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Yukawa model on a lattice in the quenched approximation
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The Yukawa model in the quenched approximation is expressed as a disordered statistical mechanics model
on a four-dimensional Euclidean lattice. We study this model, giving particular attention to the singularities of
the Dirac operator in the phase diagram. A careful analysis of a particular limiting case shows that finite volume
effects can be huge and questions the quenched approximation. This is confirmed by numerical simulation
performed in this limiting case and without the quenched approximation.
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I. INTRODUCTION AND MODEL

A. Introduction

For a long time it has been recognized that quantum field
theory can be expressed as a statistical mechanics problem.
The two areas have benefited from their proximity and many
techniques developed in one context have been used in the
other [1]. The expression of quantum field theories in terms of
statistical mechanics has been especially useful in the context
of the fundamental theory describing the interaction of quarks
and gluons, i.e., quantum chromodynamics (QCD), where the
usual perturbative techniques fail. Indeed it has been found
that perturbative series in any quantum field theory have a zero
convergence radius and are asymptotic but never convergent
[2]. In such situations, it is common to resort to a numerical
approach based on the Feynman path-integral formulation,
where the system is described by a discretized action on a
space-time lattice [3].

The numerical formulation of QCD on a lattice is currently
among the most challenging problems in numerical physics
and the progress made during past decades has been very
important. The methods developed in this context can also be
applied to other quantum field theories [4] in situations where
perturbation theory fails, for example in the investigation
of binding energies. Indeed such calculations would require
the evaluation of an infinite number of contributions in a
perturbative scheme.

In this paper we study the simplest fermion quantum field
theory in four space-time dimensions, that is, the model
introduced by Yukawa for the nuclear interaction [5]. The
model is described in detail in Ref. [6], but since the aim of this
paper is to adopt a statistical mechanics point of view, we use
a schematic approach to illustrate how one goes from nuclear
physics modeling to the statistical mechanics formulation.

Similar models were analyzed some time ago using the
same techniques [7], and two distinct regimes were found: for
small and large values of the coupling constant the system
was numerically solvable, whereas for intermediate values it
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was not. In this paper we address this issue in detail (see also
Ref. [6]). The same techniques have been used for a numerical
study of a similar model [8], where bounds on the Higgs boson
mass are established based on a Yukawa coupling between
quarks and the Higgs boson.

B. The model

The model introduced by Yukawa aimed at a description
of nuclei via the exchange of particles in analogy with
quantum electrodynamics, except that the particles mediating
the nuclear force have to be massive in order to have a
finite range interaction. Although it is accepted that QCD
is the fundamental theory of quarks and gluons responsible
for nuclear interactions, one-boson exchange models are still
mandatory in the nuclear physics community.

Therefore, in the Yukawa model, nucleons and mesons
are considered elementary particles (i.e., without an internal
structure), represented by local fields. The mesons are bosons
represented by a real scalar field ¢ while nucleons are fermions
represented by a four-component Grassmannian Dirac spinor
Y. To get a statistical mechanics model one works in a
Euclidean space instead of in a Minkowski space; this is
achieved by performing a Wick rotation [9] and the space-time
is discretized into a four-dimensional hypercubic lattice. One
possible choice for the discretized action [9] is

S = % > |:(8 + uHg? —2 ;¢x¢x+v}

X

+ D DY+ 8 Y UiV, )

which is the sum of three terms, S = Skg + Sw + S1. In the
first term, which is just a Klein-Gordon action for a free
bosonic field, x runs over the N sites, v runs over the four
space-time directions, and u is the meson mass. The second
term is bilinear in the Dirac-Wilson operator Dw. It is a
4N x 4N matrix, with elements

(Dw)ey = Ladey — kY [l 4 ¥)8cy—v + (s — 1)8x y1],
)
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where 14 is a 4 x 4 unity matrix and y, are the Dirac matrices
(¢ is the conjugate of v), and « is the so-called hopping
parameter related to the bare fermion mass by the relation
M = 1/« — 8. The coupling between the two fields is realized
in the simplest way by the third term, where g is the coupling
constant. Every dimensional quantity has been redefined in
terms of the lattice spacing a; therefore, the model depends
on the three dimensionless lattice parameters g, i, and «. It
depends also on the size of the lattice. In this work we use
periodic boundary conditions and take the four dimensions to
be equal.

Propagators in quantum field theory are expressed using
Wick contractions. From the statistical mechanics point of
view, this amounts to computing expectation values and to
combining them together. For example the elementary fermion
propagator reads

1
S = / [dp1(D(@)™ )y det (D(g))e™ P, (3)
where x and y are two sites of the lattice and

D(¢) = Dy + g¢ “4)

is the interacting Dirac operator; Z is the normalization factor
of the field probability distribution and it is not calculated
in practice. Propagators like (3) provide a simple way of
computing the renormalized mass m of an interacting particle
in quantum field theory (QFT), as

C(xy) = Z S(x,0) ~ coshm (% - x4), 5)

X1,X2,X3

where x4 is the time coordinate. The calculation of renormal-
ized masses is performed by producing the fields ¢, according
to a joint probability distribution

M({¢y}) ~ det(D(¢))e @) (6)

and computing S(x,0) as the average over field configurations
of (D(¢)™ "), Note that it implies solving a linear system, not
a full inversion of the Dirac operator.

In the boson probability distribution Eq. (6), the evaluation
of the fermionic determinant is largely the most expensive
part of the calculation. Sophisticated methods have been
developed for dealing with this difficulty, such as hybrid
Monte Carlo simulations [10], but the study of the model
neglecting the effect of the determinant on the weight of the
field configuration, called the quenched approximation, yet
deserves interest and is described in some detail in the next
section. Finally, let us remind that to extract physical quantities
one needs to be as close as possible to a critical point so that the
operator D(¢) has low modes. This implies the same numerical
difficulties as in the vicinity of any critical point.

C. Symmetries

In this section we review some of the symmetries of
particular interest for the numerical treatment of the theory.
The model exhibits some properties characteristic of a free
theory that are preserved in the interacting case due to the
structure of the interacting part of the action, Eq. (4).
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First, for the free Dirac operator, it is possible to find an
involution J, satisfying

D = JD*J, @)

with J = iy y3 in the Dirac y-matrix representation [9]. This
property holds in the interacting case since the interaction term
is real and diagonal in spinor space. The inverse S of the Dirac
operator also has the same property. Therefore, for any field
configuration, the fermion propagator has the following form:

a b c d

b* a
S(x) = . (8)
e

This implies that we must solve two (and not four) independent
linear systems for each fermion propagator. This symmetry
does not hold for QCD or, in general, for interacting theories
with a different spinor structure.

There is another simplification due to the fact that the
interaction term is diagonal in spinor space; i.e., it commutes
with all the y matrices. For the free case, when a reflection
is performed on one direction, x; — —x;, while keeping the
other coordinates fixed, the Dirac operator transforms as (see
Sec. 8.2 of Ref. [1])

D — ysyi Dyrys.

This property also holds for its inverse, S. The Yukawa
coupling term preserves this symmetry.

As the action is invariant under any permutation belonging
to the automorphic group of the lattice (and, in particular,
a reflection over one coordinate), the probability of a given
configuration is the same after performing a reflection. Using
this relation the time correlator (5) after averaging over meson
configurations takes the form

Ca) = ) St
c(xg) 0 0 0
0 c(x4) 0 0
0 0 C(L4 — )C4) 0 (9)
0 0 0 C(L4 — X4)

Note that C depends on a single function c(x4) instead of on
16 functions.

D. The quenched approximation

The quenched approximation consists of neglecting the
variation of det (D(¢)) among the field configurations. From
a physical point of view, this determinant accounts for the
creation of virtual nucleon-antinucleon pairs, and its effect is
expected to be small as long as the meson mass is smaller than
the nucleon one. It simplifies considerably the problem since
now Eq. (6) becomes

1
Prob ({¢}) ~ exp <—5 > [(8 +uher -2y ¢x+u¢x}) :
"

X

(10)
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This distribution no longer involves the Dirac operator and is
easy to implement. Indeed the quadratic form, argument of the
exponential, can be diagonalized straightforwardly, simply by
going to the discrete Fourier space. We denote ¢ the Fourier
transform of ¢,. The ¢ are complex and their joint probability
factorizes as

1 |il?

Prob({¢¢}) ~ | | exp <———> (11)
k 1:[ 2 O‘k2

PSR where k, = 2sin "7 with the extra con-
WY,k

straint J),: = ¢_; in order to get real values for ¢,. It is then
simple to draw independently the real and imaginary parts of
each ¢, (for k > 0) from a centered Gaussian distribution with
variance . The partial distribution of ¢, (i.e., integrating out
all ¢, but ¢, ) is also a Gaussian with a variance o independent
of x and given by

1 1 1
2 2
W=y =2 . (2
N3 NTw+y,k
In summary ¢, are Gaussian dependent random variables
with the same variance whereas ¢; are independent with a
variance depending on k. Note that generating uncorrelated
configurations is automatic with the method presented above.

. 2 _
with o =

II. THE DIRAC OPERATOR SPECTRUM
IN THE PHASE SPACE k-g

Let us recall that the model depends on three independent
parameters, k, g, and w. As shown above, in the quenched
approximation the probability of ¢, depends only on w and
not on « or g; it is the same everywhere in the parameter space.
In this section we work with a constant value of © ~ 0.1.

Any numerical computation of a physical quantity will
imply some inversions of the Dirac operator, Eq. (4). We know
that this inversion will have to be performed with values of
g and « such that the linear system is difficult to invert. In
practice, in some region of the g-«x plane and for a given value
of the linear sizes of the lattice, solving for X for the system
DX =Y is not possible. Indeed, depending on the numerical
method used, either the algorithm will not converge or it will
find a wrong solution. To quantify how ill conditioned the
linear system is, it is customary to use the condition number.
By definition a condition number measures how the solution
of the system changes when the right-hand-side (RHS) term
changes [11]. With the appropriate choice of the norm, the
condition number is the ratio r = llkl‘ of the largest to the
smallest moduli of the eigenvalues. With this definition, and
for the type of system we consider, a system can be inverted
reasonably if the condition number is smaller than 100 ~ 1000.
Note, however, that a condition number can be arbitrarily large
but still the system is invertible. This is the case if the RHS
of the system is in the kernel of the operator. This situation
occurs with some preconditioning.

We now note that, due to the specific form of the Dirac
operator in Eq. (4), one has

D(ag.ak;¢c) — 1 = a(D(g,k5¢x) — 1), 13)

where 1 denotes the 4N x 4N unity matrix. Since the
probability of the ¢,’s does not depend on g and «, one is
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led to introduce the polar coordinates » and 6 of the parameter
space g = rcos(f),k = rsin(f). For a given value of 6 the
spectrum of D evolves straightforwardly: the eigenvectors are
then left unchanged and the eigenvalues A evolve according to
r

W r0) = Zak(re.0) + 1 — (14)
9 - rO 0’

ro

In a spectral decomposition of D, varying r only changes the
relative weights of the eigensubspaces. The value of 8 fixes
the spectrum, and the value of r fixes the relevant part. In
general the eigenvalues are complex: ¢ = )L’l‘{e + lkfm. Let
us give a fixed value to 6 and denote the spectrum AX(r).
We choose a reference value ry (one can take, for example,
ro = 1) and note A¥ = A¥(r); we have

AP = (IAF2 = 28K + 1)r2 +2(Ak = D)r+ 1. (15)

So the modulus of each eigenvalue is a parabola as a function
of r. All these parabola intersect at the point (r = 0,A = 1).
They also intersect each other at other points, and the two
extremal eigenvalues change when r changes (see Fig. 1).
The eigenvalue labeled by & will reach its smallest value

my = L (16)
|AK]2 —2AK + 1
for r = W\?—ﬁ—;/\lkﬂ Therefore, only the eigenvalues with
R

A]fz <1 and A’I‘ & 1 give rise to a small denominator in
the condition number. When r ~~ 0 the eigenvalue of lowest
(largest) modulus will be the one with the smallest (largest)
value of Agr — 1; therefore, the condition number increases
continuously from the value 1. In the other limit, r > 1, the
eigenvalue of lowest (largest) modulus will be the one with the
smallest (largest) value of |AF|> — 2AK + 1, and the condition
number tends to a finite value (the ratio of the two values
above). In the intermediate regime, the condition number has
very complicated behavior with a lot of maxima and minima.
We analyze this behavior is the next sections for different cases.

[l

Al

FIG. 1. (Color online) Evolution with r of the eigenvalue modulus
for the two limiting cases g = 0 (top) and « = 0 (bottom). In both
cases only a selection of eigenvalues is shown for clarity. For k = 0
a field configuration is generated according to Eq. (10). The largest
and smallest moduli of the eigenvalues as a function of r are shown
as a thick red line.
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A. Cased = 3

This corresponds to g = 0 and therefore this is the trivial
case of noninteracting fermions; it is included for illustrative
purposes. The evolution of the spectrum of D for Wilson
discretization as a function of r = x is well known and
has the form of Eq. (14): A, = (1 — 2k )", ¢)) £ 2x1/Y ", 52
with ¢, = cos(k,) and s, = sin(k,). Therefore, the condition
number behaves as

148k 1

1—8« k<3

148k 1 1

8i—1 g <K <35
_ _ 148k 1 1

c(r=x)= Toae 5 <Kk<73.

148k 1 1

d—1 31 ~Kk=<3

1+ 8« % <K

1
8 b
corresponding to

The condition number diverges at the values x = 3, cor-

1
7
k = (%,0,0,0) (or a permutation when the corresponding L,

are even). The first value, %, is the critical value, whereas the
other is unphysical since it corresponds to a negative mass.
This is compatible with the framework presented in the

introduction of this section. For example, Eq. (16) becomes

responding to k£ = (0,0,0,0), and x =

_ > .- -
M = 5=y In the top graph in Fig. 1 the evolution of
some eigenvalues with r = « is presented. One sees that for
zero, eigenvalues appear only for r = % andr = %.

B. Casef =0

This case corresponds to k = 0 and describes infinitely
heavy fermions. It is unphysical but nontrivial. However, it
is instructive to study it from a statistical mechanics point of
view; also, if some continuity is to apply, it should not be very
different from the small-6 case. In that case the Dirac operator
is simply diagonal and the 4 x 4 blocks are given by

(D(@)yy = (1 + g¢x)dyyla. A7)

Obviously the eigenvalues 1 4 g¢, are all degenerated four
times and real. Equation (15) becomes simply [A¥(r)]? = [1 +
r(A* — 1)J%. Since A%(r) is linear with r, for any eigenvalue
A¥ <1 there will be a value of rF for which A(r¥) = 0.
This is the worst situation since for any field configuration
the determinant of the Dirac operator will exactly vanish %
times. This is illustrated in Fig. 1, where all the eigenvalues
as a function of g are shown. The two eigenvalues of largest
and lowest moduli are emphasized. One clearly sees that the
eigenvalue of the lowest modulus vanishes for many values of
r (recall that r = g when « = 0). This situation is in contrast
with the previous case, 6 = %, where the eigenvalue of lowest
modulus vanishes only twice (for r = % andr = 41—‘). There the
eigenvalues are “protected” by their imaginary part.

In other words, the ¢, are N correlated real random
variables following the probability distribution, Eq. (10), and
we evaluate the condition number ¢(r), which is in that case

Lo max |1+ 7y
) = T T renl (18)
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Let us suppose that ¢, have been sorted in ascending order.
We note 1, the largest negative eigenvalue. Since N is very
large, we assume m ~ % and there is at least one negative and
one positive eigenvalue. Figure 1 illustrates the behavior of the
spectrum of the Dirac operator for a given ¢, realization. Each
eigenvalue varies linearly with g. Therefore, the condition
number is controlled by the eigenvalue of smallest modulus,
which is a piecewise linear function of g. The selected
eigenvalue changes each time g reaches a value g; = — ﬁ,
and reaches zero for g = —% for 0 < i < m, for which
8p < 80 < &) < g1 < ---.Consequently three regimes occur.
First, when g < g; the condition number is a continuous
increasing function of g (homographic) which diverges at g.
Second, in the intermediate regime g5 < g < g, the condition
number varies extremely fast, diverging m times. Finally,
for g < g the condition number decreases homographically,
saturating at a finite value. This is illustrated in Fig. 1 where
the extreme values g5 and g, are indicated.

In order to perform an analytical evaluation of those three
regimes, we simplify the problem by choosing the fields ¢,
independent with zero mean and a variance given by Eq. (12). It
turns out that this simplification does not change substantially
the average value of the eigenvalue of lowest modulus, as
illustrated in Fig. 2. This figure shows, among other things
detailed below, the two curves of the eigenvalues of lowest
modulus (curves labeled N = 131 072) as a function of » when
¢, are independently and identically distributed Gaussian
variables and when they are dependent: the two curves are
completely indistinguishable. Within this assumption, when
the number N of lattice sites increases, ¢,, goes to zero as

00 N
X 21
(Pm) = —o/ <1 — erf—) dx ~ -0, ——. (19)
0 V2 T N
1 \‘\‘ T T T T T
\“‘\\
10 0\ ,
N=256
107} 1
£
< N=8192
10 .
10* b N=131072 1
10-5 1 1 1 1 1 1
0.1 1 10 100 1000 10000

r

FIG. 2. (Color online) Smallest modulus of the eigenvalues vs g
for k = 0 and three values of L. For any value of L the numerical
integration (black) together with the approximation (red) Eq. (A1) are
shown. For the largest size L = 32 x 16> the result of a simulation
averaged over 8692 samples is also shown for both correlated ¢,
(magenta line) and uncorrelated ¢, (dashed blue line). Actually the
curves are indistinguishable except for at small g < 1, when the
approximation of the integral is not correct.
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Therefore, g, ~ N and the third region shrinks when the
lattice size increases. In other words the decreasing of the
condition number for large values of the coupling constant g
at k = 0 is a size effect. On the other limit for small g, the
firstregion, g < g, is delimited by the smallest field ¢o whose
average is given by

oo x N
(¢o) = —0/0 |:1 - <erfﬁ> :|dx. (20)

We see that (¢y) diverges extremely slowly with N. To
have (¢g) of the order of &, one needs a huge lattice of

N ~ &exp % sites. Therefore, the first region also disappears
in the thermodynamic limit. However, this size effect will
never be seen in an actual computation. Finally, we conclude
that only the second region survives the large lattice volume.
Let us recall that in this region and for any field configuration
there are m ~ % values of r for which one eigenvalue of the
Dirac operator is exactly zero.

In the preceding paragraph the behavior of the condition
number for a given configuration of ¢, has been studied.
We need now to perform an average over the realization of
¢,. For a fixed value of g, different field configurations will
give very different condition numbers, some of them possibly
extremely large. Note, however, that the condition number is
not a physical observable; it is only an indicator of how difficult
the inversion will be. Therefore, the most probable value of the
condition number may be more sensible. From the probability
distribution of ¢, one can easily compute the average of the
smallest and largest eigenvalues as a function of g. We show
in the Appendix that

1 |« 1
(Ail) ~ NV 280 &P 25707 21D
(Aal) S gov2InN, (22)

where o depends on p and is given by Eq. (12). The eigenvalue
of lowest modulus goes to zero as % but the prefactor increases
extremely fast when g goes to zero. Since N goes to infinity
first, for any nonzero g, {|A;|) goes to zero. The eigenvalue
of lowest modulus increases very slowly with N. This is
illustrated in the lower part of Fig. 6, where we show the
eigenvalue of lowest modulus for several lattice volumes. In
this figure and for N = 64323 = 131072 we have plotted the
result of a “genuine” simulation with dependent fields, another
simulation with independent fields, a numerical integration of
Eq. (Al), and the approximation Eq. (21). The agreement
among these four calculations is excellent. We have also
plotted the eigenvalue of lowest modulus for other values of
N to show the size effects.

The appearance of the three regions described above can
be seen in Fig. 3. In this figure we have plotted the average
condition number (K“ﬂ‘“l‘) over 8692 samples as a function
of g. The number of peaks is even larger with a smaller
discretization of g. The quantity % is much smoother
since (|Amin|) never vanishes and also displays the three
regimes. Moreover, in the quenched approximation it makes
sense to consider a particular realization since the weight
of a consideration does depend only on w; we therefore
have plotted a typical configuration. Finally, we have also
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condition number
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FIG. 3. (Color online) Condition number vs g for k = 0 for a
32 x 16° lattice. The quenched average over 8692 samples is shown
in red (upper curve), and a typical quenched sample is shown in blue
(lower curve). For comparison the ratio % is also shown in black.
The results of the unquenched Monte Carlo simulation are denoted

by the thick purple line.

plotted the average condition number without the quenched
approximation: this is discussed in the next section.

In conclusion of this section, the size effects on this model
for k = 0 appear extremely severe: for any fixed value of g the
occurrence of configurations with arbitrarily small eigenvalues
in absolute value grows with size. This is reminiscent of
the so-called exceptional configurations which have been
encountered in the context of quenched lattice QCD [12].

C. Case0 <0 <73

This region is nontrivial since the Dirac operator cannot be
diagonalized as in the two previous cases. Nevertheless, this is
where the physics takes place. As was done in Ref. [6,13-15],
to perform a realistic calculation one finds the critical line,
and one chooses the particular point close to this line where
the ratio of the renormalized masses of fermions and bosons
is equal to the physical one. This program has been done
successfully, giving consistent results for small g. However,
for g around 0.7, the linear system becomes ill conditioned to
solve, preventing any conclusive result.

To illustrate the evolution of the spectrum in the parameter
space, we have fully diagonalized the Dirac operator for an
8* lattice for the same typical field configuration. This is
only possible within the quenched approximation where the
probability of a field configuration is independent of x and g.
Figure 4 shows the spectra in the complex plane for © = 0.3
and 6 ranging from 7 to zero. The spectrum in Fig. 4(a) is
close to the critical « of the well-known free case (each point
is highly degenerated, up to 768). Going from the spectrum
in Fig. 4(a) to that in Fig. 4(f), the eigenvalues which are
clustered for small g (exactly degenerated for g = 0) spread
out. At the same time the imaginary part diminishes down to
zero for k = 0. Note that all these six spectra have been chosen
close to an ill-conditioned case.
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FIG. 4. (Color online) Full spectrum in the complex plane
of the Dirac operator for (a) (g,x) = (0.005,0.120), (b) (g.x) =
(0.427,0.114), (c) (g,x) = (0.771,0.101), (d) (g,x) = (0.8,0.070),
(e) (g,x) =(0.8,0.035), and (f) (g,x) =(0.8,0), with L =8 and
= 0.3. The origin is marked by a star.

We have computed the condition number for a field
configuration for a 16* lattice in the region 0 < k < 0.14
and 0 < g < 0.8. The results are presented in Fig. 5. An
ill-conditioned region appears when g is larger than a value
around 0.6 and for any «, where large fluctuations of the
condition number take place. For small g, it was shown in
Ref. [6] that the critical line, defined as the line where the
renormalized mass of the fermion vanishes, is a parabola
originating from the pointx = %,g = 0. We therefore expected
a diverging condition number along this line. This is clearly
seen in Fig. 5. The localization of the ill-conditioned region
for small « agrees with what we have shown in Sec. II B for
k = 0 and confirms the huge size effects predicted. There is
no reason to believe that these size effects are restricted to
the « = 0 line as suggested by the evolution of the spectrum
between Figs. 4(e) and 4(f). The extent of this problematic
region cannot be determined numerically, at least with present
methods.

We see three possible origins for this problematic region.
It can be that quenched approximation does not work for
those values of g. This seems intuitively reasonable since
the determinant in Eq. (6) precisely gives a low weight to
these configurations with a large condition number. Another
possible reason could be the specific choice of the action

0.14

0.12

0.1

10

0.08

0.06

0.04

-
o
MW RO N0 ©

0.02

0

FIG. 5. (Color online) Isocondition number line on a 16* lattice.
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and the discretization of the fermion. Finally, there is the
possibility that this is a fundamental problem of the Yukawa
model without a direct meson-meson coupling term in the
action.

III. THE « = 0 CASE WITHOUT
THE QUENCHED APPROXIMATION

In this section we consider the simple case x =0 as
in Sec. II B, but without the quenched approximation. The
purpose is to illustrate in this simple case the consequence
of the quenched approximation. Intuitively the determinant in
the probability density equation (6), gives a vanishing weight
to the ill-conditioned configurations. So we can expect that
the configurations to be included in the sampling will not
have a large condition number. But it is possible to have a
large determinant and still a small eigenvalue, for example
if one eigenvalue is small and all the others are large. These
configurations would have a nonvanishing weight, but still a
very large condition number.

The joint probability of the fields ¢,, Eq. (6), can be written
as

1
T({¢:}) ~ exp ( -5 [(8 + Nl -2y ¢x+u¢x}
x I

+41n|1+g¢x|>. (23)

Since this expression cannot be factorized we can no longer
generate independently a properly chosen combination of ¢, ’s.
Instead, to generate the ¢,’s, we have written two algorithms,
one relying on the Monte Carlo method and the other on the
heat-bath method.

A. Monte Carlo method

For the Monte Carlo method we use the simple Metropolis
algorithm [16]. The normalization factor of Eq. (23) is very
difficult to compute, but the ratio of the probability of two
¢ configurations is very simple to compute. The Monte Carlo
method uses this fact to construct a Markov chain which has the
desired distribution as a fixed point. In practice, we start from a
initial ¢, configuration; then we choose at random a site x and
try to change the value of ¢, for ¢, + d¢, where d¢ is arandom
number normally distributed. We accept this change with the
probability min(1, exp —AFE), where E is the argument of
the exponential in Eq. (23). We do not have a proof that this
algorithm converges, the difficulty being that the number of
states of the Markov chain is infinite. However, for all practical
purpose it works properly if one always chooses as a starting
distribution for a value g an equilibrium distribution for a close
smaller value, g — 8g. This indicates that the energy landscape
is complicated, probably with metastable states. This naive
algorithm is much simpler than the well-known hybrid
Monte Carlo algorithm [10], but it is sufficient for our purpose.
We have compared the two algorithms and find that the hybrid
Monte Carlo algorithm is more efficient than the naive Monte
Carlo algorithm if the parameters are properly chosen, but they
both give the same results with a good accuracy.
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B. Heat-bath method

We have also used a heat-bath method. The method is
similar to the Monte Carlo method: one chooses randomly
a site x and updates the corresponding ¢,. The new value is
simply chosen according to its probability density, knowing
the ¢’s on the neighboring sites. Note that the new value does
not depend on the old value. This density probability is

fo(@) = K(1 + g¢)* exp(—Ad* + s), 24)

. . . 2 .
where K is the normalization factor, A = SJrT“, and s is the

sum of the ¢’s of the neighboring sites. It is convenient since
the integrated density of states takes the form

Fo(@) = - [1+ f(2A¢_S)]
== erf | ———
T2 2/A
AP 2A¢ — s>2
—/——=gexp| —| —— , (29
Vs [ (A

where C and P are polynomialsin A, g, s, and ¢»; P has degree
3 in ¢ and C does not depend on ¢. The actual expressions
are simple but tedious. It is then simple to draw a uniform
random number in the interval [0,1] and to invert Eq. (25)
by dichotomy to find ¢. Under the same restrictions as for the

Monte Carlo method, the heat-bath algorithm properly samples
the distribution of the ¢’s.

C. Mean field approximation and small-g expansion

Before analyzing the condition number, let us look
at the mean value (¢) (vacuum expectation value). Recall
that in the quenched approximation, due to the symmetry of
Eq. (10) the average value (¢) is zero. In the unquenched case
it is simple to compute (¢) in the mean field approximation,
which consists of assuming that all the neighboring sites of the
considered site have the mean value. An autocoherent equation
is obtained by setting s = 8(¢) in (¢) = f¢f¢(¢)d¢, where
fo(¢) is given by Eq. (24). This yields a fifth-degree
polynomial. The mean value (¢) is the properly chosen root
of this polynomial. The coefficients of this polynomial are
themselves polynomials in g and p of degree up to 10. There
is no difficulty in solving these polynomials, and the result
is shown in Fig. 6. In the limit of g going to infinity (and
u? < 32), one gets

\/(8 + u) (=3 u?+ 16 + /6 u* + 256)

8u

<¢>M,g=oo -

In the other limit, a small-g expansion of Eq. (23) yields
4g
(@) =48 Y (Brdy)g—0 + O(g") = RN
y

The same expression is also obtained in the mean field
approximation above.

D. Results

Our unquenched results for « =0 are displayed in
Fig. 6. The calculations have been done on a 16* lattice.
Starting from a configuration ¢, =0 for any site x and

PHYSICAL REVIEW E 85, 041121 (2012)

unquenched -
quenched
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!
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FIG. 6. (Color online) |Amyin| and [Ama| in both a quenched and
an unquenched simulation for ¥« = 0 (top), and (¢) as a function
of g (bottom). The points are the numerical results (heat-bath and
Monte Carlo approaches are indistinguishable). The solid red line
corresponds to the mean field. The horizontal dashed blue line
corresponds to Eq. (26), and the dashed green line to the small-g
expansion.

g =0, one performs iterations with both methods until
equilibrium is reached and sufficient statistical data are
collected; then g is slightly increased and the process is
repeated.

The lower part of Fig. 6 shows the mean value (¢). The
results obtained by the two numerical methods, shown as
points, are indistinguishable. The mean field approximation is
the straight line. We find an excellent agreement and conclude
that both numerical methods converge and that the mean field
approximation is quite good.

To evaluate the performance of the two numerical methods
we show in the inset the average value of ¢ as a function of
the number of steps. The value of g is changed at the end of
each plateau. It is clear that the red solid line corresponding to
the heat bath reaches the plateau before the dashed blue line
corresponding to the Monte Carlo method. This indicates that
the heat-bath method reaches equilibrium before the Monte
Carlo method.

The results shown above indicate that we have properly
sampled the distribution of ¢’s, and we can analyze the
behavior of the condition number. Since the average (¢)
grows with g, it seems likely that min(|1 + g¢|) will not
easily become small. This is indeed confirmed in the upper
part of Fig. 6, where we have plotted the eigenvalues of
minimum and maximum moduli for both the quenched and
unquenched cases. It is clearly seen that A, is never small.
Finally, the average condition number is plotted in Fig. 3,
where the drastic effect of the quenched approximation is
clearly seen: a reduction by six orders of magnitude of
the condition number. This reduction is larger with larger
lattices. We conclude that there is no ill-conditioned point
on this ¥ =0 line without the quenched approximation,
whereas it is ill conditioned everywhere in the quenched
approximation.
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IV. SUMMARY AND PERSPECTIVES

We have analyzed in this paper the appearance of very small
eigenvalues of Dirac operator in a Yukawa theory with Wilson
fermions. The results obtained lead to the conclusion that, at
finite volume and within the quenched approximation, these
small eigenvalues are present in an entire region of the phase
space. This indicates the existence of an ill-conditioned region,
not just an ill-conditioned line; for example, the entire « = 0
line is ill conditioned in the quenched approximation. More-
over, the size effects are exponentially large and consequently
a numerical calculation can give apparently correct results,
which would not survive the infinite volume limit. In other
words, it does not seem possible to determine numerically
the ill-conditioned region. The origin of this difficulty could
be simply the choice of the discretization, or it could be the
nonvalidity of the quenched approximation. This hypothesis
is supported by an unquenched calculation for ¥ = 0 that is
nowhere ill conditioned. But it could also be a problem of
the Yukawa model itself. Indeed the Yukawa model is not a
gauge model and there is no protection against spurious low
eigenvalues like in QCD [12].

In this context we feel that the model should be studied
without the quenched approximation to extend the result
presented in this paper for the k = 0 line. However, a boson
self-coupling term A¢* has to be added to the Lagrangian to
ensure renormalizability. This work is in progress.
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APPENDIX: AVERAGE OF EXTREME
EIGENVALUES FOR k =0

In this Appendix we show Egs. (21) and (22). Since ¢,
are normally distributed with zero mean and variance o given
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by Eq. (12), the integrated probability distribution of [A[ is

1 =1 A+ 1
FA|(|A|>=E[erf(ﬁga>+erf(ﬁga )]

where o is the variance of ¢,. Then from the definition of the
minimum and after an integration by parts, one gets

{(|Aminl) 2/0 [1 — Fja(0)]Vde,

(AL)
([Amax]) = /0 1= [Fia )]V dx. (A2)

Introducing ¢(y) = 1 — F,(y) we have

_ (2N

Since
21 1 3
¢h)y=1—,/|——exp———h+ O(h"),
T go 2g%02
then
x\V 21 1
ol—=) —exp| —x,/——e ).
N T go
So

o 2 1 __i
N?»min=/ exp(—x ——e 222"2>dx,
0 T 8o

yielding Eq. (19).

We now study the behavior of Ay.x. When N is large the
integrand in Eq. (A2) tends to a step function equal to 1 for
x < x* and equal to O for x > x*. One can estimate x* as the
unique zero of the second derivative of the integrand. Since x*
grows when N grows, one can replace x — 1 and x + 1 by x
in the equation %F ia|(x)Y = 0, yielding the equation

N [T ) 1 <<xmax>>2
= |/———exp=|——— ) .
2 go 2 go

from which Eq. (22) follows.
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