore, both the higher-order
contributions in Eqs. (39) and (44) and the nature of the
signs of these coefficients deserve an interpretation, so that the
representation used here brings about an interacting system of
fermionlike particles obeying interpolating statistics. Hence,
all of the above considerations indicate to us the presence of
such an interaction in the system. A parallel discussion was
made by the works of Scarfone and Narayana Swamy [87,88]
with the use of a q-boson system. They investigated the
possibility of finding whether q deformation can originate
from the interactions among bosons through a form of the

equation of state in the q-boson system for three dimensions
[87,88].

As a consequence, our results in this study can hopefully
be applied to approximate nonlinear behaviors of other
realistic systems such as cluster expansions for either real
gases or interacting fluids and understanding the higher-order
interaction terms in many-body quantum systems.

The low-temperature behavior of the present one-parameter
fermion model and other aspects of interpolating statistics are
some open problems, parallel to this study to be pursued in the
near future.
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