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Nonlocal product rules for percolation
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Despite original claims of a first-order transition in the product rule model proposed by Achlioptas et al.
[Science 323, 1453 (2009)], recent studies indicate that this percolation model, in fact, displays a continuous
transition. The distinctive scaling properties of the model at criticality, however, strongly suggest that it should
belong to a different universality class than ordinary percolation. Here we introduce a generalization of the product
rule that reveals the effect of nonlocality on the critical behavior of the percolation process. Precisely, pairs of
unoccupied bonds are chosen according to a probability that decays as a power law of their Manhattan distance,
and only that bond connecting clusters whose product of their sizes is the smallest becomes occupied. Interestingly,
our results for two-dimensional lattices at criticality shows that the power-law exponent of the product rule has
a significant influence on the finite-size scaling exponents for the spanning cluster, the conducting backbone,
and the cutting bonds of the system. In all three cases, we observe a clear transition from ordinary to (nonlocal)
explosive percolation exponents.
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I. INTRODUCTION

The percolation paradigm represents a formidable example
where a simple geometrical construction leads to profound
concepts in statistical physics, with special emphasis on phase
transitions, and real applications in science and technology
[1–6]. Standard percolation processes are based on local rules,
since they are accomplished through random allocation of
sites or bonds, therefore disregarding any spatial correlation
or global information involved in the occupation of other
elements on the lattice. However, in the case of long-range
spatially correlated percolation [7–11], the probability for
a site to be occupied depends on the occupancy of other
sites. Moreover, it has been shown that spatial long-range
correlations in site occupancy can give rise to important
changes on the structural characteristics of the spanning cluster
as well as its corresponding conducting backbone [9]. These
changes are strong enough to modify the scaling exponents of
traditional (local) percolation.

Recently, a different percolation model has been proposed,
the so-called product rule (PR) percolation, in terms of a
bond occupation process that is essentially nonlocal [12]. In
this model, at each step, two unoccupied bonds are randomly
chosen and associated with weights given by the product of the
cluster sizes they would potentially connect. Only that bond
which has the smallest weight becomes occupied. By compar-
ison with the traditional percolation model [1], the PR model
presents a more abrupt transition when applied to different
network topologies [13–28]. As potential applications, the PR
model has been recently associated to the growth dynamics of
Protein Homology Networks [29] as well as to the formation
of bundles of single-walled nanotubes [30].

Regardless of initial claims of a first-order transition in
the PR model [12], however, recent analytical and numerical
works [31–34] have demonstrated that the alleged “explosive
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percolation” process actually displays a continuous, i.e., a
second-order phase transition. This apparent drawback of
the PR model has been somehow overstated, in the sense
that the model proposed by Achlioptas et al. [12] certainly
represents an original and interesting contribution to the field.
For instance, much less importance has been given to the
nonlocal attributes of the PR algorithm. As a consequence
of this nonlocality, the model exhibits a percolation transition
that, although continuous in nature, seems to belong to a dif-
ferent universality class than ordinary percolation [15,22,28].
Under this framework, the adjacent edge rule (AER) model
[35] represents a particular case of the PR process that is
analytically tractable, since the selection is restricted to two
adjacent bonds. When applied to random graphs, this model
still displays a more abrupt transition and different scaling
properties than ordinary percolation.

In this work we introduce a generalization of the PR
model in which the range of its nonlocal features can be
systematically controlled. This is carried out imposing that
pairs of bonds for selection are randomly chosen according to
a probability that decays as a power law of their Manhattan
distance, namely the distance measured as the number of
connections separating the sites in a regular lattice. This
physically plausible assumption is inspired on a geographical
model for complex networks where long-ranged shortcuts are
incorporated to regular lattices. Such a conceptual construction
has been extensively used as a way to explain the emergence
of optimal navigation and efficient transport in small-world
systems [36–41]. As a consequence of the selection rule
adopted here, we show that the scaling properties of the system
become dependent on the specific value of the corresponding
power-law exponent. A transition is then revealed from the
traditional to the PR percolation behavior. Moreover, the
results of our extensive numerical simulations provide strong
evidence for the fact that the AER model, when applied to
regular lattices in two dimensions, falls in the same universality
class as ordinary percolation. This paper is organized as
follows. In Sec. II we introduce the generalized PR model.
The results from computational simulations are presented and
discussed in Sec. III. Conclusions are drawn in Sec. IV.
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FIG. 1. (Color online) Pair of unoccupied bonds ei and ej (dashed
lines) randomly selected for the application of the product rule,
according to the probability P (rij ) ∼ r−α

ij , where rij is the Manhattan
distance between sites i and j (black circles), and α is a variable
exponent. Following the PR model, the bond ei , merging the two
clusters in blue (with three sites each), becomes occupied. The bond
ej would merge the clusters in red (four sites) and yellow (six sites),
but remains unoccupied.

II. MODEL FORMULATION

As shown in Fig. 1, our bond percolation process takes
place on a square lattice of size L. At each step, two sites
i and j are randomly selected with probability P (rij ) ∼ r−α

ij ,
where rij is the Manhattan distance between i and j , measured
as the number of connections separating these sites in the
underlying regular lattice [42]. From each site i and j , one
bond is then selected among its four adjacent edges, namely
ei and ej , respectively. If at least one of these two bonds is
already occupied, the entire process of selection is restarted.
If not, following the product rule, weights are assigned to
each of these bonds, in proportionality to the product of the
size (number of sites) of the clusters they would potentially
connect. In the case a bond connects two sites in the same
cluster, the weight is equal to the square of the cluster size. The
bond associated with the smallest weight becomes occupied,
while the other stays unoccupied, but can be selected again
in later steps. The percolation process stops when one among
all clusters, namely the spanning cluster, connects the lattice
from top to bottom [1]. At that point, the fraction p of occupied
bonds corresponds to the percolation threshold pc.

Our model displays two distinct limiting behaviors, depend-
ing on the exponent α. For α = 0, we recover the usual PR,
for which the preliminary random selection of the bonds e1

and e2 constitutes a highly nonlocal process [14,31]. In the
limit of α → ∞, the bonds e1 and e2 are always adjacent,
which corresponds to the AER process proposed in Ref. [35],
but applied here to regular lattices. Although more spatially
restricted than the PR process, the AER is still nonlocal,
since it requires information about the masses of the joining

FIG. 2. (Color online) Snapshots of the largest cluster at pc for
different values of the exponent α, and a lattice size L = 64. The
bonds forming the conducting backbone are in blue, the cutting
bonds are in red, and the remaining bonds of the largest cluster are
presented in green. Although no major difference can be observed
on the mass Mclus of the largest cluster, one can notice that the
conducting backbone occupies a larger fraction of the largest cluster
as α increases, leading to a substantial decrease on the number of
cutting bonds Mcut.

clusters [31]. As we show later, the finite low dimensionality
of the square lattice employed here attenuates even further the
already weaker nonlocal features of the AER process.

III. RESULTS AND DISCUSSION

Figure 2 shows typical realizations of the largest cluster
at the critical point pc for different values of α. For α = 0,
we obtain pc = 0.527 ± 0.001, which is in good agreement
with previous simulation results of the PR on the square lattice
[21,22]. Moreover, we find that pc decreases smoothly and
monotonically with α from this value to 0.522 ± 0.001 at α =
4 (not shown). Next we apply the burning algorithm [43] to
compute the mass of the spanning cluster Mclus, the mass of
its conducting backbone Mback, and the mass (number) Mcut of
cutting bonds. The last ones, also called red bonds, if removed,
would break the spanning cluster in two, therefore destroying
the global connectivity of the system.

Our results show that, regardless of the value of α, all
these critical quantities scale with the system size L as typical
power laws, Mback ∼ Ldback , Mcut ∼ Ldcut (see Fig. 3), and
Mclus ∼ Ldclus (not shown), where dback, dcut, and dclus are the
fractal dimensions of the conducting backbone, the cutting
bonds, and the largest cluster, respectively. In Figs. 4(a)–4(c)
we show that all these exponents exhibit a monotonic variation
with α, going from a saturation regime of (nonlocal) explosive
percolation at α = 0 to another compatible with ordinary bond
percolation (BP) at sufficiently large values of α. Accordingly,
for α = 0, we recover the previously numerically calculated
values of dclus = 1.96 ± 0.01 [15,16], dback = 1.52 ± 0.03,
and dcut = 1.02 [28]. In all three cases, by increasing α, a
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FIG. 3. (Color online) (a) Log-log dependence of the mass of the
conducting backbone Mback on the system size for different values
of the exponent α. (b) The same as in (a), but for the number
of cutting bonds Mcut. In both cases and for all values of α, the
evidence of scaling behavior substantiates the calculation of the
fractal dimensions dback and dcut as the slopes of the corresponding
straight lines that are best-fitted to the simulation data. All quantities
are averaged over at least 2500 realizations precisely at the point in
which the largest cluster appears.

crossover from PR to BP takes place in the interval 1 < α < 3.
More precisely, dclus decreases in this interval and starts
fluctuating around 1.89 for α > 3 [see Fig. 4(a)], in agreement
with the classical two-dimensional (2D) value of 91/48 [1].
After increasing in the interval 1 < α < 3, the exponents dback

and dcut remain practically constant for α > 3, around 1.64 [2]
[see Fig. 4(b)] and 0.75 [1] [see Fig. 4(c)], respectively.
These values are fully compatible with previously reported
numerical calculations for ordinary (local) percolation in
2D. The variations of the exponents dclus and dback within
1 < α < 3 reflect relevant changes in compactness of the
spanning cluster and its conducting backbone. Although the
spanning cluster becomes less compact as α increases (dclus

decreases), the mass of the backbone Mback tends to occupy
a larger fraction of Mclus, since the dimension dback increases
in the same interval of α values, as shown in Fig. 3. In these
circumstances, a more compact conducting backbone implies
a smaller number of cutting bones (see Fig. 3), therefore
explaining the decrease in the exponent dcut.

Next we provide some analytical arguments that indicate
how nonlocal features are introduced in our percolation model
through the power-law probability P (rij ). We first consider
the average distance between all pairs of sites in a empty
lattice, 〈r〉 = ∑L

r=1 rNrr
−α/

∑L
r=1 Nrr

−α , where Nr = 4r is
the number of sites that are at a Manhattan distance r from
a given site in the square lattice. Approximating the sum by
an integral, we obtain that 〈r〉 ∼ ∫ L

1 r2−αdr . It follows that,
for α � 3 and sufficiently large lattice sizes, 〈r〉 is always
finite, and the scaling exponents should be those of standard

(a)

(b)

(c)

FIG. 4. (Color online) Dependence on the exponent α of the
size-scaling exponents for (a) the mass of the spanning cluster dclus,
(b) the mass of the conducting backbone dback, and (c) the number
of cutting bonds dcut. In all cases, a crossover can be observed in the
interval 1 < α < 3 from a regime of nonlocal explosive percolation at
α = 0, to a regime that is compatible with ordinary bond percolation
(BP), at sufficiently large values of α. The solid blue lines correspond
to dclus = 1.96 [15,16] and 91/48 [1] in (a), dback = 1.52 [28] and
1.64 [2] in (b), and dcut = 1.02 [28] and 0.75 [1] in (c).

2D percolation. As a consequence, the effect of nonlocality
on the scaling properties of the system would only play a role
for α < 3. In addition, distinct nonlocal behaviors should be
expected for the intervals α < 2 and 2 � α < 3. For α < 2,
〈r〉 is limited by the network size, leading to 〈r〉 ∼ L, implying
that the scaling exponents of PR in 2D should be recovered.
The mismatch observed in Fig. 4 between expected and
numerically calculated exponents for this interval are certainly
due to strong finite-size effects for α ≈ 2. The results displayed
in Fig. 4 suggest that the scaling exponents vary continuously
in the interval 2 � α < 3. The fact that the average distance
scales as 〈r〉 ∼ L3−α provides support to the conjecture that
nonlocal effects are continuously vanishing in this range.

In order to better confirm the role of nonlocality on the
PR process, we perform additional simulations in the two
limits of the model at higher dimensions, namely for α = 0,
which corresponds to the original PR process, and for the
AER process, α → ∞. In these cases, improved performance
can be achieved by adopting the so-called jump method to
analyze the behavior of the order parameter Mclus [27,44,45].
For each realization, we compute the average fraction p of
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TABLE I. Estimated values of the percolation threshold pc and the scaling exponent dclus for hypercubic lattices of dimension D calculated
using the jump method [27,44,45]. The presented values correspond to averages over a minimum of 2500 realizations of systems with sizes
up to L = 4096 (D = 2), 256 (D = 3), 64 (D = 4), 28 (D = 5), and 16 (D = 6).

D pc,AP pc,AER dclus-AP dclus-AER dclus-Classical [1]

2 0.526550 ± 0.000005 0.52007 ± 0.00001 1.955 ± 0.002 1.899 ± 0.001 91/48
3 0.322096 ± 0.000001 0.285360 ± 0.000008 2.788 ± 0.003 2.530 ± 0.003 2.53
4 0.234160 ± 0.000003 0.202163 ± 0.000004 3.665 ± 0.009 3.079 ± 0.005 3.06
5 0.184656 ± 0.000006 0.160454 ± 0.000004 4.61 ± 0.01 3.59 ± 0.04 3.54
6 0.152642 ± 0.000005 0.134113 ± 0.000002 5.558 ± 0.005 4.46 ± 0.01 4

occupied bonds at which a jump takes place, defined as
the maximum change on Mclus from the occupation of a
single bond. This value of p corresponds to the percolation
threshold pc. The results for pc and dclus in both limits and
different dimensions are summarized in Table I. Interestingly,
the discrepancy between the fractal dimensions calculated
for PR and AER models increases substantially with lattice
dimensionality. Moreover, our calculations suggest that the
resemblance between regular BP and the limiting case α → ∞
stands only up to five dimensions, when compared with
previous results from the literature [1,2]. The difference found
between the exponents dclus of BP and AER for D > 5 can be
explained in terms of the nonlocal features involved in the PR
process. As reported in Refs. [31,35], this model displays an
unusual scaling behavior. As a consequence, an upper critical
dimension, above which the scaling exponents become equal
to mean-field values, may not be observed in this case.

IV. CONCLUSION

In summary, we have proposed a generalization of the
PR model where the range of nonlocality in the percolation
process can be explicitly tuned. Our results show that this
model displays a rich variety of scaling behaviors, going from
ordinary to nonlocal explosive percolation. We expect our PR
model, since it is based on a geographical choice of bond pairs,
to provide relevant physical insights into the role of nonlocality
on the critical properties of percolation.
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[25] J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno, Phys.

Rev. Lett. 106, 128701 (2011).
[26] H. Hooyberghs and B. Van Schaeybroeck, Phys. Rev. E 83,

032101 (2011).
[27] S. S. Manna and A. Chatterjee, Physica A 390, 177

(2011).
[28] J. S. Andrade, H. J. Herrmann, A. A. Moreira, and C. L. N.

Oliveira, Phys. Rev. E 83, 031133 (2011).

041112-4

http://dx.doi.org/10.1103/PhysRevLett.68.608
http://dx.doi.org/10.1016/0378-4371(95)00321-5
http://dx.doi.org/10.1016/S0378-4371(97)00008-3
http://dx.doi.org/10.1016/S0378-4371(99)00029-1
http://dx.doi.org/10.1103/PhysRevLett.61.1438
http://dx.doi.org/10.1103/PhysRevA.40.1717
http://dx.doi.org/10.1103/PhysRevA.46.R1724
http://dx.doi.org/10.1103/PhysRevA.46.R1724
http://dx.doi.org/10.1103/PhysRevE.53.5445
http://dx.doi.org/10.1103/PhysRevE.53.5445
http://dx.doi.org/10.1103/PhysRevE.54.3129
http://dx.doi.org/10.1126/science.1167782
http://dx.doi.org/10.1126/science.1167782
http://dx.doi.org/10.1103/PhysRevLett.103.135702
http://dx.doi.org/10.1103/PhysRevLett.103.135702
http://dx.doi.org/10.1103/PhysRevLett.103.255701
http://dx.doi.org/10.1103/PhysRevLett.103.255701
http://dx.doi.org/10.1103/PhysRevLett.103.045701
http://dx.doi.org/10.1103/PhysRevLett.103.168701
http://dx.doi.org/10.1103/PhysRevLett.103.168701
http://dx.doi.org/10.1103/PhysRevE.81.030103
http://dx.doi.org/10.1103/PhysRevE.81.030103
http://dx.doi.org/10.1103/PhysRevE.82.042102
http://dx.doi.org/10.1103/PhysRevE.82.042102
http://dx.doi.org/10.1103/PhysRevE.81.040101
http://dx.doi.org/10.1103/PhysRevLett.105.035701
http://dx.doi.org/10.1103/PhysRevLett.105.035701
http://dx.doi.org/10.1103/PhysRevE.81.036110
http://dx.doi.org/10.1103/PhysRevE.81.036110
http://dx.doi.org/10.1103/PhysRevE.82.051105
http://dx.doi.org/10.1103/PhysRevLett.106.095703
http://dx.doi.org/10.1103/PhysRevLett.106.115701
http://dx.doi.org/10.1103/PhysRevLett.106.115701
http://dx.doi.org/10.1103/PhysRevLett.106.128701
http://dx.doi.org/10.1103/PhysRevLett.106.128701
http://dx.doi.org/10.1103/PhysRevE.83.032101
http://dx.doi.org/10.1103/PhysRevE.83.032101
http://dx.doi.org/10.1016/j.physa.2010.10.009
http://dx.doi.org/10.1016/j.physa.2010.10.009
http://dx.doi.org/10.1103/PhysRevE.83.031133


NONLOCAL PRODUCT RULES FOR PERCOLATION PHYSICAL REVIEW E 85, 041112 (2012)

[29] H. D. Rozenfeld, L. K. Gallos, and H. A. Makse, Eur. Phys. J.
B 75, 305 (2010).

[30] Y. Kim, Y. K. Yun, and S. H. Yook, Phys. Rev. E 82, 061105
(2010).

[31] P. Grassberger, C. Christensen, G. Bizhani, S.-W.
Son, and M. Paczuski, Phys. Rev. Lett. 106, 225701
(2011).

[32] R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.
Mendes, Phys. Rev. Lett. 105, 255701 (2010).

[33] H. K. Lee, B. J. Kim, and H. Park, Phys. Rev. E 84, 020101(R)
(2011).

[34] O. Riordan and L. Warnke, Science 333, 322 (2011).
[35] R. M. D’Souza and M. Mitzenmacher, Phys. Rev. Lett. 104,

195702 (2010).
[36] J. Kleinberg, Nature (London) 406, 845 (2000).
[37] M. Barthelemy, Phys. Rep. 499, 1 (2011).

[38] G. Li, S. D. S. Reis, A. A. Moreira, S. Havlin, H. E. Stanley, and
J. S. Andrade, Phys. Rev. Lett. 104, 018701 (2010).

[39] Y. Li, D. Zhou, Y. Hu, J. Zhang, and Z. Di, Europhys. Lett. 92,
58002 (2010).

[40] M. P. Viana and L. d. F. Costa, Phys. Lett. A 375, 1626 (2011).
[41] L. K. Gallos, H. A. Makse, and M. Sigman, Proc. Natl. Acad.

Sci. USA 109, 2825 (2012).
[42] In fact, to account for the number Nr of neighbors that are at

a Manhattan distance r from a particular site in a square lattice
(Nr = 4r), the random distance r must be generated following
a power-law distribution proportional to r (1−α).

[43] H. J. Herrmann, D. C. Hong, and H. E. Stanley, J. Phys. A 17,
L261 (1984).

[44] J. Nagler, A. Levina, and M. Timme, Nature Phys. 7, 265 (2011).
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