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Spin systems with long-range interactions are “nonextensive” if the strength of the interactions falls off
sufficiently slowly with distance. It has been conjectured for ferromagnets and, more recently, for spin glasses
that, everywhere in the nonextensive regime, the free energy is exactly equal to that for the infinite range model
in which the characteristic strength of the interaction is independent of distance. In this paper we present the
results of Monte Carlo simulations of the one-dimensional long-range spin glasses in the nonextensive regime.
Using finite-size scaling, our results for the transition temperatures are consistent with this prediction. We also
propose and provide numerical evidence for an analogous result for diluted long-range spin glasses in which
the coordination number is finite, namely, that the transition temperature throughout the nonextensive regime is
equal to that of the infinite-range model known as the Viana-Bray model.
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I. INTRODUCTION

In the theory of phase transitions, it is often helpful to study
models in a range of dimensions from above the “upper critical
dimension” du, where mean-field critical behavior is valid, to
below the “lower critical dimension” dl , where fluctuations
destroy the transition. For Ising spin glasses dl � 2.5 [1] and
du = 6. However, it has been difficult to cover this broad range
numerically for spin glasses since du is quite large, and slow
dynamics prevents equilibration at low temperatures when the
number of spins N (=Ld ) is greater than a few thousand. It
follows that at and above du, one cannot study a sufficient
range of linear sizes L to perform the necessary finite-size
scaling (FSS) analysis.

As a result, there has been a lot of recent attention on
long-range models in one dimension, in which the interactions
fall off with a power of the distance. Such models have a
long history going back to Dyson [2,3], who considered a
ferromagnet with interactions Jij falling off like 1/rσ and
found a paramagnet-ferromagnet transition for σ � 2. Kotliar
et al. [4] studied the spin glass version of this model, which
has received a lot of attention numerically in the last few
years [5–9].

Varying the power σ in the long-range spin glass model,
one has a range of behavior similar that obtained by varying
the dimension in short-range models; namely, there is a “lower
critical value” σl = 1 [10], above which there is no transition at
finite temperature, and an “upper critical value” σu = 2/3 [4],
below which the transition has mean-field critical exponents.
Note that increasing σ makes the interactions more short range
and so corresponds to decreasing d.

A precise connection between d for short-range models and
σ for long-range models can be made in the mean-field region
(d > 6 or 1/2 < σ < 2/3), namely [11],

d = 2

2σ − 1
(d > 6, 1/2 < σ < 2/3). (1)

This mapping shows that d → ∞ for σ → 1/2. Since the
transition temperature in mean-field theory is given by

(
T MF

c

)2 =
∑

j

[
J 2

ij

]
av, (2)

we see that for smaller values of σ , i.e., 0 � σ � 1/2, the
strength of the interactions has to be scaled with an inverse
power of the system size to obtain a sensible thermodynamic
limit. We call this regime “nonextensive.” The extreme limit of
this region, σ = 0, is the Sherrington-Kirkpatrick (SK) model
[12], which is “infinite range.” To complete the picture of the
one-dimensional long-range spin glass model, in this paper we
study the nonextensive regime (0 � σ < 1/2).

The nonextensive regime for ferromagnets has already been
investigated [13,14]. This work shows that the behavior in
the whole nonextensive regime is the same, with a suitable
rescaling of the interactions, as that of the infinite-range
ferromagnet in which every spin interacts equally with every
other spin, i.e., σ = 0. We give intuitive arguments for this in
the Appendix.

It is interesting to ask if the same is true for spin glasses. In
a recent paper Mori [15] has claimed that this is so; i.e., for all
0 � σ < 1/2 the behavior is the same as that of the SK model
(σ = 0), provided the interactions are scaled with system size
so that

∑
j �=i[J

2
ij ]av is set to the same value for all σ . However,

this argument is just at the level of replicating the Hamiltonian,
so it becomes translationally invariant, and then arguing that
the earlier work for ferromagnets can be taken over directly.
While plausible, this result is by no means rigorous, and so we
test it here by Monte Carlo simulations.

One of the models we simulate here is the usual one in which
every spin interacts with every other spin. However, it is also
interesting to carry out the same study for a diluted model [7]
with a fixed average coordination number z. This model has
received a lot of attention recently because the computer time
per sweep only varies as Nz (rather than N2 for the undiluted
model), so it can be simulated much more efficiently than the
undiluted model for large N . The diluted model with σ = 0 is
called the Viana-Bray [16] model. It corresponds to a spin glass
on a random graph, the exact solution of which is expected to
be the Bethe-Peierls approximation. By analogy with Mori’s
proposal, we suggest here that the behavior of the diluted
spin glass model is identical to that of the Viana-Bray model
σ = 0 everywhere in the nonextensive region (0 � σ < 1/2).
We shall also provide numerical evidence for this.

We should emphasize that universal quantities, such as
critical exponents, are expected to be the same everywhere
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in both the mean-field (1/2 < σ < 2/3) and nonextensive
(0 � σ < 1/2) regimes. The claim that we test is that all
the behaviors of these models (not just the critical behavior)
are identical for all σ in the nonextensive regime, at least
in the thermodynamic limit. We therefore need to look at
nonuniversal quantities and focus here on one particularly
convenient quantity, the value of the transition temperature Tc.

This paper is organized as follows: In Sec. II we describe the
models used in the simulations and give their corresponding
mean-field transition temperatures. In Sec. III we give the
details of the Monte Carlo simulations and FSS analysis.
The results are given in Sec. IV, and our conclusions are
summarized in Sec. V. The Appendix provides an intuitive
explanation of why the behavior of the ferromagnet is
independent of σ in the nonextensive regime.

II. MODELS

The Hamiltonian that we study is

H = −
∑
〈i,j〉

JijSiSj , (3)

where Si (i = 1,2, . . . ,L) are Ising spins which take values
±1 and Jij are statistically independent, quenched, random
variables. The mean is taken to be zero, and the variance
satisfies [

J 2
ij

]
av

∝ r−2σ
ij , (4)

where, for the distance rij , we put the sites on a ring and take
the chord distance between sites i and j [17], i.e.,

rij = L

π
sin

(
π |i − j |

L

)
. (5)

The form of the distribution of Jij is different for the
undiluted and diluted models. For the undiluted case the
distribution of Jij is Gaussian,

P (Jij ) = 1√
2π �Jij

exp

( −J 2
ij

2(�Jij )2

)
(undiluted), (6)

where the variance is given by

(�Jij )2 = C2

r2σ
ij

, (7)

in which C is a constant to be determined below.
In order to compare models with different values of σ , for

each σ and L, we scale the variance so that∑
j

[
J 2

ij

]
av = 1 (undiluted), (8)

where the sum is for fixed i and we have Jii = 0. Equation (8)
determines the value of C in Eq. (7). Because we consider the
nonextensive regime, C must vanish for L → ∞ like Lσ− 1

2 .
The expression for the mean-field transition temperature in

Eq. (2) is the exact result for the SK model, σ = 0. Hence,
from Eq. (8), we have

Tc(σ = 0) = 1 (undiluted). (9)

For the diluted model, rather than the strength of the
interaction falling off like 1/rσ

ij , most bonds are absent, and it

is the probability of there being a nonzero bond which falls of
with distance (asymptotically like 1/r2σ

ij ). If a bond is present,
it is chosen from a Gaussian distribution with mean zero and
variance unity (i.e., independent of rij ). In other words

P (Jij ) = (1 − pij ) δ(Jij ) + pij

1√
2π

e−J 2
ij /2 (diluted), (10)

where pij ∝ 1/r2σ
ij at large distance.

It is convenient to fix the mean number of neighbors z. The
pairs of sites with nonzero bonds are then generated as follows.
Pick a site i at random. Then pick a site j with probability
p̃ij = A/r2σ

ij , where A is determined by normalization. If there
is already a bond between i and j , repeat until a pair i,j is
selected which does not already have a bond.1 At that point
set Jij equal to a Gaussian random variable with zero mean
and variance unity. This process is repeated Nz/2 times so
the number of sites connected to a given site has a Poisson
distribution with mean z. Because each site has, on average, z

neighbors and the variance of each interaction is unity, we have∑
j

[
J 2

ij

]
av = z (diluted). (11)

The transition temperature for the diluted model with σ = 0
was shown by Viana and Bray [16] to be given by the solution
of

1√
2π

∫ ∞

−∞
dx e−x2/2 tanh2

(
x

Tc

)
= 1

z
. (12)

We choose z = 6. for which we find

Tc(σ = 0) = 2.0564 (diluted). (13)

III. METHOD

We perform Monte Carlo simulations on the models
described in Sec. II. To speed up equilibration we use the
parallel tempering (exchange) Monte Carlo method [18]. In
this approach one simulates NT copies of the spins with the
same interactions, each at a different temperature between a
minimum value Tmin and a maximum value Tmax. In addition
to the usual single spin-flip moves for each copy, we perform
global moves in which we interchange the temperatures of
two copies at neighboring temperatures with a probability
which satisfies the detailed balance condition. In this way,
the temperature of a particular copy performs a random walk
between Tmin and Tmax, thus helping to overcome the free
energy barriers found in the simulation of glassy systems.

For the simulations of the undiluted model to be in
equilibrium the following equality must be satisfied [17]:

U = −
(
T MF

c

)2

2T
(1 − ql) (undiluted), (14)

1Note that if zp̃ij 
 1, then pij in Eq. (10) is given by pij = zp̃ij ,
but otherwise, there are corrections due to rejection of pairs i,j when
there is already a bond between them.
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FIG. 1. (Color online) Data for the the scaled spin glass susceptibility and the Binder ratio for (top) the undiluted model with σ = 0, the SK
model, and (bottom) the undiluted model with σ = 0.25. The dashed vertical line shows the exact value of the transition temperature (Tc = 1)
for the SK model.

where

U = −
∑
〈i,j〉

[Jij 〈SiSj 〉]av (15)

is the average energy and ql is the “link overlap” defined by

ql = 2

N

∑
〈i,j〉

[
J 2

ij

]
av(

T MF
c

)2 [〈SiSj 〉2]av (undiluted), (16)

in which T MF
c is given by Eq. (2) [and here set equal to unity

by the scaling of the interactions; see Eq. (8)]. Equation (14)
is obtained by integrating by parts with respect to Jij

the expression for the average energy and noting that the
distribution is Gaussian. This equation is useful because, very

plausibly, the two sides approach their common value from
opposite directions [17], so if the two sides agree, the system
has reached equilibrium (at least for the energy and link
overlap).

For the diluted model, the equilibration test takes the form
[5]

U = − z

2T
(1 − ql) (diluted), (17)

where the link overlap is now defined by

ql = 2

Nz

∑
〈i,j〉

[εij 〈SiSj 〉2〉]av (diluted), (18)
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FIG. 2. (Color online) Results for the intersection temperatures for (left) the SK model and (right) the undiluted σ = 0.25 model.

in which εij = 1 if there is a bond between i and j and zero
otherwise. As with Eq. (14), we expect that the two sides
of Eq. (17) approach each other from opposite directions as
equilibrium is approached.

We consider results obtained by successively doubling the
number of sweeps, in each case averaging over the last half
of the sweeps, and we accept the data as being in equilibrium
if the last three data points agree with each other within the
error bars. The total number of sweeps used in this check is
shown as Nequil in Tables I and II. We then do “production”
runs where, in addition to Nequil sweeps for equilibration,
we do 10 to 20 times as many sweeps, Nmeas, during which
measurements are performed. All the parameters used in the
simulations are given in Tables I and II. To avoid bias, each
distinct thermal average, for example, in Eq. (16), is evaluated
in a separate copy (replica) of the system with the same
interactions.

TABLE I. Simulation parameters for the undiluted models.
Nsamp is the number of samples, and Nequil and Nmeas are the
number of sweeps for equilibration and for the measurement
phase, respectively. We simulate NT temperatures between Tmin

and Tmax.

σ L Nsamp Nequil Nmeas Tmin Tmax NT

0 64 16000 1000 10000 0.5 1.65 47
0 128 16000 1000 10000 0.5 1.6 45
0 256 16000 1000 10000 0.5 1.6 45
0 512 8000 1000 10000 0.75 1.55 33
0 1024 8000 1000 10000 0.75 1.5 31
0 2048 4000 1000 10000 0.75 1.5 31
0 4096 4000 2000 10000 0.85 1.525 28
0.25 64 16000 1000 10000 0.5 1.65 47
0.25 128 16000 1000 10000 0.5 1.6 45
0.25 256 16000 1000 10000 0.5 1.6 45
0.25 512 8000 1000 10000 0.5 1.525 42
0.25 1024 8000 1000 10000 0.75 1.5 31
0.25 2048 4000 1000 10000 0.75 1.5 31
0.25 4096 4000 2000 10000 0.85 1.525 28

We focus on moments of the spin glass order parameter q

where

q = 1

L

∑
i

S
(1)
i S

(2)
i , (19)

in which (1) and (2) refer to two independent copies of the
system with the same interactions. Of particular interest are
the spin glass susceptibility,

χSG = L〈q2〉, (20)

and the Binder ratio,

g = 1

2

(
3 − [〈q4〉]av

[〈q2〉]2
av

)
. (21)

TABLE II. Simulation parameters for the diluted models. The
parameters are the same as in Table I.

σ L Nsamp Nequil Nmeas Tmin Tmax NT

0 256 8000 400 8000 1.85 2.5 27
0 512 8000 800 16000 1.85 2.5 27
0 1024 8000 2000 40000 1.85 2.5 27
0 2048 4000 2000 40000 1.85 2.5 27
0 4096 4000 2000 40000 1.9 2.5 25
0 8192 2000 4000 80000 1.9 2.5 25
0 16384 2000 4000 80000 2.0 2.5 14
0.25 256 8000 800 16000 1.85 2.5 27
0.25 512 8000 800 16000 1.85 2.5 27
0.25 1024 8000 1200 24000 1.85 2.5 27
0.25 2048 4000 2000 40000 1.85 2.5 27
0.25 4096 4000 2000 40000 1.9 2.5 25
0.25 8192 2000 4000 80000 1.9 2.5 25
0.25 16384 2000 4000 80000 2.0 2.5 14
0.375 256 32000 1200 24000 1.863 4.0 24
0.375 512 26327 1200 24000 1.863 4.0 26
0.375 1024 16000 1200 24000 1.913 4.0 24
0.375 2048 15998 2000 40000 1.95 4.0 24
0.375 4096 8000 4000 80000 1.962 4.0 28
0.375 8192 7999 4000 80000 1.975 4.0 34
0.375 16384 4000 4000 80000 2.0 2.51 18
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FIG. 3. (Color online) Data for the the scaled spin glass susceptibility and the Binder ratio for (top) the Viana-Bray model, i.e., the diluted
model with σ = 0, and (bottom) the diluted model with σ = 0.25. The dashed vertical line shows the transition temperature for the Viana-Bray
model obtained from Eq. (12) of the text.

Since the Binder ratio is dimensionless, its FSS behavior
is simple. We are always in the regime of mean-field critical
exponents (0 � σ < 2/3), so it has the form [19]

g = g̃[(T − Tc) L1/3]. (22)

The spin glass susceptibility is not dimensionless, but since
we are in the mean-field regime, its FSS form is also known
exactly. It has the form [19]

χSG = L1/3 χ̃ [(T − Tc) L1/3]. (23)

One can therefore determine the transition temperature
from where the data for g or χSG/L1/3 for different sizes
intersect. However, we shall see that the data do not all

intersect at a single temperature, showing that there are
corrections to the FSS form in Eqs. (22) and (23). Consider
Eq. (23). According to standard finite-size scaling, the spin
glass susceptibility normally varies near the critical point
according to [11]

χSG(t,L) = La[f (Lbt) + L−ωg(Lyt) + · · ·]
+ c0 + c1t + · · · , (24)

where t = T − Tc, a = 2 − η (=2σ − 1 here), and b = 1/ν.
The L−ω term is the leading singular correction to scaling,
and c0 is the leading analytic correction to scaling. However,
in the mean-field limit, σ < 2/3, the exponents a and b are
independent of σ [20–22] and take the value at σc for all
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FIG. 4. (Color online) Results for the intersection temperatures for (left) the Viana-Bray model and (right) the diluted model with σ = 0.25.

1/2 < σ < σc, i.e., a = b = 1/3. Furthermore, although the
L2σ−1 term is replaced as the largest term by an L1/3 term
(due to the presence of a “dangerous irrelevant variable,” cf.
Refs. [20–22]), we expect [11] this term not to disappear
but rather become a correction to scaling. Hence, we replace
Eq. (24) by

χSG(t,L) = L1/3[f (L1/3t) + L−ωg(L1/3t) + · · ·]
+ d0L

2σ−1hg(L1/3t) + c0 + c1t · · · . (25)

The correction exponent ω can be obtained in the mean-field
regime from the work of Kotliar et al. [4] and is given by
ω = 2 − 3σ . Hence, in the nonextensive regime, σ < 1/2, the
dominant correction to scaling is the constant c0.

Adding a constant to the right-hand side of Eq. (23), it is
straightforward to show that the intersection temperature of
the data for χSG/L1/3 for sizes L and 2L is given by

T ∗(L,2L) = Tc + A

L2/3
+ · · · , (26)

where A is a constant and the omitted terms are higher order in
1/L. We expect that the intersection temperatures for the data
for g have the same form. We shall use Eq. (26) to determine
Tc for the models studied.

IV. RESULTS

We first present our results for the undiluted model. Data
for the the scaled spin glass susceptibility and the Binder ratio
are shown in Fig. 1. The top panels show the SK model,
σ = 0, and the bottom panels show the undiluted model with
σ = 0.25. One sees large corrections to scaling for the Binder
ratio (the left-hand plots) but much smaller corrections for the
scaled spin glass susceptibility (the right-hand plots). The inset
enlarges the region of the intersections for the latter data.

Figure 2 shows values for the intersection temperature.
These were determined by interpolation using cubic splines,
and error bars were computed by a jackknife analysis. For
both values of σ the data extrapolates to a value of 1, the exact
value for the SK model (with very small errors). The quality
of the fit, as represented by the goodness of fit parameter
Q [23], is satisfactory except for the Binder ratio data for the

SK model. We do not have a good explanation for this, except
perhaps that multiple corrections to scaling are significant for
the range of sizes studied. In any case we note that the result
Tc = 1 for the SK model is rigorously correct. The result that
Tc = 1 also for σ = 0.25, at the midpoint of the nonextensive
region, provides strong evidence for the claim of Mori [15]
that all models in the nonextensive region are identical to the
SK model. While it would be useful to check this also in the
space glass phase below Tc, such simulations would be difficult
because relaxation times increase dramatically at low T , and
so the range of sizes that could be studied would be much more
limited than in the data presented here.

The corresponding results for the diluted model for σ =
0 and 0.25 are shown in Figs. 3 and 4. We also performed
simulations for σ = 0.375 and show the resulting intersection
temperatures in Fig. 5. For σ = 0, the Viana-Bray [16] model,
the transition temperature is given by Eq. (12), which, for
z = 6 taken here, gives the result in Eq. (13). In Fig. 3 we again
see that corrections to scaling are larger for the Binder ratio
than for the scaled spin glass susceptibility. The intersection

FIG. 5. (Color online) Results for the intersection temperatures
for the diluted model with σ = 0.375.
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temperatures all extrapolate to the exact value for σ = 0 within
statistical uncertainty.2

V. SUMMARY AND CONCLUSIONS

We have performed Monte Carlo simulations to investigate
the transition temperature of one-dimensional Ising spin
glasses, both undiluted and diluted, for several values of σ

in the nonextensive regime 0 � σ < 1/2. For the undiluted
model we studied two values of σ , σ = 0 and σ = 0.25. For
σ = 0.25, which lies in the middle of the nonextensive regime,
we find that the transition temperature agrees to high precision
with the exact solution of the SK model. As a check, we also
simulated the σ = 0 case, obtaining results consistent with
the exact SK model result, though there seem to be multiple
corrections to FSS for some of the data.

For the diluted model we studied three values of σ : σ = 0,
which corresponds to the Viana-Bray model, σ = 0.25, which
lies in the middle of the nonextensive regime, and σ = 0.375.
In all cases we found the transition temperature to be consistent
with the exact solution of the Viana-Bray model; all results are
within ∼1.5 standard deviations.

To conclude, our results provide confirmation of the
proposal [15] that the behavior of (undiluted) spin glasses
everywhere in the nonextensive regime is identical to that of
the SK model. We have also proposed that an analogous result
applies to diluted spin glass models and provided numerical
evidence for this too.
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APPENDIX: SPHERICAL APPROXIMATION
FOR THE FERROMAGNET

For the infinite-range ferromagnet, the interaction Jij is
equal to 1/(N − 1) for i �= j and 0 for i = j . This fixes Tc = 1.
The Fourier transform of this interaction is given by

J (k) = δk,0 − 1

N
, (A1)

so only the k = 0 mode contributes to the transition.
For a power-law decay of the interactions in the nonex-

tensive regime (0 < σ < 1), on dimensional grounds there
is a singular piece which diverges like kσ−1 for k → 0.
Furthermore the interactions have to be multiplied by a
number of order Nσ−1 in order to satisfy the condition
T MF

c = ∑
j Jij = 1. Hence, roughly speaking, we have

J (k) ∝ (k N )σ−1 , (A2)

where we note that k ≡ kn = 2πn/L (n = 0,1,2, . . .). [For
n = 0,J (0) does not actually diverge but will be comparable

2All the results are within one standard deviation, except for the
data for g for σ = 0 and χSG/L1/3 for σ = 0.25, but even these are
within ∼1.5 standard deviations, which we also consider acceptable.

to J (k1).] Hence other long wavelength modes, in addition to
k = 0, are now significant. However, we shall now see that
there are not enough of them to change the value of Tc from
that of T MF

c (=1).
We will do this by considering the “spherical approxima-

tion” [24], in which we reexpress the problem as a Gaussian
one, with “soft” spins φi which take values from −∞ to ∞,
and a Hamiltonian

HGauss = 1

2

∑
i,j

(μδij − Jij ) φiφj , (A3)

where μ is a Lagrange multiplier whose value is chosen to
enforce the length constraint〈

φ2
i

〉 = 1. (A4)

It turns out the the spherical approximation is exact for
an m-component model in the limit m → ∞ [25]. Fourier
transforming Eq. (A4) and doing the Gaussian integrals gives

1

T
= 1

L

∑
k

1

μ − J (k)
. (A5)

The transition occurs when the denominator vanishes at k = 0,
i.e., when μ = J (0), and so

1

T
spher
c

= 1

L

∑
k

1

J (0) − J (k)
. (A6)

It is interesting to compare this with the mean-field result,
Tc = ∑

j Jij = J (0). Since Jii = (1/L)
∑

k J (k) = 0, we can
rewrite the mean-field transition temperature as

T MF
c = 1

L

∑
k

[ J (0) − J (k) ] . (A7)

Thus, whereas in mean-field theory Tc is equal to the average
of J (0) − J (k), in the spherical approximation 1/Tc is equal
to the average of the inverse of this.

For the infinite-range model, where J (k) is given by
Eq. (A1) and only the k = 0 mode contributes, the spherical
result agrees with the mean-field result (consistent with the
mean-field result being exact for this model).

We now estimate Tc from the spherical approximation,
Eq. (A6), for the power-law model, where J (k) varies like
Eq. (A2). Because we normalize the interactions to J (0) = 1,
we can include an extra factor of J (0) and expand in powers
of J (k)/J (0), i.e.,

1

T
spher
c

= 1

L

∑
k

1

1 − J (k)/J (0)
(A8a)

= 1

L

∑
k

[
1 + J (k)

J (0)
+

(
J (k)

J (0)

)2

+ · · ·
]

(A8b)

= 1 + 1

L

∑
k

[ (
J (k)

J (0)

)2

+ · · ·
]

(A8c)

= 1 +
∑

j J 2
ij(∑

j Jij

)2 + · · · , (A8d)

where in Eq. (A8c) we used
∑

k J (k) = 0. In Eq. (A8d)
we have

∑
j Jij ∝ L1−σ while

∑
j J 2

ij = L1−2σ (0 � σ <

1/2),
∑

j J 2
ij = const (1/2 < σ < 1). Hence the leading
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correction term in Eq. (A8d) vanishes everywhere in the
nonextensive regime.

To conclude, in this Appendix we have given a suggestive
argument as to why Tc for the ferromagnet is given exactly by

the mean-field value everywhere in the nonextensive regime.
It is therefore also plausible that other properties are also
identical to those of mean-field theory (i.e., the infinite-range
model).
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