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Hexagonal-close-packed lattice: Ground state and phase transition
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We study the ground state (GS) and the phase transition in a hexagonal-close-packed lattice with both XY
and Ising models by using extensive Monte Carlo simulation. We suppose the in-plane interaction J1 and
interplane interaction J2, both antiferromagnetic. The system is frustrated with two kinds of GS configuration
below and above a critical value of η = J1/J2 (ηc). For the Ising case, one has ηc = 0.5 which separates
in-plane ferromagnetic and antiferromagnetic states, while for the XY case ηc = 1/3 separates the collinear and
noncollinear spin configurations. The phase transition is shown to be of first (second) order for η > (<)ηc. The
phase diagram in the space (η,T) is shown for both cases.
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I. INTRODUCTION

Frustrated spin systems have been the subject of intensive
investigations during the last 30 years [1]. These systems
are very unstable due to the competition between antagonist
interactions or due to a geometrical frustration such as in
the antiferromagnetic (AF) triangular lattice. A spin is said
frustrated when it cannot find an orientation which ”fully”
satisfies all the interactions with its neighbors [2,3]. As a
consequence of the frustration, the ground state (GS) is very
highly degenerate. In the Ising case the GS degeneracy is often
infinite as in the triangular lattice, the face-centered cubic
(FCC), and hexagonal-close-packed (HCP) lattices, with AF
interaction. In the case of vector spins, the GS is noncollinear
such as the 120◦ configuration in the XY and Heisenberg
AF stacked triangular lattice (STL). In two dimensions (2D),
several frustrated systems with the Ising spin model have been
exactly solved [4,5]. Among the most interesting models one
can mention the frustrated generalized Kagome lattice [6]
and the honeycomb lattice [7] where exotic features such as
the existence of several phase transitions, the reentrance, and
the disorder lines have been exactly found by mapping these
systems into vertex models [8]. In three dimensions (3D),
the situation is complicated. The renormalization group (RG)
[9,10], which provided a good understanding of the nature
of the phase transition in nonfrustrated systems, encounters
much of the difficulties in application to frustrated systems.
Among the most studied subjects during the last 20 years,
one can mention the nature of the phase transition in the XY
and Heisenberg STL. After a long debate [11] on whether
it is a second-, or a first-order transition or it belongs to a
new universality class, the controversy has recently ended
with the conclusion of a first-order transition: Let us mention
the work of Itakura who, using Monte Carlo (MC) and MC
RG, has early identified a first-order behavior in the XY STL
case [12], the work of Bekhechi et al. [13] who, using a
short-time critical dynamics, have led to the same conclusion,
and finally the works of Ngo and Diep who put an end to the
controversy [14,15].
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In this paper, we are interested in the HCP antiferromagnet
with Ising and XY spin models. Our purpose is to study its
properties such as the ground state and the phase transition,
in the case of anisotropic exchange interactions. The isotropic
nearest-neighbor (NN) AF interaction has been studied for
Ising [16] and XY and Heisenberg spins [17]. These isotropic
cases have been shown to undergo a phase transition of first
order, and the infinite GS degeneracy is reduced to 6 at low
temperatures [16,17]. The effect of anisotropic interaction and
anisotropy on the GS in the case of vector spins has been
studied [18].

In Sec. II, we show our model and analyze the ground
state. Results of MC simulations on the phase transition are
shown and discussed in Sec. III. Concluding remarks are given
in Sec. IV.

II. MODEL AND GROUND-STATE ANALYSIS

We consider the HCP lattice shown in Fig. 1. The stacking
direction is z. The Hamiltonian is given by

H = −
∑

(i,j )

Ji,j Si · Sj , (1)

where Si is the spin at lattice site i and Jij is the AF interaction
between nearest neighbors (NN). We suppose that Jij = J1 if
the NN are on the xy triangular plane, and Jij = J2 if the
NN are on two adjacent planes (see Fig. 1). The GS can be
determined by the steepest-descent method. This method is
very simple [19]. (i) We generate an initial configuration at
random, (ii) we calculate the local field created at a site by its
neighbors using (1), (iii) we align the spin of that site along
the calculated local field to minimize its energy, (iv) we go to
another site and repeat until all sites are visited: we say we
make one sweep, and (v) we do a large number of sweeps per
site until a good convergence is reached.

However, one can also minimize the interaction energy as
shown below to calculate the GS configuration. Since both
interactions are AF (negative), for simplicity, we fix J2 = −1
and vary J1. The unit of energy is taken as |J2| and the
temperature T is in the unit of |J2|/kB where kB is the
Boltzmann constant.
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FIG. 1. (Color online) HCP lattice. The in-plane and interplane
interactions are indicated by J1 and J2.

Let us recall the GS in the case of isotropic interaction,
namely, J1 = J2 [17]. For the HCP lattice, each spin is shared
by eight tetrahedra (four in the upper half-space and four in
the lower half-space along the z axis) and an NN bond is
shared by two tetrahedra. The GS spin configuration of the
system is formed by stacking neighboring tetrahedra. In the
GS, one has two pairs of antiparallel spins on each tetrahedron.
Their axes form an arbitrary angle α. The degeneracy is thus
infinite [see Fig. 2(a) of Ref. [17]]. Of course, the periodic
boundary conditions will reduce a number of configurations,
but the degeneracy is still infinite. Of these GS’s, one particular
family of configurations of interest for both XY and Heisenberg
cases is when α = 0. The GS is then collinear with two spins
up and the other two down. The stacking sequence is then
simplest: there are three equivalent configurations since there
are three ways to choose the parallel spin pair in the original
tetrahedron.

We now examine the case where J1 �= J2:
(1) Ising case. The steepest descent method with varying J1

(J2 = −1) gives two kinds of GS spin configuration: The first
consists of xy ferromagnetic planes stacked antiferromagneti-

FIG. 2. Ground state in the XY case. The tetrahedron is projected
on the xy plane. The spins are numbered from 1 to 4. See text for
comments.

cally along the z direction, while the second one is the stacking
of xy AF planes such that each tetrahedron has two up and two
down spins. The transition between the two configurations is
determined as follows. One simply writes down the respective
energies of a tetrahedron and compares them:

E1 = 3(−J1 + J2), (2)

E2 = J1 + J2. (3)

One sees that E1 < E2 when J1 > 0.5J2, that is, |J1| <

0.5|J2|. Thus the first configuration is more stable when
|J1| < 0.5|J2|.

(2) XY case. Consider one tetrahedron of the HCP lattice.
The Hamiltonian for this cell is given by

Hc = −J1(S1 · S2 + S2 · S3 + S3 · S1)

−J2(S1 · S4 + S2 · S4 + S3 · S4). (4)

Suppose that |Si | = 1, one has

Hc = −J1[cos α + cos β + cos(α + β)]

−J2[cos γ + cos(γ − α) + cos(γ − α − β)], (5)

where the angles are defined in Fig. 2. The steepest descent
method shows that while β and α have unique values for a

β
γ

FIG. 3. (Color online) Ground state in the XY case (color online).
The angles β (black circles) and γ (blue void circles) and their cosinus
are shown as functions of η = J1/J2. Noncollinear GS configurations
occur in the region 1/3 � η � 1. See text for comments.
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given J1/J2, α is arbitrary, just as in the case of the isotropic
interaction [17] discussed above. To simplify the formulas, we
take α = 0 in the following. The energy of the cell is written
as

Hc = −J1[1 + 2cosβ] − J2[2cosγ + cos(γ − β)]. (6)

FIG. 4. Ising case. Energy E, specific heat CV , order parameter
M , and susceptibility χ versus T for η = J1/J2 = 0.3. See text for
comments.

The critical values of β and γ are determined from the
relations,

∂Hc

∂β
= 2J1 sin β − 2J2 sin(γ − β) = 0, (7)

∂Hc

∂γ
= 2J2 sin γ + J2 sin(γ − β) = 0. (8)

We find the following solutions:
(i) β = 0, γ = 0,
(ii) β = 0, γ = π ,
(iii) β = π , γ = 0,
(iv) β = π , γ = π , and
(v) cos β = 1

4(J1/J2)2 − 5
4 , cos γ = − 1+3(J1/J2)2

4(J1/J2) .
By comparing the energy values at these solutions, we obtain
the minimum energy with the last solution: One has

Hc = −1 + 3(J1/J2)2

2(J1/J2)
, (9)

where cos β and cos γ are given above.
Because −1 � cos β � 1 and −1 � cos γ � 1, the above
solution is valid for 1

3 � J1/J2 � 1. We plot cos β, cos γ ,
β, and γ in Fig. 3 where we observe that the noncollinear GS
configuration occurs in the interval 1/3 � η = J1/J2 � 1.

III. PHASE TRANSITION: RESULTS

We consider a sample size of L × L × Lz where L and
Lz vary from 12 to 36 but Lz can be different from L in
order to detect the dependence of the GS on J1. The exchange
interaction |J2| = 1 is used as the unit of energy. We use

FIG. 5. (Color online) Ising case. Energy E and order parameter
M for η = J1/J2 = 0.85 (blue open circles) and 1 (red triangles). See
text for comments.
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FIG. 6. (Color online) Ising case. Energy histogram P (E) versus
E for η = 1( red triangles), 0.85 (blue open circles), and 0.3 (black
circles). See text for comments.

here MC simulations with a histogram technique to detect
first-order transition. We equilibrate the system and average
physical quantities over several millions of MC steps per
spin. The averaged energy 〈U 〉 and the heat capacity CV are
calculated by

〈U 〉 = 〈H〉, (10)

CV = 〈U 2〉 − 〈U 〉2

kBT 2
, (11)

where 〈· · ·〉 indicates the thermal average taken over micro-
scopic states at T .

The order parameter M is defined from the sublattice
magnetization by

M =
∑

K

∣∣∣∣∣
∑

i∈K

Si

∣∣∣∣∣, (12)

where Si belongs to the sublattice K . Note that there are at least
four sublattices which define the ordering of the spins on the
tetrahedra if a long-range order is observed. The susceptibility

FIG. 7. (Color online) Ising case. TC versus η. I, II, and P denote
the first, second, and paramagnetic phases, respectively. See text for
comments.

is defined by

χ = 〈M2〉 − 〈M〉2

kBT
. (13)

In MC simulations, we work at finite sizes, so for each
size we have to determine the “pseudo” transition which
corresponds in general to the maximum of the specific heat or
of the susceptibility. The maxima of these quantities need not
be at the same temperature. Only at the infinite size, they should
coincide. The theory of finite-size scaling [20–22] permits

FIG. 8. XY case. Energy E, specific heat CV , order parameter M ,
and susceptibility χ versus T for η = 0.3. See text for comments.
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one to deduce properties of a system at its thermodynamic
limit. In order to check the first-order nature of the transition,
we used the histogram technique which is very efficient
in detecting weak first-order transitions and in calculating
critical exponents of second-order transitions [21,22]. The
main idea of this technique is to make an energy histogram
at a temperature T0 as close as possible to the transition
temperature. Often, one has to try at several temperatures in
the transition region. Using this histogram in the formulas
of statistical physics for canonical distribution, one obtains
energy histograms in a range of temperature around T0. In
second-order transitions, these histograms are Gaussian. This
allows us to calculate averages of physical quantities as well
as critical exponents using the finite-size scaling. In first-
order transitions, the energy histogram shows a double-peak
structure.

A. Ising case

In the following, the results in different figures are shown
with L = 18 and Lz = 8 (16 atomic planes along z). Since
the GS changes at ηc = 0.5, we show here examples on both
sides of this value. Figure 4 shows the energy per spin E,
the specific heat per spin CV , the order parameter M , and the
susceptibility χ , for η = 0.3. The transition is of second order.
On the other side, we show in Fig. 5 the energy per spin and
the order parameter versus T , for η = 0.85 and 1. We find a
strong first-order transition in both cases. The discontinuity of
E and M at the transition is very large. We show in Fig. 6
the energy histogram taken at the transition temperature for
three values η = 0.3 (black), 0.85 (blue), and 1 (red). As seen,

FIG. 9. (Color online) XY case. E and M versus T for η = 0.58
(blue open circles) and 1 (red triangles). See text for comments.

FIG. 10. (Color online) XY case. Energy histogram P versus E for
η = 0.3 (black circles), 0.58 (blue open circles), and 1 (red triangles)
at the respective transition temperatures. See text for comments.

the first case is a Gaussian distribution indicating a second-
order transition, while the last two cases show a double-peak
structure indicating a first-order transition.

We have calculated the critical temperature TC as a function
of η. The phase diagram is shown in Fig. 7 where I and II
indicate the ordering of the first and second kinds, respectively.
P indicates the paramagnetic phase. Note that the transition line
between I and P is a second-order line, while that between II
and P is a first-order line.

B. XY case

In the XY case, the change of the GS takes place at η =
1/3. Let us show in Fig. 8 the result for η = 0.3 where the
GS is composed of ferromagnetic planes antiferromagnetically
stacked in the z direction. The transition is of second order.

We show now the result for the noncollinear GS region in
Fig. 9. The energy and the order parameter show clearly a
discontinuity at the transition for η = 0.58 and 1. Using the
histogram method described above, we have calculated the
histogram shown in Fig. 10 for η = 0.3, 0.58, and 1. For η =
0.3 which is in the collinear region of the GS, the histogram
is Gaussian, confirming the second-order transition observed
in the data shown above. For η = 0.58 and 1 belonging to the

FIG. 11. (Color online) XY case. TC versus η. I, II, and P denote
the collinear, noncollinear, and paramagnetic phases, respectively.
See text for comments.
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noncollinear region, the histogram shows a two-peak structure
which confirms the first-order character of the transitions in
this region.

The two peaks are very well separated with the dip going
down to zero, indicating an energy discontinuity. The distance
between the two peaks is the latent heat 	E.

We show in Fig. 11 the transition temperature versus
η where I and II indicate the collinear and noncollinear
phases, respectively. P denotes the paramagnetic state. The
line separating I and P is a second-order transition line, while
that separating II and P is the first-order one.

To close this section, we emphasize that all three-
dimensional (3D) frustrated systems known so far undergo a
first-order transition: Let us mention the AF STL [12–15], the
FCC antiferromagnets [23], the simple cubic fully frustrated
lattices [24–27], helimagnets [28], and the HCP lattice studied
here.

IV. CONCLUSION

We have studied in this paper some properties of the
HCP antiferromagnet with Ising and XY spin models. The
in-plane J1 and interplane J2 interactions are supposed to
be different. As a result, the GS spin configuration depends
on the ratio η = J1/J2. We show that there exists a critical
value ηc where the GS changes. For the Ising case, we find
ηc = 0.5 below (above) which the spins in the xy planes are
ferromagnetic (antiferromagnetic). For the XY case, the GS
is collinear below ηc = 1/3, and is noncollinear above that
value. The nature of the transition changes from a second
order below ηc to a first order above ηc for both Ising and
XY cases. The general phase diagrams in the space (η,T )
are shown for both cases. These findings may help to under-
stand the transition nature in different compounds with HCP
structure.
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