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Energy transfer dynamics and thermalization of two oscillators interacting via chaos
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We consider the classical dynamics of two particles moving in harmonic potential wells and interacting with
the same external environment HE , consisting of N noninteracting chaotic systems. The parameters are set so
that when either particle is separately placed in contact with the environment, a dissipative behavior is observed.
When both particles are simultaneously in contact with HE an indirect coupling between them is observed only
if the particles are in near-resonance. We study the equilibrium properties of the system considering ensemble
averages for the case N = 1 and single trajectory dynamics for N large. In both cases, the particles and the
environment reach an equilibrium configuration at long times, but only for large N can a temperature be assigned
to the system.
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I. INTRODUCTION

Understanding dissipation from a microscopic point of view
has become important for several areas of physics, especially
if quantum phenomena are relevant. In these cases a globally
conservative approach for the system plus its environment
is highly desirable, allowing a direct quantum mechanical
description.

The simplest, and perhaps most natural, way to model
the environment is to use an infinite set of harmonic oscil-
lators, representing the normal modes of a general system in
equilibrium weakly perturbed by the system of interest [1,2].
The spectral function, which is related to the distribution of
frequencies of the normal modes, can be chosen to model
several types of thermal baths [3–5]. Other representations of
the environment have also been explored, from spin systems
[6] (or two-level atoms) to chaotic systems [7–11]. The
latter is particularly important for modeling coupling to small
external systems, where the chaotic nature of the trajectories
compensates for the small number of degrees of freedom in
the decay of correlation functions. However, chaos alone does
not suffice to simulate a thermal bath, since small numbers
of degrees of freedom always leave a strong signature in the
dynamics through large fluctuations in the observables of the
system of interest [12]. These fluctuations can be washed out
by averaging over several realizations of the dynamics [13].

More recently, the interest has shifted from a single
particle interacting with the environment to two particles
independently connected to it [14–16], allowing the study
of interactions mediated by the environment. One important
case is that of two entangled particles subjected to dissipation
and decoherence. In many cases, the total Hamiltonian is
symmetric by the exchange of the particles, although they may
still be considered distinguishable in some applications [14].

In this paper we consider the classical dynamics of two
particles moving in harmonic potentials linearly coupled to
a finite chaotic environment. We study the system behavior
as a function of the frequency of the oscillators. We find
that the behavior of the system changes radically when the
oscillators are in resonance, which is a necessary condition
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if the particles are identical, and that even small deviations
from this symmetric state dramatically change the equilibrium
properties of the system. In particular, we show that, when
in resonance, the particles may exchange energy through
the environment while their energies dissipate. Moreover, the
energy stored in their relative motion is conserved.

We model the environment as a set of N independent
quartic systems (QSs), each with 2 degrees of freedom.
The QS has a single parameter that controls the degree of
chaos in the dynamics. The particles are represented by two
harmonic oscillators independently coupled to the set of QSs.
As study cases we consider systems with N = 1 and N = 100,
for which we study the statistical properties of the energy
distributions of the environment and of the oscillators. In both
cases, these distributions reach an asymptotic equilibrium, but
attempts to define a temperature for the system using two basic
definitions of entropy, applicable to small systems, succeed
only in the case N = 100. The results of the simulations are
then interpreted in the light of the linear response theory (LRT).

II. MODEL

We consider two harmonic oscillators interacting with an
environment composed by a collection of independent QSs.
The Hamiltonian is

H = H1 + H2 + HE + λNHI , (1)

where λN = λ/
√

N and

Hi = p2
i
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QS ,

(3)

HI =
N∑

n=1

(q1 + q2) xn. (4)

The total energy is conserved and the two oscillators interact
only via the environment.

In our simulations, we used λ = 0.01. The parameter a

in HQS controls the dynamical regime of the QSs in the
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environment, ranging from integrable (for the special values
a = 1.0 and a = 0.33 [17]) to chaotic (a → 0). In the work,
we used a = 0.01 or a = 0.1, which corresponds to regimes
where the QS is mostly chaotic. For a = 0.1 the largest
Lyapunov exponent of an isolated QS is λL = 0.166 for
energy EQS = 0.1. For a = 0.01 we obtained λL = 0.121 for
EQS = 0.01. Because of the scaling properties of the QS, the
Lyapunov exponent at other energies can be calculated using
λL(E) = (E/E0)1/4λL(E0).

As the number of degrees of freedom is finite, the parameter
N assumes a prominent role and we investigate its influence
on the dynamic behavior of the oscillators. It has recently
been shown [12] that, for N sufficiently large, such a finite
chaotic environment can simulate the action of an infinite
thermal reservoir. Here the environment also acts as a medium
connecting the two harmonic oscillators.

In order to highlight the interaction between the oscillators,
one of them is initialized with energy E1 > 0 while the other
is set at rest with E2 = 0. For the environment we define the
initial conditions using the pseudocanonical distribution [12]

ρ = 1

Z

N∏
n=1

δ
(
H

(n)
QS − E

(n)
QS

)
, (5)

where the energy E
(n)
QS of each QS is randomly chosen from the

exponential probability distribution exp (−E/ĒQS)/ĒQS. The
value of ĒQS plays the role of an initial “temperature” for the
environment. In the special case of N = 1 the energy EQS is
fixed to ĒQS.

In what follows we study system (1) for only two relevant
environment sizes: the “microscopic” (N = 1) and “macro-
scopic” (N = 100) cases. As pointed out in Ref. [12], the
dynamical behavior of the system becomes N independent
for N sufficiently large. For the parameter values used in
this paper, the large-N limit is already reached for N = 100.
The case N = 1 is a natural extension of the work presented
in Ref. [13], where the authors considered the interaction
between a harmonic oscillator and a single QS using ensemble
averages. Thence we choose the same set of parameters in
our simulations as in Ref. [13], allowing us to verify the
implications of adding a second oscillator to the system. For
N = 100, on the other hand, we compare our results with the
work presented in Ref. [12], which treated the dynamics of a
single oscillator interacting with large chaotic environments.

In the microscopic case, observables related to the harmonic
oscillators, like the energy H1 or H2, exhibit large fluctuations
when coupled to HQS. These fluctuations can only be washed
out by averaging over large ensembles of realizations of the
dynamics. In the macroscopic case this is not necessary and
the results obtained from a single realization of the dynamics
are already representative of the average behavior. In this case
we can speak of an “effective dynamics,” where no averages
are performed.

III. MEASURES OF TEMPERATURE

Temperature is a central property in the description of
equilibrium and is properly defined only in the thermodynamic
limit of very large systems. Since the environment defined
in Eq. (3) is far from this limit for N = 1 and N = 100,

different possibilities arise. One natural definition comes from
the equipartition theorem [18],〈

zm

∂H

∂zn

〉
= δmnτE, (6)

where zn denotes the coordinates or momenta of the system
and δmn is the Kronecker δ. The constant τE is identified with
kBT when the system is in contact with a thermal reservoir. The
subscript in τE emphasizes the explicit use of the equipartition
theorem. Equations (1) and (6) predict that the fraction of
the total energy within each subsystem in equilibrium should
be 〈E1〉 = 〈E2〉 = τE = 2/3〈EQS〉. We can also write the
system’s temperature as a function of the number of QSs as

ET = E1(0) + E2(0) + ET
QS(0) = 2τE + 3

2NτE, (7)

in which ET
QS(0) is the environment’s total energy at t = 0.

Equation (7) can also be derived from the thermodynamic
relation [19]

τ−1
E = ∂ ln �

∂ET

, (8)

where

�(ET ) =
∫

	(ET − H )dp dq (9)

and the integral is taken over the entire phase space of the
system. For the Hamiltonian in Eq. (1) we obtain

� = c E
3Nf /4+2
T , (10)

where Nf = 2N is the number of degrees of freedom of the
environment and c represents a constant depending on the
system parameters.

Note that

ln � = ln c + (3Nf /4 + 2) ln ET (11)

plays the role of entropy. The usual entropy, on the other hand,
is given by

S(E) = ln

[ ∫
δ(E − H )dp dq

]
= ln

∂�

∂E

= ln c + (3Nf /4 + 1) ln E + ln (3Nf /4 + 2). (12)

Defining τ−1
S = ∂S(ET )/∂ET , we obtain

ET = τS + 3
2NτS, (13)

which agrees with Eq. (7) in the limit of large N .
The two temperatures, τE and τS , can be calculated

numerically in a number of ways. According to Ref. [20],
τS may be calculated from the dynamics using the
expression [20,21]

τ d
S = 〈
(H )〉−1, (14)

where τ d
S /kB is the so-called Rugh’s temperature and


(H ) ≡ div
∇H

‖∇H‖2
, (15)

with ∇ denoting the gradient in phase space. This formula
assumes that the energy, H = E, is the only isolating integral.
On the other hand, τE can be estimated as a dynamical average,
as on the left-hand side of Eq. (6). We use the superscript d
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to emphasize that these temperatures are obtained from the
dynamics, i.e., from the trajectories.

Finally, the temperature can be calculated from fitting the
energy distribution p(E), which is the probability of finding
one QS with energy E when the system is in equilibrium, as
the Boltzmann exponential pB(E) ∼ exp (−E/τB). Another
possibility is to numerically calculate the distribution of
momentum and fit it with the Maxwellian profile pM (p) ∼
exp [−p2/(2mτM )]. These distributions are obtained from the
numerical data for the oscillators and are used to check the
predictions arising from Eqs. (7) and (13).

In the limit of large systems, we expect all these measures
to approach the same equilibrium value; however, for a small
number of degrees of freedom, they are likely to differ [22].
We use two basic definitions of temperature, and the different
ways to calculate them, to assess the equilibrium properties of
our model system.

IV. DYNAMICS VIA ENSEMBLE AVERAGE (N = 1)

In this section, we investigate the approach to equilibrium
and equipartition of energy for the system described by
Hamiltonian (1) with only one QS, which means N = 1. We
examine, particularly, the energy transfer dynamics of this
system for cases in which the coupling between the subsystems
is weak and the harmonic oscillators are near to resonance. We
test for equilibration by comparing the calculated distributions
of energy and momentum with appropriate equilibrium distri-
butions. We also analyze and compare the dynamical behavior
of τ d

E with that of τ d
S , concentrating on the issue of energy

equipartition between the energy stored in the oscillators and
that in the QS at large times.

Our approach makes use of averaging over large ensembles
of different initial chaotic configurations that have a common
fixed energy shell where HQS = EQS. The initial conditions for
the two harmonic oscillators are q1 = 0, p1 = √

2m1E1(0),
q2 = 0, and p2 = √

2m2E2(0). The initial data used for the
phase-space variables x, y, px , and py originate from points
along a single trajectory of the uncoupled chaotic QS, rather
than from random starting points in an energy shell.

To solve the equations of motion numerically, we used the
fourth-order Runge-Kutta method (detailed, e.g., in Ref. [23]).
The integration time-step length was set to ensure energy
conservation to within 1% for each individual trajectory. The
ensemble average value of an observable is calculated as
the mean of its estimates generated by propagating initial
conditions in the ensemble. Throughout this section, we set
m1 = m2 = 10 and a = 0.1 [13].

Figures 1(a) and 1(c) present the short-time energy transfer
dynamics between the two harmonic oscillators. Their average
energies are plotted versus dimensionless time t∗ = ω1t/2π

for the initial energies EQS = 0.1 [Fig. 1(a)] and EQS = 5
[Fig. 1(c)], and frequencies ω2 in a small deviation from the
frequency ω1 = 0.0125: ω2 = ω1 + k �, with fixed value � =
0.0000375 for k = {0,1,6,11,16}. The initial energies of the
oscillators are chosen as E1 = 25 and E2 = 0. It is readily seen
that the energy curves for k = 0 and 1 are almost identical
for both situations; however, the response to EQS = 0.1 is
faster than that to EQS = 5. Another important feature is the
appreciably lower energy transferred from one oscillator to the
other at greater k values.

FIG. 1. (Color online) Short- and long-time energy dynamics of the oscillators at various values of k = 0 (black), k = 1 (purple), k = 6
(green), k = 11 (orange), and k = 16 (cyan) for energies of EQS(0) = 0.1 (a), (b) and EQS(0) = 5 (c), (d). Averages were computed using an
ensemble of 40 000 initial conditions. Colors change gradually from light gray to black as the k value decreases.
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Figures 1(b) and 1(d) in turn capture the long-time behavior
of the average energies of the two oscillators under EQS = 0.1
and EQS = 5 conditions, respectively. Except for the case
where the frequencies coincide, the final energies for the
oscillators are visibly different for each initial state of the
system. These panels indicate that the equilibration time is
very long and might not be reached in practical situations. Not
shown here is the behavior of the chaotic system’s average
energy, which ascends gradually with time and more rapidly
with increasing k, approaching a saturation value. See Fig. 3(a)
for a plot of 〈p2

x〉 as a function of t∗.
Figure 2 exhibits the energy distributions of the two

oscillators for an ensemble of 40 000 initial conditions at
time tf—which corresponds to 3000 periods of the oscillator
1—for the case EQS(0) = 5. These distributions are generally
different (except for k = 0) and do not have the Boltzmann
form (except for k = 11 and k = 16 for oscillator 2). The
fittings to these distributions are, in majority, of the form

pf (E) = A(〈ET (tf)〉 − E)BEC, (16)

where 〈ET (tf)〉 is the value of the average total system energy at
time tf . In most cases, all parameters A, B, and C had nonzero
values. One exception occurs for the chaotic environment for
k = 0 or 1. In such cases, the fitting is reduced to A

√
E.

FIG. 2. Distributions of energy for the three subsystems at time
tf , computed with initial value EQS = 5. Ragged black curves in each
k-labeled panel are for oscillator 1, gray curves are for oscillator 2,
and smooth curves are plotted according to Eq. (16). Bottom-right
panel: Results for QS, with k increasing from the top to the bottom
curve.

For the case of a single harmonic oscillator, the energy
distributions should approach a square-root line, as suggested
in Ref. [13]. However, for k = 11 and k = 16, the energy
distribution of oscillator 2 can be well fit by an exponential,
which seems to be an unexpected transient. Interestingly,
the corresponding momentum distributions closely obey the
Maxwellian law pM (p), which also characterizes approxi-
mately the momentum distributions of the QS. This behavior
persists for times up to t∗ = 6000. In particular, for k = 11, the
value of τM = 12.28 found for the QS is reasonably close to
three-halves that of τM = 8.16 for oscillator 2, which in turn is
near the corresponding value of τB = 8.77. This satisfies both
equipartition, 〈EQS(tf)〉 ≈ 3

2τE , and, from energy conservation
[cf. Eq. (7)], τE = 2

7ET (t = 0).
We show in Fig. 3 the time evolution of τ d

E associated with
px [Fig. 3(a)] and of τ d

S [Fig. 3(b)] for all k values studied.
Again, not all curves reach an asymptotic value within the dis-
played time window, confirming that dynamical equilibrium
was not yet reached. We compare the asymptotic values with
those predicted by Eqs. (7) and (13) for total energies 25.1
and 30: 2

7 × 25.1 ≈ 7.17 and 2
7 × 30 ≈ 8.57 for Fig. 3(a), and

2
5 × 25.1 = 10.04 and 2

5 × 30 = 12 for Fig. 3(b). Except for
the resonant cases k = 0 and k = 1, τ d

E converges to values
close to the expected results of 7.17 and 8.57. Also, τ d

S

converges better to 12 than it does to 10.04 for the resonant
cases.

Although both τ d
E and τ d

S display very similar time-
dependent behavior in practically all cases studied, they
disagree with respect to the mean energy at equilibrium. The

FIG. 3. (Color online) (a) Time evolution of 〈p2
x〉 for EQS(0) =

0.1 (bottom curves) and EQS(0) = 5 (top curves). (b) Time evolution
of τ d

S for EQS(0) = 0.1 (bottom curves) and EQS(0) = 5 (top curves).
Colors and parameters as in Fig. 1, except that, for the calculation of
τ d
S , 4000 initial conditions were used instead of 40 000. Results for

〈p2
y〉 are nearly identical to those for 〈p2

x〉.
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numerical results for the mean oscillators’ energies are closer
to τ d

E than to τ d
S , which indicates that the usual definition of

entropy [cf. Eq. (12)] cannot be applied to this system, possibly
because of its few degrees of freedom.

V. DYNAMICS WITH A SINGLE TRAJECTORY (N = 100)

In the previous section, we discussed the dynamical
behavior and equilibrium properties of the system described
by Hamiltonian (1) for N = 1. The time dependence of any
observable, like the energy of the oscillators, typically displays
large fluctuations when calculated for a single initial condition.
These fluctuations, which result from the small number of
degrees of freedom of the environment, are drastically reduced
when averaged over ensembles of initial conditions. Even
after such an average we cannot state that the environment
simulates the action of a thermal reservoir, since the energy
distribution does not always follow a Boltzmann exponential
law. As more QSs are included in the environment, these
single- trajectory oscillations decrease. For N sufficiently large
the time behavior obtained for a single trajectory becomes
similar to that of the ensemble average and independent of N .

In this case, we may talk about a potentially effective dynamics,
where single realizations reproduce the average behavior.

The indirect interaction between the QSs via the harmonic
oscillators enables the energy to be redistributed among them,
leading to a Boltzmann type of equilibrium distribution for
the environment [12]. When a single harmonic oscillator is in
contact with a sufficiently large and “cold” chaotic environ-
ment, most of its energy is transferred to the environment. The
results exhibited in Fig. 1 show that for two resonant oscillators
this is not true: more than 50% of the initial energy stored in
the oscillators remains in the harmonic modes even for very
long times. In what follows, we explore situations where this
symmetry is broken for N = 100, for which the environment
is already in the N -independent regime. All numerical results
in this section are obtained for a single trajectory and for
m1 = m2 = 1, a = 0.01 [12], and E1(0) = 10 and E2(0) = 0.

A. Resonant case

Figure 4(a) shows the energy of the two oscillators as
a function of time t∗ for the resonant case. Approximately
50% of E1(0) + E2(0) remains with the oscillators. Note that
the curves displaying E1(t∗) and E2(t∗) are mirror images of
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FIG. 4. (Color online) Energy of the oscillators as a function of the scaled time t∗ for (ω1,ω2) = (0.3,0.3) (a), (0.3,0.302) (b), (0.3,0.304)
(c), and (0.3,0.5) (d). Solid black and gray curves show the numerical results; dotted black and gray curves in (a) and (d), the LRT results
calculated using Eqs. (20) and (21) with γ ≈ 0.0044 (a) and γ ≈ 0.0035 (d).
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FIG. 5. Distributions of energy for oscillator 1 (black squares)
and oscillator 2 (gray circles) for the four cases displayed in
Fig. 4. The distribution is Gaussian in the resonant case [centered in
Ē = 2.5 (a)] and Boltzmann-like in all off-resonant cases: pB (E) =
exp (−E/Ēi)/Ēi with Ē1 ≈ 0.072 and Ē2 ≈ 0.073 (b), Ē1 ≈ 0.072
and Ē2 ≈ 0.073 (c), and Ē1 ≈ 0.075 and Ē2 ≈ 0.069 (d).

each other with respect to the horizontal dashed (red) line
at E = 2.5, which marks the final mean energy of the two
oscillators. This result is confirmed in Fig. 5(a), where the
energy distributions of the oscillators are Gaussians centered
on Ē = 2.5. This is by no means a trivial result and is in conflict
with the equipartition theorem as given in Eq. (7), which
predicts Ē1 = Ē2 ≈ 0.072. The condition of high symmetry
associated with the resonance is responsible for this apparent
violation of the equipartition theorem, as discussed in the next
section.

B. Nonresonant case

Figures 4(b)–4(d) show the energy of the oscillators for
frequencies moving away from the resonance. It is still
possible to see a flow of energy from one oscillator to the
other, although this becomes less evident as the frequencies
become more separated. Also visible is the increase in the
dissipated energy. Figure 4 also shows the sensitivity of the
dynamical behavior of the system with respect to variations
in the frequency of the oscillators. In the quasiresonant cases
[Figs. 4(b) and 4(c)], where ω1/ω2 ≈ 1, the relaxation time
is significantly greater than in the other cases, allowing
energy exchange between the oscillators for a very long
time. However, if the ratio ω1/ω2 deviates more considerably
from unity [Fig. 4(d)], the “opacity” of the chaotic medium
increases, culminating in almost-independent oscillators that
quickly lose all their energy to the environment. The energy
distributions corresponding to the cases in Fig. 4 are depicted
in Fig. 5 and show that the finite environment does act as a
thermal bath for the two oscillators, both of which have the
same temperature. Moreover, the equipartition theorem holds
true for all three off-resonant cases at long times, which means
that the relation Ē1 ≈ Ē2 ≈ 2

3 ĒQS is valid. This reinforces the
ability of the finite chaotic environment to promote dissipation
and thermalization [12]. Nevertheless, the resonance condition

permits an efficient flow of energy between the harmonic
modes. The aim of the next section is to explain the special
resonant case and show that in this case the equipartition is
still valid.

VI. LINEAR RESPONSE THEORY

The oscillators obey the dynamics given in the equations

q̈i + ω2
i qi = −λN

m

N∑
n=1

xn ≡ −λN

m
X(t). (17)

As the dynamics of the variables xn are chaotic and the
interaction among the QSs is of second order in the coupling,
each xn is approximately independent and we may replace
X(t) by its average 〈X(t)〉. Then applying LRT [24], we get

q̈i + ω2
i qi ≈ λ2

N

m

∫ t

0
ds φXX(t − s)[(q1(s) + q2(s)], (18)

where the response function φXX is given in Ref. [12] by

φXX(t − s) = 5μN

4

d

ds
δ(t − s) + μN (t − s)

4

d2

dtds
δ(t − s),

(19)

where μ is a parameter that depends on the average energy of
the environment. After computing the integral we have

q̈1 + γ q̇1 + ω2
1q1 = −γ q̇2, (20)

q̈2 + γ q̇2 + ω2
2q2 = −γ q̇1, (21)

with γ = 3λ2μ

8m
. These equations cannot be diagonalized unless

ω1 = ω2. In this case, we can define the new variables,

Q± = q1 ± q2√
2

, (22)

associated with the center-of-mass and relative coordinates of
the oscillators and rewrite Eqs. (20) and (21) as

Q̈+ + 2γ Q̇+ + ω2Q+ = 0, (23)

Q̈− + ω2Q− = 0. (24)

The Q− is then completely decoupled from the environment
and is now called the conservative mode, whose initial energy
is E1(0)/2 for the present initial conditions. Analogously,
Q+ is termed the dissipative mode. LRT predicts γ � ω;
therefore Q+ dissipates energy according to E+(t) ≈
E+(0) exp(−2γ t), where E+(0) is also E1(0)/2. Note that
Eq. (24) is exact, as can be seen by replacing Eq. (22) into
Eq. (17).

The harmonic oscillator energies obtained from Eqs. (20)
and (21) are compared in Fig. 4 with numerical simulations
of Hamiltonian (1). As shown in the figure, the qualitative
agreement is excellent for both resonant [Fig. 4(a)] and
nonresonant [Fig. 4(d)] cases.

In order to correctly apply the equipartition theorem in
the resonant case we have to consider only the energy in
Q+. Taking the expression for the total initial energy, ET =
E1/2 + NEQS, we find that the expected value of the energy
of the dissipative mode in equilibrium is Ē+ ≈ 0.039. This
is confirmed in Fig. 6, which shows the energy distribution
of Q+. Therefore, the violation of equipartition was only

041119-6



ENERGY TRANSFER DYNAMICS AND THERMALIZATION . . . PHYSICAL REVIEW E 85, 041119 (2012)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00

0.05

0.10

0.15

0.20

0.25

 Numerical data
 Exponential fit  

p(
E

)

E

FIG. 6. (Color online) Distribution of energy for the dissipative
Q+ mode for N = 100. The fit is pB (E) = exp (−E/Ē+)/Ē+ with
Ē+ = 0.037.

apparent, caused by the emergence of a conservative mode
that prevented the complete dissipation of the energy in the
harmonic oscillators.

VII. CONCLUSIONS

We have studied the dynamical behavior of two harmonic
oscillators independently coupled to a chaotic environment
with 2N degrees of freedom. We have focused our analysis on
two points: the interactions between the oscillators mediated
by the chaotic environment and the equilibrium properties of
the system. We found that the oscillators can exchange energy
through the environment when in almost-perfect resonance.
Deviation from this condition quickly changes this behavior
and makes the oscillators less sensitive to the presence of each
other. When in perfect resonance, the oscillators are able to
keep part of their initial energy, in an apparent violation of the
equipartion theorem. This, however, turns out to be exactly
the fraction of the energy stored in the oscillators’ relative
motion, which is not coupled to the environment. This holds
both for N = 1 via ensemble averages and for N = 100 for a
single realization of the dynamics and is also true within the
approximation of the LRT, which works well for the resonant
and nonresonant cases.

The equilibrium properties of the system, on the other hand,
depend critically on the number of degrees of freedom of the
environment. In order to quantify the equilibrium we have
considered two measures of temperature: τE , obtained from the
equipartition theorem; and τS , obtained via the usual definition
of entropy. These temperatures have also been compared with
the energy distribution of each subsystem, whenever these

converged to a Boltzmann-like exponential. For N = 100
the oscillator’s energy distributions indeed always converged
to the exponential decay exp (−E/τB) with τB ≈ τE for all
subsystems, except in the resonant cases. This characterizes
the thermal equilibrium and corroborates earlier results that
a not too small chaotic environment does play the role of a
thermal bath [12]. This conclusion also holds in the resonant
case if the energy of the conservative mode is properly
subtracted.

The case N = 1, on the other hand, shows a very rich
behavior. Equilibration takes very long times for the present
choice of parameters and the energy distribution of the oscil-
lators display, in some cases, exponential curves. Curiously,
for the particular values of ω1 and ω2 used, the exponent
agrees reasonably with energy equipartition but not with τS .
Moreover, the distribution of the momentum often displays
the expected Gaussian distribution, even if the corresponding
energy distribution is not exponential. These unexpected
results show that the N = 1 environment does not simulate the
action of a thermal bath even if averaged over an ensemble of
trajectories and display a more complicated type of approach
to equilibrium that is worth deeper investigation.

We have also examined the ergodicity of the system.
Because λ is small, it could be expected that the total system
would not be ergodic. This, however, is not the case. For
λ = 0, the environment is ergodic for N = 1 but it is not
ergodic for N = 100, since the QSs are totally independent
of each other. As the coupling is turned on, the total system
becomes ergodic for N = 100 (and is able to show the correct
equipartition of energy), whereas for N = 1 it does not. This
was verified by numerical results not shown in which time
and ensemble averages were compared for various conditions.
As expected, we found that temperature could be defined
whenever ergodicity was satisfied, although ergodicity itself
depends nontrivially on the parameters of the system and on
the number of degrees of freedom.

Finally, we note that the emergence of the conservative
mode Q− depends on the symmetry of the coupling as given
in Eq. (4) and on the resonance condition ω1 = ω2. The
conservative mode is absent if ω1 = ω2 or if each oscillator
is coupled to a different mode of the QS, such as in HI =∑

n(q1xn + q2yn). In LRT this leads to decoupled equations
for Q+ and Q−, each equation identical to Eq. (23).

ACKNOWLEDGMENTS

It is a pleasure to thank M. V. S. Bonança and T. F. Viscondi
for helpful suggestions. The authors acknowledge financial
support from FAPESP and CNPq and computing facilities
provided by CENAPAD/SP.

[1] A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983);
153, 445(E) (1984).

[2] A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983);
130, 374(E) (1985).

[3] M. P. A. Fisher and W. Zwerger, Phys. Rev. B 32, 6190 (1985).

[4] U. Weiss, Quantum Dissipative Systems (World Scientific,
Singapore, 1993).

[5] P. Hedegard and A. O. Caldeira, Phys. Scripta 35, 609 (1987).
[6] N. V. Prokof’ev and P. C. E. Stamp, Rep. Prog. Phys. 63, 669

(2000).

041119-7

http://dx.doi.org/10.1016/0003-4916(83)90202-6
http://dx.doi.org/10.1016/0003-4916(84)90027-7
http://dx.doi.org/10.1016/0003-4916(84)90027-7
http://dx.doi.org/10.1016/0378-4371(83)90013-4
http://dx.doi.org/10.1016/0378-4371(85)90113-X
http://dx.doi.org/10.1016/0378-4371(85)90113-X
http://dx.doi.org/10.1103/PhysRevB.32.6190
http://dx.doi.org/10.1088/0031-8949/35/5/001
http://dx.doi.org/10.1088/0034-4885/63/4/204
http://dx.doi.org/10.1088/0034-4885/63/4/204


MARCHIORI, FARIELLO, AND DE AGUIAR PHYSICAL REVIEW E 85, 041119 (2012)

[7] M. Wilkinson, J. Phys. A 23, 3603 (1990).
[8] M. V. Berry and J. M. Robbins, Proc. R. Soc. London A 442,

659 (1993).
[9] T. O. de Carvalho and M. A. M. de Aguiar, Phys. Rev. Lett. 76,

2690 (1996).
[10] D. Cohen, Phys. Rev. Lett. 82, 4951 (1999).
[11] D. Cohen and T. Kottos, Phys. Rev. E 69, 055201 (2004).
[12] M. A. Marchiori and M. A. M. de Aguiar, Phys. Rev. E 83,

061112 (2011).
[13] M. V. S. Bonança and M. A. M. de Aguiar, Physica A 365, 333

(2006).
[14] O. S. Duarte and A. O. Caldeira, Phys. Rev. Lett. 97, 250601

(2006).
[15] O. S. Duarte and A. O. Caldeira, Phys. Rev. A 80, 032110 (2009).
[16] D. M. Valente and A. O. Caldeira, Phys. Rev. A 81, 012117

(2010).
[17] W.-H. Steeb, J. A. Louw, and C. M. Villet, Phys. Rev. A 34,

3489 (1986); M. P. Joy and M. Sabir, Pramana J. Phys. 40, 17
(1993).

[18] R. C. Tolman, Phys. Rev. 11, 261 (1918).
[19] V. L. Berdichevsky and M. V. Alberti, Phys. Rev. A 44, 858

(1991).
[20] H. H. Rugh, Phys. Rev. Lett. 78, 772 (1997); J. Phys. A 31, 7761

(1998).
[21] O. G. Jepps, G. Ayton, and D. J. Evans, Phys. Rev. E 62, 4757

(2000); G. Rickayzen and J. G. Powles, J. Chem. Phys. 114,
4333 (2001); J. G. Powles, G. Rickayzen, and D. M. Heyes,
Mol. Phys. 103, 1361 (2005).

[22] V. M. Bannur, Phys. Rev. E 58, 407 (1998); B. D. Butler,
G. Ayton, O. G. Jepps, and D. J. Evans, J. Chem. Phys.
109, 6519 (1998); G. P. Morriss and L. Rondoni, Phys. Rev.
E 59, R5 (1999); V. M. Bannur, Phys. Rev. C 72, 024904
(2005).

[23] G. Birkhoff and G.-C. Rota, Ordinary Differential Equations
(Wiley, New York, 1989).

[24] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II:
Nonequilibrium Statistical Mechanics (Springer-Verlag, Berlin,
1985).

041119-8

http://dx.doi.org/10.1088/0305-4470/23/15/030
http://dx.doi.org/10.1098/rspa.1993.0127
http://dx.doi.org/10.1098/rspa.1993.0127
http://dx.doi.org/10.1103/PhysRevLett.76.2690
http://dx.doi.org/10.1103/PhysRevLett.76.2690
http://dx.doi.org/10.1103/PhysRevLett.82.4951
http://dx.doi.org/10.1103/PhysRevE.69.055201
http://dx.doi.org/10.1103/PhysRevE.83.061112
http://dx.doi.org/10.1103/PhysRevE.83.061112
http://dx.doi.org/10.1016/j.physa.2005.09.062
http://dx.doi.org/10.1016/j.physa.2005.09.062
http://dx.doi.org/10.1103/PhysRevLett.97.250601
http://dx.doi.org/10.1103/PhysRevLett.97.250601
http://dx.doi.org/10.1103/PhysRevA.80.032110
http://dx.doi.org/10.1103/PhysRevA.81.012117
http://dx.doi.org/10.1103/PhysRevA.81.012117
http://dx.doi.org/10.1103/PhysRevA.34.3489
http://dx.doi.org/10.1103/PhysRevA.34.3489
http://dx.doi.org/10.1007/BF02898037
http://dx.doi.org/10.1007/BF02898037
http://dx.doi.org/10.1103/PhysRev.11.261
http://dx.doi.org/10.1103/PhysRevA.44.858
http://dx.doi.org/10.1103/PhysRevA.44.858
http://dx.doi.org/10.1103/PhysRevLett.78.772
http://dx.doi.org/10.1088/0305-4470/31/38/011
http://dx.doi.org/10.1088/0305-4470/31/38/011
http://dx.doi.org/10.1103/PhysRevE.62.4757
http://dx.doi.org/10.1103/PhysRevE.62.4757
http://dx.doi.org/10.1063/1.1348024
http://dx.doi.org/10.1063/1.1348024
http://dx.doi.org/10.1080/00268970500054664
http://dx.doi.org/10.1103/PhysRevE.58.407
http://dx.doi.org/10.1063/1.477301
http://dx.doi.org/10.1063/1.477301
http://dx.doi.org/10.1103/PhysRevE.59.R5
http://dx.doi.org/10.1103/PhysRevE.59.R5
http://dx.doi.org/10.1103/PhysRevC.72.024904
http://dx.doi.org/10.1103/PhysRevC.72.024904

